当前位置:文档之家› 苯胺及其衍生物结构论文

苯胺及其衍生物结构论文

苯胺及其衍生物结构论文
苯胺及其衍生物结构论文

苯胺及其衍生物结构论文

摘要:在不同的环境条件下,影响苯胺的碱性强弱的因素也是不同的。在水溶液中,其影响因素是由电子效应、溶剂效应和空间效应共同作用所致;而在气态时,其影响因素主要是由电子效应作用所致。因此,在探究苯胺碱性的时,要把握好外界环境条件,从多方面考虑其影响因素,将影响苯胺碱性的三个因素结合起来考虑,最后定能做出科学、合理的研究。

1.引言

苯胺是最重要的胺类物质之一,也是重要的化工原料[1]。在染料工业中是很重要的中间体,可用于制造酸性墨水蓝G、酸性嫩黄等[2];在有机颜料方面有用于制造金光红、大红粉等[3-4];在农药工业中用于生产许多杀虫剂,如除草醚、毒草胺等[5-6];也是生产香料、塑料、清漆等的中间体;并可作为炸药中的稳定剂、汽油中的防爆剂等。

碱性在胺的分离、提纯和鉴定等方面上有着很重要的意义,芳香胺类化合物的碱性强弱比较,是有机化学中常见的一个问题。由于芳香胺类化合物种类较多,不同的条件下又可产生不同碱性强弱顺序,所以在遇到实际问题时往往感觉难以准确进行判断[7]。此探究总结出了一些简单的判断新方法,此方法在判别时易于掌握,且不易产生混淆,并且在使用判断的过程中,对芳香胺类化合物的碱性强弱又会有新的理解和认识。

2.苯胺的结构

乙酰苯胺的制备

乙酰苯胺的制备 一.实验目的 1.学习实验室制备芳香族酰胺的原理和方法。 2.训练固体有机物的热过滤、脱色、洗涤、重结晶、干燥等纯化技术。 二.实验原理 NH 2+CH 3COOH 3+H 2O 芳香族酰胺通常用伯或仲芳胺与酸酐或羧酸反应制备,因为酸酐的价格较贵,所以一般选羧酸。本反应是可逆的,为提高平衡转化率,加入了过量的冰醋酸,同时不断地把生成的水移出反应体系,可以使反应接近完成。为了让生成的水蒸出,而又仅可能地让沸点接近的醋酸少蒸出来,本实验采用较长的分馏柱进行分馏。实验加入少量的锌粉,是为了防止反应过程中苯胺被氧化。 三.试剂及物理常数 四、实验流程 5ml 苯胺 7.4ml 冰醋酸0.1g 锌粉 称重计算产率

抽滤装置 干燥装置 布氏漏斗 抽滤瓶 反应装置 六、操作要点和说明 1.合成 (1).反应物量的确定: 本实验反应是可逆的,采用乙酸过量和从反应体系中分出水的方法来提高乙酰苯胺的产率,但随之会增加副产物二乙酰基苯胺的生成量。二乙酰苯胺很容易水解成乙酰苯胺和乙酸,在产物精制过程中通过水洗、重结晶等操作,二乙酰基苯胺水解成乙酰苯胺和乙酸,经过滤可除去乙酸,不影响乙酰苯胺的产率和纯度。 苯胺极易氧化,在空气中放置会变成红色,使用时必须重新蒸馏除去其中的杂质。反应过程中加入少许锌粉。锌粉在酸性介质中可使苯胺中有色物质还原,防止苯胺继续氧化。在实验中可以看到,锌粉加得适量,反应混合物呈淡黄色或接近无色。但锌粉不能加得太多,一方面消耗乙酸,另一方面在精制过程中乙酸锌水解成氢氧化锌,很难从乙酰苯胺中分离出来。 (2).合成反应装置的设计: 水沸点为100℃,乙酸沸点为117℃,两者仅差17℃,若要分离出水而不夹带更多的乙酸,必须使用分馏反应装置,而不能用蒸馏的反应装置。本实验用分馏柱。 一般有机反应用耐压、耐液体沸腾冲出的圆形瓶作反应器。由于乙酰苯胺的熔点为114℃,稍冷即固化,不易从圆形瓶中倒出,因此用锥形瓶作反应器更方便。 分出的水量很少,分馏柱可以不连接冷凝管,在分馏柱支口上直接连尾接管,兼作空气冷凝管即可,使装置更简单。 为控制反应温度,在分馏柱顶口插温度计。 (3).操作条件的控制 保持分馏柱顶温度低于105℃的稳定操作,开始缓慢加热,使反应进行一段时间,有水生成

聚苯胺的溶解性

聚苯胺重要知识点集 1.聚苯胺的溶解性..\聚苯胺的合成与性能研究[1].pdf 聚苯胺分子结构含有苯环,使其具有很强的刚性,分子间相互作用力很大,很难溶解于大部分溶剂中。具有强极性和弱碱性的NMP是本征态聚苯胺的优良溶剂,用普通化学聚合方法得到的本征态聚苯胺可以部分溶解于NMP中。因此,本征态聚苯胺可以通过溶解的方法来进行加工,例如浇铸成膜、溶液纺丝。但是NMP是高沸点(203)和强极性溶剂,很难从加工后的本征态聚苯胺中被完全除去,这一点在应用时须加以注意。掺杂态聚苯胺的溶解性一直未能得到很好的解决。这是聚苯胺在实际应用中的一大障碍。如果将本征态聚苯胺溶解加工成样品后再进行质子酸掺杂,则在实际操作中有很多困难,难以得到导电性好的聚苯胺材料。虽然掺杂态聚苯胺可以溶解于浓硫酸中,但考虑到环境保护,不太可能得到大规模应用。目前解决掺杂态聚苯胺的溶解性共有四个方案。 第一个方案是在聚苯胺的芳环或N原子上引入可溶性辅助基团。如甲基、乙基、甲氧基、氯原子、氟原子。 第二个方案是合成自掺杂聚苯胺。在聚苯胺的芳环上引入磺酸类基团。将磺酸基或乙酸基等质子酸引入聚苯胺的芳环或N上后,可以获得不需外部质子酸掺杂的自掺杂聚苯胺,此时对阴离子以共价键连接在聚苯胺的主链上。自掺杂聚苯胺的溶解性较普通质子酸掺杂有了很大的改善,某些情况下甚至可以溶于水。但是目前得到的自掺杂聚苯胺的电导率远小于普通聚苯胺,一般只有10-2S.cm-1,且成本远高于普通聚苯胺,实用价值不大。 第三个方案是由我国学者曹镛等提出的对离子诱导。这种方法本质上是利用大分子质子酸的溶解性来增加聚苯胺的溶解能力。另外一个增溶因素是,大分子质子酸镶嵌在聚苯胺大分子链之间,减弱了聚苯胺大分子链之间的相互作用。 第四个方案是形成聚苯胺胶体分散体系。 ..\乳液聚合法-聚苯胺\苯胺的乳液聚合及应用[1].pdf关于聚苯胺溶解性的描述:因为聚苯胺链上存在苯环,链间氢键相互作用以及电荷离域效应,导致聚合物链刚性不溶不熔,其熔融温度在分解温度之上,显然熔融加工不可能实现。 (常用改善聚苯胺溶解性能的方案存在的缺陷)虽然以上几个方案可以利于改善聚苯胺的溶解性能,但是这样的加工性能的改进通常是以降低导电性为代价的,因为其它基团的引入产生空间位阻,链间距离增加,共轭链长缩短,从而导电性能下降。

