当前位置:文档之家› 小半径曲线盾构施工方案

小半径曲线盾构施工方案

小半径曲线盾构施工方案
小半径曲线盾构施工方案

无锡地铁1号线第10标段

小半径曲线盾构施工方案

编写:

审核:

审批:

中铁十九集团有限公司

无锡地铁1号线土建工程10标项目经理部

2011年12月4日

目录

1、工程概况 (1)

2、盾构小半径曲线施工工艺 (1)

2.1工艺流程图 (1)

2.2盾构机的适用性 (1)

2.3隧道辅助措施 (2)

2.4推进轴线预偏设置 (2)

2.5盾构施工参数选择 (3)

2.6土体损失及二次注浆 (4)

2.7严格控制盾构纠偏量 (4)

2.8盾尾与管片间的间隙控制 (4)

2.9盾构纠偏及测量姿态调整 (5)

2.10监控量测及信息反馈 (7)

3、重难点分析 (9)

3.1盾构机掘进时隧道轴线控制难度大,纠偏困难 (9)

3.2管片容易在水平分离作用下发生较大的移位,造成管片侵陷现象 (9)

3.3 对地层扰动大,容易产生较大的地面沉降 (9)

3.4 管片之间易发生错台,管片易产生开裂和破损 (10)

3.5 漏水现象严重 (10)

4、重难点解决方案 (11)

4.1 纠偏与隧道轴线控制 (11)

4.2 控制管片水平移动和侵限 (11)

4.3 减小对地层的扰动,避免大的沉降 (12)

4.4 尽量避免大的错台和破损 (12)

4.5 减少漏水 (13)

5、劳动力组织 (13)

6、机具设备配置 (13)

7、质量控制要点 (14)

8、安全注意事项 (15)

1、工程概况

无锡地铁1号线土建工程10标一共包含一站三区间的施工任务。其中永丰路站~太湖广场站区间包括1个R430m(400m)和一个R430m的平曲线,南禅寺站~永丰路站区间到达段有1个R350m(360m)的曲线,三阳广场站~南禅寺站区间在三阳广场段是1个R300m的曲线。10标的曲线特点是转弯半径小、且大部分在(6)层土中掘进且穿越大量的建筑物。盾构曲线掘进是施工控制的重点,为了保证有效的进行纠偏、保证隧道拼装质量(错台、碎裂、漏水)、减小地面沉降,特制定本方案。

2、盾构小半径曲线施工工艺

2.1工艺流程图

工艺流程如图2-1所示

图2-1 小半径曲线施工工艺流程图

2.2盾构机的适用性

采用铰接式盾构进行施工。由于盾构增加了铰接部分,使盾构切口至支撑环,支撑环至盾尾都形成活体,增加了盾构的灵敏度,对隧道的轴线控制更加方便以及管片外弧碎裂和管片渗水等情况得以大大改善。

2.2.1适当的超挖量

盾构大刀盘上安装有仿形刀,具有一定的超挖范围。在曲线施工时可根据推进轴线情况进行部分超挖,超挖量越大,曲线施工越容易。但另一方面,超挖会使同步注浆浆液因土体的松动绕入开挖面,加上曲线推进时反力下降的因素,会产生隧道变形增大的问题。因此,超挖量最好控制在超挖范围的最小限度内。

2.2.2铰接角度满足要求

盾构机增加铰接部分,使盾构切口至支撑环,支撑环至盾尾都形成活体,增加了盾构的灵敏度,可以在推进时减少超挖量的同时产生推进分力,确保曲线施工的推进轴线控制。管片外弧碎裂和管片渗水等情况得以大大改善。铰接角度α=(L1+ L2)×180/π×R 其中L1、L2分别为铰接盾构的前体和后体,R为曲线半径,α为盾构机在小半径曲线上的铰接角度,此角度应小于盾构机自身的最大铰接角度。通过固定铰接千斤顶行程差来固定盾构机的铰接角度,从而使盾构机适应相应得曲线半径。铰接千斤顶行程差mm=千斤顶最大行程差×(左右铰接角度deg)/最大左右铰接角度deg。