聚苯胺的制备

随着社会科技的发展,绿色能源成为人类可持续发展的重要条件,而风能、太阳能等非可持性能源的开发和利用面临着间歇性和不稳定性的问题,这就催生了大量的储能装置,其中比较引人注目的包括太阳能电池、锂子电池和超级电容器等。超级电容器作为一种新型化学储能装置,具有高功率密度、快速充放电、较长循环寿命、较宽工作温度等优秀的性质,目前在储能市场上占有很重要的地位,同时它也广泛应用于军事国防、交通运输等领域。 目前,随着环境保护观念的日益增强,可持续性能源和新型能源的需求不断增加,低排放和零排放的交通工具的应用成为一种大势,电动汽车己成为各国研究的一个焦点。超级电容器可以取代电动汽车中所使用的电池,超级电容器在混合能源技术汽车领域中所起的作用是十分重要的,据英国《新科学家》杂志报道,由纳米花和纳米草组成的纳米级牧场可以将越来越多的能量贮存在超级电容器中。随着能源价格的不断上涨,以及欧洲汽车制造商承诺在1995年到2008年之间将汽车CO2的排放量减少25%,这些都促进了混合能源技术的发展,宝马、奔驰和通用汽车公司已经结成了一个全球联盟,共同研发混合能源技术。2002年1月,我国首台电动汽车样车试制成功,这标志着我国在电动汽车领域处于领先地位。而今各种能源对环境产生的负面影响很大,因此对绿色电动车辆的推广提出了迫切的要求,一项被称为Loading-leveling(负载平衡)的新技术应运而生,即采用超大容量电容器与传统电源构成的混合系统“Battery-capacitor hybrid”(Capacitor-battery bank) [1]。 目前对超级电容器的研究多集中于开发性能优异的电极材料,通过掺杂与改性,二氧化锰复合导电聚合物以提高二氧化锰的容量[1、2、3]。生瑜(是这个人吗?)等[4]通过原位聚合法制备了聚苯胺/纳米二氧化锰复合材料,对产物特性进行细致分析。因导电高分子具有可逆氧化还原性能,通过导电高分子改性,这对于提高二氧化锰的性能和利用率是很有意义的。 聚苯胺是一种典型的共扼导电高分子,具有原料价廉易得,合成方法简便,经过质子掺杂的聚苯胺具有良好的电子导电性,可以作为电极材料应用于各种电源器件中[8]。杨红生等人[9]在酸性条件下化学法合成聚苯胺,并组装成电容器。 在过去的10年里,新混合动力系统电极的设计结合了电池和电容性能,并且由于新的电极材料的发现,尤其是纳米材料[8)使得超级电容器技术在性能方面有了卓越的提升。纳米材料不寻常的电气、机械和表面性质使其逐渐成为能量存储的重要研究对象[12,13]。相关纳米材料的优点和缺点在之前的相关文献报道中

乙酰苯胺的制备

实验八乙酰苯胺 一、目的要求 1.了解用冰醋酸制备乙酰苯胺的原理和方法; 2.了解微量分馏管的使用方法。 二、基本原理 三、实验步骤 a在100ml 圆底烧杯中,加入10ml 苯胺、15ml 冰醋酸及少许锌粉(约0.1g用钥匙或玻璃棒沾一点就好,不然难以分离影响纯度,加入其的目的是防止苯胺在反应过程中被氮化,生成有色杂质),装上一短的刺形分馏柱,其上端装一温度计,支管通过支管接引瓶与接收瓶(10ml 量筒方便判定醋酸是否除尽),接收瓶外部用冷水浴冷却; b 将圆底烧瓶在石棉网上用加热套小火加热,使反应物保持微沸约15 min 。然后逐渐升高温度,当温度计读数达到100摄氏度左右时,支管即有液体(醋酸)流出。温度维持在100-110摄氏度之间,当液体流出体积在4.5ml左右时,生成的水及大部分醋酸已被蒸出,表示反应完成; c 在搅拌下趁热将反应物倒入200ml冰水中,冷却后抽滤析出的固体,用冷水洗涤。产量 3.6g。 四、思考与讨论 (1)反应为什么要控制分馏柱上端的温度在100-110摄氏度之间?温度过高有什么不好? 主要由原料CH3COOH(b.p.118℃)和生成物水(b.p.100℃)的沸点所决定。控制在

100-110℃,这样既可以保证原料CH3COOH充分反应而不被蒸出,又可以使生成的水立即移走,促使反应向生成物方向移动,有利于提高产率。 温度过高会使参与反应的醋酸快速蒸出,不能很好的反应。 (2)根据理论计算,反应完成时应产生几毫升水?为什么实际收集的液体远多于理论量? 理论计算M(C6H5NH2)/m(C6H5NH2)*m(H2O)=1.9742g 即约2ml 实际收集 4.5ml 实际收集的液体远多于理论量是因为冰醋酸的存在。