2.3隧道辅助措施

2.3.1隧道管片壁后注浆加固

隧道每掘进完成2环,对脱出盾尾10环的管片通过管片的拼装孔对土体进行二次压注加固,范围为管片壁后2.4m。

2.3.2隧道内设纵向加强肋

针对小半径曲线上隧道纵向位移较大,在隧道靠近开挖面后50~60m范围管片设置加强肋以增强隧道纵向刚度,控制其纵向位移。加强肋采用双拼[22a槽钢用钢板焊接成型,用螺栓将其与管片的预留注浆孔进行连接,从而将隧道纵向连接起来,以加强隧道纵向刚度。

2.3.3加强螺栓复紧

每环推进结束后,须拧紧当前环管片的连接螺栓,并在下环推进时进行复紧,克服作用于管片推力产生的垂直分力,减少成环隧道浮动。每掘进完成3环,对10环以内的管片连接螺栓复拧一次。

2.4推进轴线预偏设置

在盾构掘进过程中,要加强对推进轴线的控制。曲线推进时盾构实际上应处于曲线的切线上,因此推进的关键是确保对盾构机姿态的控制。

由于盾构掘进过程的同步注浆及跟踪补注的双液浆效果不能根本上保证管片后土体的承载强度,管片在承受侧向压力后,将向弧线外侧偏移。为了确保隧道轴线最终偏

差控制在规范允许的范围内,盾构掘进时给隧道预留一定的偏移量。根据理论计算和相关施工实践经验的综合分析,同时需考虑掘进区域所处的地层情况,在小半经曲线隧道掘进过程中,将设置预偏量20~40mm。如图2-2所示,施工中通过对小半径段隧道偏移监测,适当调整预偏量。

图2-2 小半径曲线段盾构推进轴线预偏示意图

2.5盾构施工参数选择

2.5.1严格控制盾构的推进速度

推进时速度应控制在1~2cm/min。即避免因推力过大而引起的侧向压力的增大,又减小盾构推进过程中对周围土体的扰动。

2.5.2严格控制盾构正面平衡压力

盾构在穿越过程中须严格控制切口平衡土压力,使得盾构切口处的地层有微小的隆起量(0.5~1mm)来平衡盾构背土时的地层沉降量。同时也必须严格控制与切口平衡压力有关的施工参数,如出土量、推进速度、总推力、实际土压力围绕设定土压力波动的差值等。防止过量超挖、欠挖,尽量减少平衡压力的波动。其波动值控制在0.02MPa 以内。

2.5.3严格控制同步注浆量和浆液质量

由于曲线段推进增加了曲线推进引起的地层损失量及纠偏次数的增加导致了对土体的扰动的增加,因此在曲线段推进时应严格控制同步注浆量和浆液质量,在施工过程中采用推进和注浆联动的方式,确保每环注浆总量到位,确保盾构推进每一箱土的过程中,浆液均匀合理地压注,确保浆液的配比符合质量标准。通过同步注浆及时充填建筑

空隙,减少施工过程中的土体变形。注浆未达到要求时盾构暂停推进,以防止土体变形。

每环的压浆量一般为建筑空隙的120%~180%,为2.5~4m3/环,采用厚浆,浆液稠度12~14cm,泵送出口处的压力不大于0.5MPa左右。具体压浆量和压浆点视压浆时的压力值和地层变形监测数据选定。根据施工中的变形监测情况,随时调整注浆参数,从而有效地控制轴线。

2.6土体损失及二次注浆

由于设计轴线为小半径的圆滑曲线,而盾构是一条直线,故在实际推进过程中,实际掘进轴线必然为一段段折线,且曲线外侧出土量又大。这样必然造成曲线外侧土体的损失,并存在施工空隙。因此在曲线段推进过程中在进行同步注浆的工程中须加强对曲线段外侧的压浆量,以填补施工空隙。每拼装两环即对后面两环管片进行复合早凝浆液二次压注,以加固隧道外侧土体,保证盾构顺利沿设计轴线推进。浆液配比采用:水泥:水玻璃=30 :1,水灰比为0.6。二次注浆压力控制在0.3Mpa以下;注浆流量控制在10~15L/min,注浆量约0.5m3/环。

2.7严格控制盾构纠偏量

盾构的曲线推进实际上是处于曲线的切线上,推进的关键是确保对盾构的头部的控制,由于曲线推进盾构环环都在纠偏,须做到勤测勤纠,而每次的纠偏量应尽量小,确保楔形块的环面始终处于曲率半径的径向竖直面内。除了采用楔型管片,为控制管片的位移量,管片纠偏在适当时候采用楔形低压棉胶板,从而达到有效地控制轴线和地层变形的目的。盾构推进的纠偏量控制在2~3mm/m。

针对每环的纠偏量,通过计算得出盾构机左右千斤顶的行程差,通过利用盾构机千斤顶的行程差来控制其纠偏量。同时,分析管片的选型,针对不同的管片需有不同的千斤顶行程差。

2.8盾尾与管片间的间隙控制

小曲率半径段内的管片拼装至关重要,而影响管片拼装质量的一个关键问题是管片与盾尾间的间隙。合理的周边间隙可以便于管片拼装,也便于盾构进行纠偏。

1)施工中随时关注盾尾与管片间的间隙,一旦发现单边间隙偏小时,及时通过盾构推进方向进行调整,使得四周间隙基本相同。

2)在管片拼装时,应根据盾尾与管片间的间隙进行合理调整,使管片与盾尾间隙得以调整,便于下环管片的拼装,也便于在下环管片推进过程中盾构能够有足够的间隙进行纠偏。

3)根据盾尾与管片间的间隙,合理选择楔型管片。小曲率半径段时,盾构机的盾尾与管片间间隙的变化主要体现在水平轴线两侧,管片转弯正常跟随盾构机,当盾构机转弯过快时,隧道外侧的盾尾间隙就相对较小;当管片因楔子量等原因超前于盾构机转弯时,隧道内侧的盾尾间隙就相对较小。因此,当无法通过盾构推进和管片拼装来调整盾尾间隙时,可考虑采用楔型管片和直线型管片互换的方式来调整盾尾间隙。

2.9盾构纠偏及测量姿态调整

2.9.1盾构及管片纠偏

盾构掘进中,由下述方法保证盾构推进轨迹和隧道设计中心线的偏差在设计允许范围内。

(1)采用调整盾构千斤顶的组合来实现纠偏

盾构千斤顶按上、下、左、右四个扇形分布,推进千斤顶的油泵为变量泵,当盾构需要调整方向时,可通过比例阀调整四个区域的油压,来调节千斤顶的顶力。

如盾构偏离设计轴线,而需纠偏时,可在偏离方向相反处,调低该区域千斤顶工作压力,造成两千斤顶的行程差,也可采用停开部分千斤顶获得行程差。但这样易造成衬砌部分区域受力不匀,使管片损坏。

盾构纠偏时要使千斤顶各区域压力分布呈线性状态,如盾构要向右纠,除左区要较右区有一个较大的压力差外,上、下区域的压力也要适当,一般可取左、右区域压力的平均值。同理,如需上、下纠偏时,可造成上、下区域千斤顶的压力差。

(2)采用微量楔形料进行隧道管片纠偏

在曲线段采用管片环面上粘贴楔形低压石棉胶板的方法,使直线段管片成为微量楔形轴线和设计轴线拟合。

石棉橡胶板的压缩率为12%,分段粘贴好的石棉橡胶板经推进过程中千斤顶压缩后,成一平整楔形环面。

管片在制造中,会存在微小的误差(特别是环宽的误差),管片在拼装过程中也会产生误差,这些误差的积累和发展会导致盾构虽未偏离设计轴线,但盾尾的管片变得越来越难拼装,测量管片的偏差,会发现管片中心线已呈偏离设计轴线的趋势,采取以下预防措施:

a、在每一环管片拼装时,测量上一环管片与盾构内壳上、下、左、右各点的间隙,若各点间隙均在1cm以上,可视作管片轴线与盾构轴线拟合。若测得某点间隙小于1cm,则可视作管片已开始偏离盾构轴线,此时可用微量石棉橡胶楔形料进行纠偏,将最大楔

形量贴于间隙小处的衬面上。

b、一次最大楔形量不得大于6mm,若超过6mm,管片橡胶止水条的压缩量变小,会失去止水效果。所以在曲线段掘进时当安装楔形管片后仍需粘贴纠偏条时,应分数环粘贴,不应一环粘贴过厚。

c、若最大楔形量为6mm(经压缩后为5.28mm)。

测得管片与盾构的偏差斜率后,即可算得纠偏的环数。

2.9.2盾构测量与姿态控制

盾构机的测量是确保隧道轴线的根本,在小曲率半径段是盾构机的测量极为重要。

在小曲率段推进时,应适当增加隧道测量的频率,通过多次测量来确保盾构测量数据的准确性。同时,可以通过测量数据来反馈盾构机的推进和纠偏。在施工时,如有必要可以实施跟踪测量,促使盾构机形成良好的姿态。