聚苯胺防腐涂料的研究进展

万方数据

万方数据

万方数据

聚苯胺防腐涂料的研究进展 作者:陈超, 马利, 李强军, 姜其斌, CHEN Chao, MA Li, LI Qiang-jun, JIANG Qi-bin 作者单位:陈超,CHEN Chao(株洲时代新材料科技股份有限公司,湖南,株洲,412007;重庆大学化学化工学院,重庆,400044), 马利,MA Li(重庆大学化学化工学院,重庆,400044), 李强军,姜其斌,LI Qiang-jun,JIANG Qi-bin(株洲时代新材料科技股份有限公司,湖南,株洲,412007) 刊名: 广州化工 英文刊名:GUANGZHOU CHEMICAL INDUSTRY 年,卷(期):2010,38(5) 参考文献(29条) 1.马利;严俊;甘孟瑜磁场及反应条件对十二烷基苯磺酸掺杂聚苯胺聚合成膜速率的影响[期刊论文]-化学学报 2008(16) 2.陆珉;吴益华;姜海夏导电聚苯胺(PAn)的特性及应用 1988(04) 3.景遐斌;王利祥;王献红导电聚苯胺的合成、结构、性能和应用[期刊论文]-高分子学报 2005(05) 4.段玉平;刘顺华强磁场作用对聚苯胺颗粒形貌及电性能的影响[期刊论文]-化学学报 2005(17) 5.马利;汤琪导电高分子材料聚苯胺的研究进展[期刊论文]-重庆大学学报 2002(02) 6.王建雄;郭清萍;郭有军聚苯胺防腐蚀涂料的研究现状[期刊论文]-腐蚀与防护 2008(04) 7.DeBerry D W Modification of the electrochemical and corrosion behavior of stainless steel with electroactive coating 1985(05) 8.MacDiarmid A G Polyaniline and polypyrrole:where are we headed 1997 9.孙毅;钟发春;舒远杰聚苯胺的腐蚀防护机理及其在金属防腐中的应用[期刊论文]-材料导报 2009(07) 10.Schauer T;Joos A;Dulog L Protection of iron against corrosion with polyaniline primers[外文期刊] 1998(01) 11.高焕方;刘通;王连杰聚苯胺防腐涂料的研究现状[期刊论文]-表面技术 2006(04) 12.Jain F C;Rosato J J;Kalonia K S;el al Formation of an active electronic barrier at Al/semiconductor interfaces:A Novel approach in corrosion prevention 1986(12) 13.卢华军;曾波聚苯胺防腐涂料的研究状况及发展[期刊论文]-涂料工业 2007(01) 14.蒋永锋;郭兴伍;翟春泉导电高分子在金属防腐领域的研究进展[期刊论文]-高分子学报 2002(04) 15.张金勇;李季;王献红聚苯胺在腐蚀防护领域的应用 1999 16.谭焰;谢乃贤聚邻甲苯胺防腐涂层对碳钢的防护保护作用[期刊论文]-电镀与涂层 2000(05) 17.龙晋明;王少龙;王静不锈钢表面电化学合成导电聚苯胺膜的研究[期刊论文]-材料保护 2003(12) 18.任乃媛;王保成本征态聚苯胺对45钢的防护性能[期刊论文]-材料保护 2006(02) 19.谭焰;肖静知;谢乃贤聚苯胺在金属腐蚀防护中的应用 1998 20.倪余伟聚苯胺在腐蚀防护中的应用[期刊论文]-腐蚀与防护 2000(1) 21.Wessling B Corrosion prevention with on organic metal (polyaniline):surface ennobling,passjvation,corrosion teat results 1996 22.Santos J R;Atoso L H C;Motheo A J Investiga6on of corrosion protection of steel by polyanilne films 1998 23.Gasparac R;Martin C R Investigations of the mechanism of corrosion inhibition by polyaniline,polyaniline-coated stainless steel in sulfuric acid solution[外文期刊] 2001(04) 24.Kinlen P J;Monon V;Ding Y W A mechanistic invosgation of polyaniline corrosion protection using the scanning reference electrode technique[外文期刊] 1999(10)

导 电 聚 苯 胺 的 化 学 合 成 及 导 电 性 能

导电聚苯胺的化学合成及导电性能 魏渊石圆圆罗亚茹刘正伦 (广州大学化学化工学院化工系) 摘要导电聚苯胺是结构和性能最稳定的导电高分子材料, 有较广泛的应用前景。本实验用化学氧化合成方法,研究了氧化剂种类、用量以及介质酸的浓度等因素对苯胺聚合反应及产物性能的影响,并运用四探针法在电阻率测试仪上完成了PAn的电导率测试。 关键词导电聚苯胺,化学合成,掺杂,电导率 前言传统的有机化合物由于分子间的相互作用弱,一般皆认为是绝缘体。因而过去一直只注重高分子材料的力学性能和化学性能。20世纪50年代初人们发现有些有机物具有半导体性质;60年代末又发现了一些具有特殊晶体结构的电荷转移复合物;70年代初发现了具有一定的导电性的四硫富瓦烯一四睛代对苯醒二甲烷(TTF一TCNQ)。1977年人们发现:聚乙炔化学掺杂后电导率急剧增加,可以达到金属秘的导电性能。此后人们开始关注高分子材料的导电性,逐渐开发出各种导电性高分子材料,如聚乙炔、聚毗咯、聚噬吩和聚苯胺等。直到1984年聚苯胺才被MacDiarmid等人重新开发,他们在酸性条件下制备了高电导率的聚苯胺;1987年,日本桥石公司和精工电子公司联合制得了用聚苯胺为电极制成的钮扣式二次电池作为商品投向市场,使聚苯胺很快成为导电高分子中的研究热点[1]。 本实验采用盐酸进行掺杂,使苯胺氧化聚合为聚苯胺,而且就氧化剂的种类与用量、介质酸的浓度等因素对苯胺聚合产物的产率和导电性能的影响等进行了探究。 其聚合反应历程如0.1所示【2】