由于隧道转弯曲率半径小,隧道内的通视条件相对较差,因此必须多次设置新的测量点和后视点。在设置新的测量点后,应严格加以复测,确保测量点的准确性,防止造成误测。同时,由于盾构机转弯的侧向分力较大,可能造成成环隧道的水平位移,所以必须定期复测后视点,保证其准确性。

由于线路的急转弯,间距20~30环布置测量吊篮,每推进5环复测一次导线点。盾构机推进采用自动测量系统,推进时每2-3min自动测量一次盾构姿态。

盾构机拼装后,应进行盾构纵向轴线和径向轴线测量,其主要测量内容包括刀口、机头与机尾连接中心、盾尾之间的长度测量;盾构外壳长度测量;盾构刀口、盾尾和支承环的直径测量。盾构机掘进时姿态测量应包括其与线路中线的平面偏离、高程偏离、纵向坡度、横向旋转和切口里程的测量,各项测量误差满足下表2-1要求:

表2-1 测量误差表

以盾构中心轴线作为X轴、垂直于轴线方向为Y轴、Z轴即为高程方向,刀盘中心作为坐标圆点。在刀盘后面固定螺杆盾构姿态的测量前点。利用激光站支架置镜在盾构主机支架上设一个支导线点、然后置镜支导线点后视激光站导线点测出A、B、C三

点的大地坐标。因为A、B、C三点相对于O1O坐标轴有固定关系,根据A、B、C三点的实测坐标利用三维坐标转换关系就能定出O1O的实际位置及刀盘中心O的坐标,利用O点的实测坐标就能计算出盾构的实际里程以及前后参考点的俯仰情况,根据A、C两点的理论高差和实测高差计算出盾构的具体旋转情况,根据姿态的实测通过调整千斤顶和注浆压力来对盾构进行纠偏以达到盾构能按预定位置掘进。盾构姿态测量示意如图2-3所示

2.10

2.10.1施工监测内容

针对该区间隧道沿线的建(构)筑物及地下管线设施,结合盾构推进施工中引起地面沉降的机理采用如下监测内容:

(1)地表环境沉降监测

地表沉降

地下管线沉降

建(构)筑物沉降

(2)在建隧道沉降监测

2.10.2施工监测范围及点位布置

(1)地表沉降点布设

建立地面沉降监测网,即在现场布置平行于隧道轴线的沉降监测点和垂直于隧道轴线的沉降监测点。平行于隧道轴线的沉降监测点设置为:每5.0m布设一点,垂直于隧道轴线的沉降监测点设置为:进出洞100m范围内每20.0m一个断面,其余部位30.0m 一个断面。

平行于隧道轴线的地面监测点主要用于观测盾构施工时对地面的影响程度;垂直于隧道轴线的地面监测点主要用于观测盾构施工时对地面的影响范围。

盾构施工的监测范围一般为盾构前20环,后30环。对范围以外30~100环的测点每周复测一次,对100环外所有新完成区间监测点每月观测一次。在整个区间隧道施工完成后对该区间地表轴线点再测量一次看后期变化量。

(2)地下管线沉降

施工前与各种管线单位联系,摸清地下管线的准确位置,并将管线落到具体的布点图上,按管线单位要求进行监测点的埋设,并做好监测点的保护工作。同时加强沿线巡视,并把监测信息及时反馈给各管线单位。

本着即能全面掌握信息,又要经济安全地完成整个隧道工程的原则,对常规管线的监测利用地表沉降监测网。但为了更直接地了解盾构施工对管线的影响程度,对轴线两侧各5米范围内各种管线的设备点(如阀门井、抽气井、人孔、窨井等)进行直接监测,在管线单位的监控下确保管线的安全,并控制管线的沉降在容许的范围内。

(3)建筑物沉降

对盾构推进切口附近方圆20m内涉及的建筑物进行监测。

(4)隧道沉降监测

沿着隧道推进方向在隧道的管壁上布设沉降监测点,在进、出洞50环范围内,每隔5环布设一点,在其他部位每隔10环布一沉降监测点。每次监测范围为新施工区段100环,前期已完成区段100环。

2.10.3监测技术要求及监测频率

(1)监测精度

在监测工作中,监测精度应满足以下要求:

沉降位移监测误差≤0.5 mm;

(2)监测频率

监测工作自始至终要与施工进度相结合,监测频率与施工工况相一致,应根据施工的不同阶段,对影响范围内的监测对象,合理安排施工监测频率:

(3)地面沉降、管线沉降:在区间隧道盾构出洞前布设监测点,测2~3次,取得稳定的测试数据,在盾构出洞后即开始监测,在盾构推进期间正常情况下2次/天,施工区域30~100米以远的已完成区段1次/周,1个月后且沉降速率小于3mm/周监测频率可根据工程需要随时调整,以满足保护环境的要求。

(4)建筑物沉降:监测频率2~3次/天,及时了解建筑物的变化情况,在盾构穿越危房时要增加监测频率,根据沉降量及沉降速率及时调整监测频率,保证监测信息准确及时。

(5)隧道(环片)沉降:测试频率为:离推进面20m范围之内时,1次/天;离推进面20m至50m范围时,1次/2天;离推进距离大于50m范围时,1次/周;隧道贯通后1次/月,沉降稳定后改为1次/2个月,直至验收;

2.10.4监测资料的分析、处理及资料报送

(1)监测测量结果在测量工作结束后2小时内提供,出现险情时,及时提供监测数据。

(2)监测资料每日以报表形式提交,报表要对应工况,工况要以图表反映,说明施工时间及相应施工参数。这样有利于对监测报表进行综合分析,提高报表的实用性和可靠性。

(3)每周提交有数据、有分析、有结论(沉降变化曲线)的周报小结;

(4)全部工程结束后一个月,提交监测总结报告。

3、重难点分析

3.1盾构机掘进时隧道轴线控制难度大,纠偏困难

盾构机体本身为直线形缸体,不能与曲线完全拟合。曲线径越小纠偏量越大,纠偏灵敏度越低,轴线就比较难控制。并且由于转弯关系,左右侧油缸需要形成一个很大的推理差才能满足转弯推进要求,一次这就造成左右两侧油缸推力可调范围很小,从而可用于调整姿态的油缸推理调整量很小,这也同样加大了对到控制喝酒片的难度。

曲线上盾构机掘进过程中所穿越的孔洞将不再是理论上的圆形(实际为椭圆形),需要配套使用超挖刀装置进行超挖。

3.2管片容易在水平分离作用下发生较大的移位,造成管片侵陷现象

隧道采用1.5m宽度的管片。比小宽度管片在此工程中的施工难度加大了许多。

隧道管片衬砌轴线因推进水平分力而向圆曲线外侧(背向圆心一侧)偏移,。在小半径曲线隧道中盾构机每掘进一环,由于管片端面与该处轴线产生夹角,在千斤顶的推力作用下产生一个水平分力,使管环脱出盾尾后,受到侧向分力的影响而向曲线外侧偏移。

3.3 对地层扰动大,容易产生较大的地面沉降

由于纠偏时的超挖,对土体扰动增大而发生较大沉降。小曲线隧道的施工除了有直

线段隧道施工的地层变形因素外,还有以下二个因素的影响:①由于盾构机处于纠偏状态,超挖刀也不断进行超挖掘进,开挖断面为一椭圆形,实际挖掘量超出理论挖掘量,增加了地层不稳定因素;②由于纠偏量较大,对土体的扰动也大,地层损失量也增加,容易造成较长时间的后期沉降。

3.4 管片之间易发生错台,管片易产生开裂和破损

管片存在一个水平方向的受力,不但会使整段隧道衬砌管片发生水平偏移(即前面所叙的侵限现象),还会导致管片之间发生相对位移,形成错台。由于管片的特殊受力状态,管片与管片之间存在着斜向应力,使得前方管片内侧角和后方管片外侧角形成两个薄弱点如图1,使得相当多的管片因此破裂。还有一个破裂原因就是因为相邻两环管片产生了相对位移,使得管片螺栓对其附近处混凝土产生剪切作用,使该处的混凝土开裂。

图1 转弯处管片因斜向受力破损示意图

3.5 漏水现象严重

过小半径曲线段漏水现象严重的原因大致如下:①管片错台导致止水胶条衔接不紧密;②拼装效果不好和止水胶条的破坏;③管环外侧的混凝土开裂(转弯段因盾尾间隙减小过多,使得管片被盾尾钢环刮坏),裂缝绕过止水胶条(如图2)。