图0.1 Radical reaction course of PANI polymerization 聚合反应可以分为三步:链引发、链增长和链终止。首先,苯胺被慢速氧化形成阳离子自由基,苯胺阳离子自由基的形成是决定反应速率主要的一步。接着,这个自由基阳离子可能失去质子或电子,与苯胺单体结合生成一个苯胺的二聚体,这种结合主要是以头尾相连接的方式结合,二聚体一旦形成,就可以被氧化剂迅速的氧化成醒亚胺结构,这是因为它的氧化潜能低于苯胺的氧化潜能。二聚体的形成是反应的关键步骤,接着另一个苯胺单元可能亲核性的进攻被氧化的二聚体形成三聚体,这个过程就像形成的二聚体一样,不需要氧化两个苯胺分子随着氧化单元逐步加到二聚体上,所产生的齐聚物更易被氧化,更易于接受苯胺单体的亲核性进攻。链增长以头一尾结合的方式进行着,一旦这种结构的浓度足够大,它就可能被氧化,并与剩余的苯胺单体反应,直到高分子量的聚合物形成。在链增长阶段,放出大量的热,使反应发生自加速的现象而迅速进行,随后反应迅速进入链终止阶段。这个过程可能会因放热而难以控制,导致分子量分布加宽,聚合物缺陷增多,严重影响产物的电导率。由此可见,低温聚合有利于延缓终止的时间,使分子量较大、分子链较长,而较长的共轭有利于载流子的传输,从而具有较高的电导率。【3】 但本实验研究过程是在室温下进行。 1 实验部分 1.1 原料 过硫酸铵、盐酸等为分析纯试剂;苯胺、重铬酸钾等为化学纯试剂;其中苯胺在使用前蒸馏至完全无色;实验用水为去离子水。 1.2 实验仪器设备 SDY—型数字式电阻率测试仪,BS600L电子天平,DF一1型集热式磁力搅拌器,SHE 一D(III)循环水式真空泵,Z一88电热恒温真空干燥箱,三口烧瓶,冷凝装置,耐酸滤过漏斗,烧杯、容量瓶若干 1.3 聚苯胺(P An) 的合成

(完整版)乙酰苯胺的制备实验

乙酰苯胺的制备实验 一、实验原理 酰胺可以用酰氯、酸酐或酯同浓氨水、碳酸铵或(伯或仲)胺等作用制得。同冰醋酸共热来制备。这个反应是可逆的。在实际操作中,一般加入过量的冰醋酸,同时,用分馏柱把反应中生成的水(含少量的冰醋酸)蒸出,以提高乙酰苯胺的产率。 主反应: 二、反应试剂、产物、副产物的物理常数 三、药品 四、流程图

五、实验装置图 (1)分馏装置(2)抽滤装置(3)干燥装置 六、实验内容 在60ml锥形瓶上装一个分馏柱,柱顶插一支200℃温度计,用一个小锥形瓶收集稀醋酸溶液。 在锥形瓶中放入5.0ml(0.055mol)新蒸馏过的苯胺、7.4ml(0.13mol)冰醋酸和0.1g锌粉,缓慢加热至沸腾,保持反应混合物微沸约10min,然后逐渐升温,控制温度,保持温度计读数在105℃左右。经过40~60min,反应所生成的水(含少量醋酸)可完全蒸出。当温度计的读数发生上下波动或自行下降时(有时反应容器中出现白雾),表明反应达到终点。停止加热。这时,蒸出的水和醋酸大约有4ml。

在不断搅拌下把反应混合物趁热以细流慢慢倒入盛100ml冷水的烧杯中。继续剧烈搅拌,并冷却烧杯,使粗乙酰苯胺成细粒状完全析出。用布氏漏斗抽滤析出的固体,用玻璃瓶塞把固体压碎,再用5~10ml冷水洗涤以除去残留的酸液。把粗乙酰苯胺放入150ml热水中,加热至沸腾。如果仍有未溶解的油珠,需补加热水,直到油珠完全溶解为止。稍冷后加入约0.5g粉末状活性炭,用玻璃棒搅动并煮沸5-10min。趁热用保温漏斗过滤或用预先加热好的布氏漏斗减压过滤。冷却滤液,乙酰苯胺呈无色片状晶体析出。减压过滤,尽量挤压以除去晶体中的水分。产品放在表面皿上晾干后测定其熔点。产量:约5.0g。 纯乙酰苯胺为无色片状晶体。熔点mp=114.3℃。 (一)制备阶段 1.安装分馏装置:如图(1)所示,在100ml锥形瓶上装一个分馏柱,柱顶插一支200℃温度计,用一个100ml锥形瓶收集稀醋酸溶液。 2.加药品:在100ml锥形瓶中放入5ml新蒸馏过的苯胺、7.4ml冰醋酸和0.1g锌粉。 3.加热反应:用电热套缓慢加热至沸腾,保持反应混合物微沸约10min (注:为了让苯胺的酰化反应一段时间,暂时不要有馏分蒸出状态),然后逐渐升温,控制温度,保持温度计读数在105℃左右。经过40-60min,反应所生成的水(含少量醋酸)可完全蒸出。当温度计的读数发生上下波动或自行下降时(有时,反应容器中出现白雾),表明反应达到终点。停止加热。这时,蒸出的水和醋酸大约有4ml。 (二)后处理阶段 1.倒入冷水中析出产品:在不断搅拌下把反应混合物趁热以细流慢慢倒入盛100ml冷水的烧杯中。继续剧烈搅拌,并冷却烧杯,使粗乙酰苯胺成细粒状完全析出。 2.抽滤:用布氏漏斗抽滤析出的固体,用玻璃瓶塞把固体压碎。 3.洗涤:用5~10ml冷水洗涤以除去残留的酸液。

聚苯胺负载钯催化的交叉偶联反应管窥

聚苯胺负载钯催化的交叉偶联反应管窥 在碳-碳键的有机合成过程中,利用过渡金属元素催化的交叉偶联反应是个重要手段,这也是从事有机化学相关研究的学者最感兴趣的,很多经典的反应实验也由此诞生,如Suzuki反应,Heck反应,Stille反应等。但利用过渡金属充当催化剂完成的反应也存在许多问题。本文就主要以聚苯胺负载钯为催化剂情况的Suzuki交叉偶联反应进行简述。 标签:有机化学;过渡金属催化;交叉偶联反应;聚苯胺 1 基础知识概述 1.1 钯金属及其催化作用简介 与一般催化剂相同,过渡金属催化的有机反应也只是改变了化学反应的速度,降低了反应的活化能,使原来难于发生的反应变得容易进行。 1.2 聚苯胺简介 作为一种常见的导电高分子,聚苯胺(Polyaniline,PANI)的形貌丰富,具有纳米多孔的形状结构,外表面积大,具有可观的电导率以及优秀的复合能力,因此利于金屬颗粒进行负载,是一种拥有良好前景的电催化剂载体材料。 1.3 交叉偶联反应简介 交叉偶联反应是指有机亲电试剂与有机亲核试剂在过渡金属催化下构建有机化合物中含碳化学键的反应,如碳-氧键,碳-硫键,碳-氮键等。过渡金属的优势在于其本身结构组成中具有未填满的d轨道,因此能同不饱和型化学键进行络合配位,并为电子提供参与配件,即既可接收电子同时又能提供电子。作为最常见的过渡金属催化剂的钯金属的电子排列为4d105s0,因而更易形成配位化合物,进而催化有机反应,钯催化的偶联反应具有高选择性和高活性的优点。由钯充当催化剂参与的经典偶联反应有Suzuki反应,Heck反应,Kumada反应,Sonogashira 反应,Stille反应等。 2 聚苯胺负载的纳米催化剂 自上世纪九十年代起,纳米技术便逐渐兴起,作为一种新型材料,纳米材料已经成为有机化学研究者的关注重点。负载型纳米金属催化剂的优势在于其易从反应体系中进行回收再利用,减少材料浪费,同时还符合有机化学的绿色环保的要求,可同于水、乙醇等常见的无毒害溶剂中,因此其在工业生产中逐渐得到广泛的应用。在所有负载型纳米钯催化剂中,聚苯胺负载钯催化剂的性能优势最为突出而受到关注。其中,聚苯胺本身是一种有毒物质,但是其制作过程较为简单而且可通过人工合成的方法进行改善以降低其单体的毒性。聚苯胺的优点还在于

聚苯胺防腐涂料的研究

聚苯胺防腐涂料的研究 陈梦瑶1 (1.四川理工学院材料科学与工程学院,高分子材料工程,自贡643000) 摘要:导电高分子具有可逆的氧化还原特性,其金属防腐能力已经得到证实,因此导电高分子作为一种新型的防腐蚀材料受到人们的广泛关注,并逐渐成为当前腐蚀科学领域研究的一大热点。其中聚苯胺以其优异的环境稳定性,合成简单,且价格相对较低,得到了特别的关注,相应的防腐产品也已经在德国、美国和中国等国部分商业化。本文首先介绍了聚苯胺的独特防腐机理,其次是聚苯胺的两种合成方法:电化学聚合法和化学合成法,最后介绍了聚苯胺在防腐蚀领城的发展过程、研究进展以及国内外研究现状。 关键词:导电高分子; 聚苯胺; 防腐;涂料 1 前言 20 世纪以前高分子材料一直作为绝缘材料使用,直到美国的Mac Diarmid、Heeger以及日本的白川英树发现经过掺杂的聚乙炔导电率接近了金属导体,这一现状才得以改变。随着导电高分子学科的迅速发展,聚吡咯、聚对亚甲基苯、聚噻吩、聚苯胺等导电高分子又相继被发现,对导电高分子的研究日趋丰富,其中又以聚苯胺的研究最为广泛。聚苯胺具有一系列的优点,包括质量轻、化学稳定性高、环境稳定性好、结构多样性和独特的掺杂机制、导电率高以及可逆的氧化还原特性等,被公认为当今导电聚合物中最具有商业代表性、最有大规模工业化应用前景的导电高分子材料[1]。 1985年,Deberry[2]发现在不锈钢上电沉积的聚苯胺膜能显著降低不锈钢在硫酸溶液中的腐蚀速率,从此聚苯胺和其它导电高分子作为一种新型的防腐蚀材料,开始受到人们的关注,并逐渐成为当前腐蚀科学领域研究的一大热点。目前,聚苯胺具有优异的防腐蚀性能,已被大量实验现象证实,聚苯胺防腐蚀涂层已经在德国、美国和中国等国部分商业化。虽然对于聚苯胺的防腐蚀机理还没有形成统一的认识,但是聚苯胺涂料具有重量轻的优点,且具有一定程度的抗点蚀、抗划伤能力,而且与常规的缓蚀剂如钼酸盐、铬酸盐等相比,聚 苯胺没有环境污染,是一种来源丰富的绿色防腐材料,有望成为非常有应用前景的新一代防腐材料。下面对近年来国内外在聚苯胺防腐机理、防腐涂料开发等方面的研究和应用进展进行评述分析。 2聚苯胺的简介 虽然早在1862年就报道了聚苯胺,但是直到20世纪70年代后期才掀起对它进行深入研究的热潮[3-4]。聚苯胺易于用苯胺以化学或电化学方法合成,苯胺单体在酸性条件下化学氧化,或在酸性溶液中进行电化学氧化,即可获得聚合物.但由于聚合产物不溶,无法探知聚合产物 的结构.直到1984年MaciDiarmid才提出聚苯胺(PANI)的分子结构式,如图1所示:

聚苯胺的合成与表征

聚苯胺的合成与表征 贵州师范学院化学与生命科学学院化本一班姜华学号:1508040540014 同组人:蒲朝霞罗彬彬宋姗姗 摘要: 聚苯胺的合成方法主要有化学氧化聚合法(乳液聚合法、溶 液聚合法等)和电化学合成法 (恒电位法、恒电流法、动电 位扫描法等) , 近年来, 模板聚合法、微乳液聚合、超声辐照合成、过氧化物酶催化合成、血红蛋白生物催化合成法。此次的实验采用的是采用过硫酸铵氧化聚合合成聚苯胺:先将苯胺与酸(四种酸)反应生成可溶性的苯胺盐,然后再加入过硫酸铵合成聚苯胺,计算比较四种酸合成聚苯胺的产率。聚苯胺分子结构含有苯环,使其具有很强的刚性,分子间相互作用力很大,很难溶解于大部分溶剂中。用三甲基亚峰溶剂可以部分溶解聚苯胺,溶解率达20%。聚苯胺(PANI)是一种分子合成材料俗称导电塑料。它是一类特种功能材料具有塑料的密度又具金属的导电性和塑料的可加工性。采用压片对其进行压片并对其测量电阻值。 关键词:聚苯胺合成产率溶解性电阻值 绪论: 聚苯胺,高分子化合物的一种,具有特殊的电学、光学性质,经掺杂后可具有导电性。在电子工业、信息工程、国防工程