图2 管片背后开裂导致漏水示意图

4、重难点解决方案

对于小半径转弯的难点,主要是从盾构机掘进参数、盾构设备(超挖刀、铰接装置)、管片选型和拼装等施工措施方面来解决,特别是要采取了同步注浆和二次双液注浆相结合的措施,以保证小半径圆曲线段成型管片不出现侧向移动,以及及时填充围岩空隙保证土体稳定。下面对上叙难点逐一进行分析并探讨解决措施:

4.1 纠偏与隧道轴线控制

4.1.1中盾和尾盾采用铰接连接,有效地减少了盾构的长径,使盾构在掘进时能灵活的进行姿态调整,顺利通过小半径转弯;

4.1.2盾构机转弯时通过的孔洞不是圆形,而是在原来的圆洞基础上两边扩挖而形成的椭圆形,超挖刀的设置正好满足了这个增大净空的要求;

4.1.3掌握好左右两侧油缸的推力差,尽量地减小整体推力,实现慢速急转;

4.1.4盾构机司机根据地质情况和线路走向趋势,使盾构机提前进入相应地预备姿态,减少之后的因不良姿态引起的纠偏。

4.1.5加密加勤VMT移站测量,避免由此产生的轴线误差。由于我们是将短距离的曲线看成是直线段来指导盾构机掘进,如果不短距离移站测量,则相当把长距离的弧线当作直线,故轴线偏差自然会相差很大。

4.1.6做好管片选型,由于是选用的通用管片,不存在转弯环与标准环的区别,所有每一环管片都是一样的。同时每一环管片可以调整的姿态最大为45mm。因此,这就需要我们实时对盾尾间隙进行测量来确定KT块的位置。从而有效保证使盾构姿态尽量与设计轴线的吻合。

4.2 控制管片水平移动和侵限

4.2.1进入缓和曲线段时,将盾构机姿态往曲线内侧(靠圆心侧)偏移15~20cm,形成反向预偏移,这样可以抵消之后管片的往曲线外侧(背圆心侧)的偏移。由于我们开始推进便是从缓和曲线开始,因此提前做好转弯姿态准备是重中之重。这样可以保证我们在以后的掘进时能够轻松地控制盾构机走向。

4.2.2减小油缸推力。

在强、中风化地层中小半径圆曲线掘进的过程中,对土体的扰动会显著降低外围土体的强度及自稳能力,土体具有的蠕变特性以及出现水平方向土体压力不均,管片在长时间承受千斤顶水平分力的等情况下,管片会向外侧整体移动。

小半径曲线掘进管片位移量δ可用公式表达:

ζζδ?=

?=R T P

T :盾构机推力的反作用力 P :土体对管片侧面的附加应力 R :转弯半径 ξ:变形系数

由上式得知:当盾构机的推力越大时管片侧向位移也越大,当掘进的转弯半径越小时管片侧向位移也越大。同时,推进时根据我们火锦区间段的经验,可以把推力控制在900-1150t ;在特殊地层时根据实际来及时调整推力。

4.2.3 在管片偏移的方向额外进行注浆,达到一定的压力以抵抗管片的偏移。待浆液凝固后,则管片位置基本已经确定下来了。

注浆的位置选择1点和4点手孔为宜(右转弯),这样不但可以抵抗管片水平偏移,还可以抵抗管片的上浮。

4.3 减小对地层的扰动,避免大的沉降

4.3.1严格控制好姿态,争取进行时时的细微纠偏,避免大的纠偏而造成对土体的扰动。

利用SLS-T 系统对盾构机姿态的实时监测显示,根据地层的软硬分布情况,分区操作推进油缸,设定推力和推进速度,实现对盾构姿态的实时控制,必要时一个掘进循环可分几次完成。

盾构机掘进时,总是在进行蛇行,难免出现姿态偏差,蛇行修正以长距离慢慢修正为原则,盾构机姿态调整(纠偏)方式有:a 、滚动纠偏:采用刀盘反转的方法进行滚动纠偏。b 、竖直方向纠偏:盾构机抬头时,可加大上部千斤顶的推度进行纠偏;盾构机叩头时,可加大下部千斤顶的推度进行纠偏。c 、水平方向纠偏:向左偏时,加大左侧千斤顶推度;向右偏时,加大右侧千斤顶推度。