等的开发和发展方面都具有多种用途。聚苯胺的电活性源于分子链中的P电子共轭结构:随分子链中P电子体系的扩大,P成键态和P*反键态分别形成价带和导带,这种非定域的P 电子共轭结构经掺杂可形成P型和N型导电态。不同于其他导电高分子在氧化剂作用下产生阳离子空位的掺杂机制,聚苯胺的掺杂过程中电子数目不发生改变,而是由掺杂的质子酸分解产生H+和对阴离子(如Cl-、硫酸根、磷酸根等)进入主链,与胺和亚胺基团中N原子结合形成极子和双极子离域到整个分子链的P键中,从而使聚苯胺呈现较高的导电性。这种独特的掺杂机制使得聚苯胺的掺杂和脱掺杂完全可逆,掺杂度受pH值和电位等因素的影响,并表现为外观颜色的相应变化,聚苯胺也因此具有电化学活性和电致变色特性。聚苯胺经一定处理后,可制得各种具有特殊功能的设备和材料,如可作为生物或化学传感器的尿素酶传感器、电子场发射源、较传统锂电极材料在充放电过程中具有更优异的可逆性的电极材料、选择性膜材料、防静电和电磁屏蔽材料、导电纤维、防腐材料等等。 将聚苯胺分别与四种酸混合,制备苯胺盐,在加入过硫酸铵搅拌3个小时制备聚苯胺。再将制备好的聚苯胺进行压片测量电阻,取少量聚苯胺溶解计算溶解率,制备涂料。

制备聚苯胺包覆四氧化三铁的中文翻译

黑莓状核-壳Fe3O4@PANI微球的制备 摘要: 本文通过简单的原位聚合方法制备出黑莓状核-壳超顺磁性四氧化三铁(Fe3O4) @聚苯胺(PANI)微球。通过调节反应时间和单体浓度可以控制聚苯胺壳层的厚度,在沉积过程中聚乙烯吡咯烷酮(PVP)发挥着重要的作用。本文所提供的方法可以扩展到制备其它磁性—传导性的核—壳复合材料,并且这些独特的核—壳微球结构可以在催化剂载体以及生物医学领域有所应用。 1引言 核—壳结构的粒子[1],特别是磁性纳米复合材料[2],作为新一代纳米材料因具有优良的磁感应性,低细胞毒性,化学负表面而受到更多的关注。其中的超顺磁性粒子在无外磁场时处于完全退磁状况,基于这种性质[3],超顺磁性核—壳粒子在生物分子的磁共振成像及高温、分离、精制方面和药物释放、催化等领域[4]获得广泛的应用。 这些应用中,功能外壳材料经常被用作保护层来保证内部磁芯的稳定性以及发挥常见功能如外壳粒子导电、生物相容性、惰性、亲水性、疏水性等[5]。聚苯胺与适当掺杂剂组成的传导组织,具有独特还原性和高电导率,是一种重要的材料[6],聚苯胺粒子在气体传感器和电感器等方面也有多种应用[7]。所以,近来学者们研究了大量的传导性优良的有机—无机的核—壳结构纳米复合材料[8]。在这些研究中,将不溶且传导优良的聚苯胺层包裹无机的磁芯材料构成一类兼有超顺磁性和传导优良聚合物的混合物成为材料科学一个热点课题[9]。 近些年来,双功能的Fe3O4@PANI微球的因优异磁性和传导性在纳米材料领域得到了广泛关注。Wan 等[10]用化学聚合方法做了一系列聚苯胺的纳米复合材料。Deng等[11]报道了一篇在水溶液中原位聚合方法制备Fe3O4@PANI微球,它由Fe3O4纳米粒子和外表PANI壳层构成。Peng的团队[12]研究用过氧二硫酸钠氧化聚合苯胺来制备铁氧磁体Fe3O4@PANI的复合物,粒子多分散性,平均粒径为 20nm~30nm。这些产物中,尺寸小于10nm的Fe3O4[13]因磁化率低很有价值,因为它们的超顺磁性可以削弱因磁化力导致的粒子团聚。然而,这些制备方法缺陷是所得粒子尺寸波动;磁性粒子纳米级的团聚也使纳米级微球中磁性分布不均匀;而且,它们中有许多的磁饱和强度较低,导致其在磁场中反应差。所以,制备具

乙酰苯胺的重结晶

实验课题:重结晶 一、实验目的 1.学习重结晶提纯固态有机化合物的原理和方法。 2.掌握抽滤、热滤操作和滤纸折叠的方法。 3.了解乙酰苯胺的结晶制备。 一、实验原理 重结晶(Recrystallization)原理:利用混合物中各组分在某种溶剂中的溶解度不同,或在同一溶剂中不同温度时的溶解度不同,而使它们相互分离。(相似相溶原理)。一般重结晶只适用于纯化杂质含量在5%以下的固体有机物。 二、主要试剂及物理性质 溶解度:水0。56(25℃)、3.5(80℃)、18(100℃);乙醇36。9(20℃),甲醇69.5(20℃),氯仿3。6(20℃),微溶于乙醚、丙酮、甘油和苯。不溶于石油醚。 三、试剂用量规格 粗乙酰苯胺(2.00g),活性炭(0。2—0。5g),水 四、仪器装置 250或400ml烧杯、玻璃棒、电炉、热滤漏斗、滤纸、酒精灯、布氏漏斗、抽滤瓶、 循环水医用真空泵、乙酰苯胺。 名称分子量熔点/℃沸点/℃折射率比重颜色和形态溶解度乙酰苯胺135。165 114。3 305 —1.21 白色有光泽的 鳞片状晶体。 见下面

五、实验步骤及现象 (1)准备好热滤漏斗。取一玻璃漏斗,连同热滤漏斗口,通入热水.(2)称取5g乙酰苯胺,放入250ml大烧杯中,加入100ml蒸馏水,加热至沸腾,并不时搅拌,直至乙酰苯胺溶解 (3)稍冷,加入1~2g活性炭于溶液中,再次煮沸5~10分钟,再补加20ml 蒸馏水,煮沸。 (4)趁热过滤。此时的滤纸可先用热水润湿(切勿用冷水!否则不需润洗也可!) (5)将滤纸抽出,放到原烧杯中,加20ml蒸馏煮沸,再次热滤(此时滤液总体积不可超过100ml) (6)抽滤。抽滤前先用少量蒸馏水润湿滤纸。抽干后用少量水淋洗晶体,再抽干.用玻璃塞压挤晶体,继续抽滤至干。 (7)称量 六、实验结果 2.得到的乙酰苯胺的结晶质量:0。55g 3。所得产率=0.55/1。99*100%=27.63% 七、实验讨论

乙酰苯胺的制备

实验报告 课程名称合成化学实验b 实验名称乙酰苯胺的制备 二级学院化学化工学院专业化学姓名汪建红实验次数 3 实验日期: 3 月 18 日 验条件:室温℃ 相对湿度 % 大气压 mmHg 一、实验目的 1、掌握苯胺乙酰化的原理和方法, 2、进一步熟悉固体有机化合物的提纯方法——重结晶 二、实验原理 1、乙酰苯胺的用途: 乙酰苯胺,白色有光泽片状结晶或白色结晶粉末,是磺胺类药物的原料,可用作止痛剂、退热剂(俗称“退热冰”)、防腐剂和染料中间体。 2、苯胺乙酰化的必要性: (1)作为一种保护措施,将一级和二级芳胺(就是伯胺和仲胺)在合成中转化为其乙酰衍生物,降低芳胺对氧化性试剂的敏感性,使其不被反应试剂破坏, (2)氨基经酰化后,降低了氨基在亲电取代反应(特别是卤化)中的活化能力,使其由很强的第I类定位基变成中等强度的第I类定位,使反应由多元取代变为有用的一元取代。 (3)由于乙酰基的空间效应,往往选择性地生成对位取代产物。 (4)在某些情况下,酰化可以避免氨基与其它功能基或试剂(如RCOCl,-SO2Cl,HNO2等)之间发生不必要的反应。 作为氨基保护基的酰基基团可在酸或碱的催化下脱除。 3、芳胺的乙酰化试剂选择: 芳胺可用酰氯、酸酐或冰醋酸加热来进行酰化,使用冰醋酸试剂易得,价格便宜,但需要较长的反应时间,适合于规模较大的制备。 酸酐一般来说是比酰氯更好的酰化试剂,用游离苯胺与纯乙酸酐进行酰化时,常伴有二乙酰胺[ArN(COCH3)2]副产物的生成,如果在醋酸——醋酸钠缓冲溶液中酰化,由于酸酐水解速度比酰化速度慢得多,可得到高纯度产物,但此方法不适用于硝基苯胺和其它碱性很弱的芳胺的酰化。

电化学合成聚苯胺

电化学合成聚苯胺复合薄膜及其抗腐蚀性能研究 专业:**** 学号:09020*** 姓名:*** 指导教师:** 教授 摘要 采用循环伏安法(CV)在不锈钢基体(SS)表面电化学合成聚苯胺(PANI)以及掺杂态PANI/Co2+复合薄膜。利用傅里叶红外光谱(FT-IR)、X-衍射(XRD)等手段对薄膜的微观结构进行表征;在0.5 mol·L-1 H2SO4中,通过循环伏安法(CV)、交流阻抗法(EIS)、动电位极化曲线法(Tafel曲线)等方法考察了不同合成条件对聚苯胺、掺杂态PANI/Co2+薄膜抗腐蚀性能的影响。结果表明:酸浓度、苯胺浓度、掺杂剂离子浓度、扫描速度、扫描圈数等对合成聚苯胺薄膜的性质有影响。在0.5 mol·L-1硝酸、0.2 mol·L-1苯胺、0.1 mol·L-1硝酸钴下,制得的掺杂态聚苯胺薄膜膜层致密,厚度均匀,较单纯聚苯胺膜表现出最佳的抗腐蚀性能。 关键词:聚苯胺;电化学合成;抗腐蚀性 Abstract Polyaniline (PANI ) film and the Polyaniline composite film doped nickel ions(PANI/Co2+) was synthesized in stainless steel substrate(SS) by cyclic voltammetry(CV). The structure and morphology of the films were characterized by fourier transform infrared (FTIR), X-ray diffraction(XRD) techniques. The electrochemical properties of the films composited under different conditions were investigated by cyclic voltammetry, Tafel polarization curve(Tafel)and electrochemical impedance spectroscopy (EIS) in 0.5 mol·L-1 H2SO4 electrolyte. The results suggest that the corrosion resistance of the composite films were affected by the the concentration of the acid, aniline and dopants together with the scan ning speed, and number of scan cycles. In a word, the doped polyaniline thin film prepared in 0.5mol·L-1nitric acid,and 0.2mol·L-1aniline with 0.1 mol·L-1Co(NO3)2 showed the best corrosion resistance than pure polyaniline film. Keywords: Polyaniline; Electrochemical synthesis; anti-corrosion 一、前言 导电高分子聚苯胺由于其原料廉价易得,合成容易且性能稳定等优点,成为世界研究的一个热点,被开发应用到多个领域如用作电极材料、防腐材料、防静电材料方面[1]。目前关于电合成过渡金属离子掺杂聚苯胺复合薄膜的耐蚀性能的研究报道还比较少[2]。本文通过对本征态聚苯胺和掺杂态PANI/Co2+复合型导电薄膜在不同合成条件下的抗腐蚀能力研究,力图找到较优的合成条件,提高聚苯胺的抗腐蚀性。 二、实验 采用循环伏安法在CHI660B电化学工作站 (上海辰华仪器有限公司) 上进行苯胺、掺杂态PANI/Co2+薄膜的电化学聚合。实验为三电极体系,304不锈钢片(25mm×10mm×0.5mm)为工作电极,201不锈钢片(25mm×15mm×0.5mm)为辅助电极,饱和甘汞电极(SCE)为参比电极。不锈钢片经砂纸打磨后,再依次用丙酮、无水乙醇、蒸馏水超声清洗干净,吹干待用。 聚苯胺电解液的组成为:0.2mol·L-1的苯胺和0.5 mol·L-1的硝酸,扫描电位范围:先在-0.2~1.2V扫描2个循环,再在-0.2~1.0V扫描25个循环,扫描速率20 mV·s-1。掺杂态PANI/Co2+电解液的组成为:0.2 mol·L-1的苯胺、0.5mol·L-1的硫硝酸和0.1mol·L-1硝酸钴,参数与上述相同。上述所有薄膜沉积面积均为1cm2,单面沉积。聚合完毕取出工作电极,依次用0.5mol·L-1硝酸和蒸馏水清洗,以除去未聚合和低聚合度的物质。将合成的样品材料的工作电极在真空干燥箱以60℃~80℃干燥,烘干后待用。 用傅立叶红外光谱仪((FT-IR ,Cocolet 210型,美国)测定样品FT-IR谱图; X射线衍射仪(D/MAX-2400X,日本理学公司)(CuKa)分析样品物相结构。 采用上海辰华CHI660B电化学工作站对材料进行循环伏安、恒流充放电和交流阻抗性能测试。将所得的沉积有聚苯胺的钢片作为工作电极,铂电极为辅助电极,饱和甘汞电极为参比电极组成三电极体系。电解液为0.5 mol·L-1的硫酸溶液,测定电极材料的循环伏安曲线(电压范围(-0.2~1.0V)、交流阻抗(测试频率范围0.01Hz~100kHz,振幅为5mV)和动电位极化曲线。 三、结果与讨论 (一)聚苯胺及掺杂态PANI/Co2+的电化学合成

聚苯胺的合成及表征

题目(中文):聚苯胺的合成及表征姓名 xx xxx 学号111111111112222222222 院(系)化学与生命科学 专业、年级 12级化学(3)班(B组) 指导教师xxx职称教授 二○一四年十月

聚苯胺的合成及表征 摘要 聚苯胺(Polyaniline)是一种重要的导电聚合物,是研究最为广泛的导电高分子材料之一,其具有原料低廉、工艺简单、导电性优良、耐高温及抗氧化性能好等优点,受到人们普遍青睐,应用前景十分广阔,使其成为导电高分子研究的主流和热点。本论文使用化学氧化法合成聚苯胺,以苯胺(An)为单体,过硫酸铵(Aps)为氧化剂,控制反应温度和反应时间,在三聚磷酸铝(ATP)的氢氧化钠溶液中合成聚苯胺。本文主要研究不同的反应温度和反应时间对聚苯胺合成产率的影响。实验结果表明聚苯胺的合成与温度、反应时间均有关,在温度为10℃、反应时间为8小时时,聚苯胺的合成效果最好,产率最高。 关键词:聚苯胺;表征;合成;影响因素 1.绪论 1.1聚苯胺的发现过程 1826年,德国化学家Otto Unverdorben通过热解蒸馏靛蓝首次制得苯胺(aniline),产物当时被称为“Krystallin”,意即结晶,因其可与硫酸、磷酸形成盐的结晶。1840年,Fdtzsche从靛蓝中得到无色的油状物苯胺,将其命名为aniline,该词源于西班牙语的anti(靛蓝)并在1856年用于染料工业。而且他可能制得了少量苯胺的低聚物,1862年HLhetbey也证实苯胺可以在氧化下形成某些固体颗粒。但由于对高分子本质缺乏足够的认知,聚苯胺的实际研究拖延了几乎一个世纪,直到1984年,MacDiarmid提出了被广泛接受的苯式(还原单元)-醌式(氧化单元)结构共存的模型。随着两种结构单元的含量不同,聚苯胺处于不同程度的氧化还原状态,并可以相互转化。不同氧化还原状态的聚苯胺可通过适当的掺杂方式获得导电聚苯胺。 图1.1聚苯胺的链结构模式 1.2聚苯胺的研究背景

导电态聚苯胺薄膜的制备

导电态聚苯胺薄膜的制备过程 方法一:原位聚合沉积 原位聚合沉积涂膜技术的优点:不需要特殊设备、操作简单、膜厚可控、可涂布在各种形状的表面等优点。 高质量透明导电聚苯胺薄膜的制备及原位聚合沉积机理探讨 PI-PANI复合薄膜的制备及结构性能的研究 实验材料: 苯胺(An,化学纯,经二次减压蒸馏),天津博迪化工有限公司; 过硫酸按(APS,分析纯),上海埃彼化学试剂有限公司; 聚乙烯毗咯烷酮(PVP,K90,Mw二376,000),上海胜浦新材料有限公司; 浓盐酸(HCI,分析纯),烟台三和化学试剂有限公司; 聚酞亚胺(PI6051),万达集团股份有限公司; 磁力加热搅拌器(78一1型),江苏省金坛市正基仪器有限公司; 扫描式电子显微镜(JsM一6700F型),JEOL日本电子仪器公司; 紫外可见分光光度计(TU一1800PC),北京普析通用仪器有限公司; 四探针电导率测量仪,广州半导体材料研究所等 实验过程: 在IM盐酸的酸性环境中,采用0.2M的苯胺(An)与0.25M的过硫酸按(APs)的反应体系,加入wt二2%的PVP水溶液,将在IM盐酸溶液中浸泡lh且用蒸馏水仔细清洗过的聚酸亚胺薄膜(10mmXO.05mm)固

定在反应容器,于冰水混合浴中进行电磁搅拌"观察其颜色变化并每0.5min记录一次溶液温度"溶液颜色由浅黄色依次变为淡紫色、紫色、浅蓝色、蓝色、绿色、墨绿色;溶液温度在前2分钟内保持恒定,并在反应10min时温度达到最高,然后缓慢下降"分别在不同的时间段取出PI6051薄片,用IM盐酸冲洗,再浸泡3Omin,取出后自然晾干。即可制得绿色导电Pl.PANI薄膜。

相关主题
文本预览
相关文档 最新文档