4.3.2及时、充足地跟进同步注浆与二次注浆,将管片与围岩间地空隙填充密实,达到稳固管片和减少地表沉降地效果。

4.3.3减小推力和掘进速度,同时选择合适地土仓压力保持模式,最大限度地减小地层扰动,和保证掌子面的稳定,防止坍塌。

4.4 尽量避免大的错台和破损

4.4.1油缸推力尽量不要太大,尤其时曲线外侧(背圆心侧)油缸,由于要加大推力来增加左右两侧油缸推力差,从而实现盾构机转弯。但是,在加大油缸推力的同时,一

定要注意管片的承受能力,避免由此造成的管片破裂。

4.4.2由于曲线外侧油缸推力较大,尤其要注意不要突然加力或者突然释放推力,这样也会造成管片的破裂。

4.4.3掘进的时候,把拧螺栓这道工序做到位,有效的防止错台的发生。

4.4.4提高管片拼装手的水平,避免因拼装不到位产生的错台。

4.4.5注意保持良好的盾尾间隙状态,避免盾尾钢环刮坏管片。调整好油缸撑靴的位置,尽量使撑靴完全作用在管片上。

4.5 减少漏水

4.5.1减小错台,使止水胶条对接紧密,达到良好的止水效果。

4.5.2拧紧螺栓,压紧止水胶条。

4.5.3检查止水胶条,保证其完整、牢固。拼装前,用水清洗止水胶条,避免因止水胶条之间挤有杂物而影响止水效果。

4.5.4注意保持好盾尾间隙,避免盾尾钢环刮坏管片,使裂隙绕过止水条而形成漏水。

5、劳动力组织

劳动力组织如表5-1所示(单条隧道):

表5-1 劳动力配置表

6、机具设备配置

主要设备如表6-1所示(单条隧道):

表6-1主要设备配置表

7、质量控制要点

(1)在曲线段推进过程中,为确保盾构沿设计轴线推进,必要时使用仿形超挖刀,使内侧的出土量要大于外侧的出土量。此时同步注浆量要及时跟上。

(2)在曲线推进过程中,为确保盾构沿设计轴线推进,严格控制盾构出土量。并在掘进过程中开启仿形超挖刀,使曲线内侧的出土量要大于外侧的出土量。

(3)在盾构推进过程中,加强对轴线的控制,推进时必须做到勤测勤纠,而每次的纠偏量应尽量小,确保管片环面始终处于曲线半径的径向竖直面内。

(4)由于曲线段推进增加了曲线推进引起的地层损失及纠偏次数,加大了对土体的扰动。在曲线段推进时应严格控制同步注浆量。每环推进时根据施工中的变形监测情况,随时调整注浆量。注浆过程中,必须严格控制浆液的质量及注浆量和注浆压力,注浆未达到要求时盾构暂停推进。

(5)拼装完成发现环面严重不平的管片,拆下重拼;通过传力衬垫调整管片受力,对产生碎裂的管片进行修补等。

8、安全注意事项

6.1洞内运输

(1)对运输机具、轨道必须定期进行安全运行检查和维护。

(2)电瓶车辆在隧道内曲线段行驶以及进出台车,必须缓慢通过。

(3)隧道内工作人员必须在人行走道板上通行,走道板必须绑扎牢固。

(4)电瓶车、平板车严禁载人运输。

(5)做好例行保养,刹车片及时更换。

(6)长距离大坡度地段:电瓶车增设电动制动刹车装置及配置行车闪光示警灯具,定期及时检查刹车装置,保证其良好性;将钢轨轨枕可靠固定连接,不允许松动;工作面钢轨末端设置行驶止动装置,

6.2垂直运输

(1)盾构工作井四周设立安全栏杆及安全挡板,防止发生井边物体堕落打击事故。

(2)起吊设备必须有限位保险装置,不得带病或超负荷作业。

(3)起重专职指挥,加强责任心,预防发生碰撞事故。

(4)管片配专用吊具及钢丝绳,要定期检查,发现缺陷,及时调换。

(5)满载土斗起吊前,必须进行处理,防止泥块堕落伤人。

(6)夜间施工井口必须有足够的光照度。

(7)起重指挥持证上岗。

(8)起重用索具、夹具须有产品合格证和质保书。

6.3 管片拼装

(1)机械手操作人员在机械手转动前须告知上下作业人员,在确保无人的情况下才可转动机械手。

(2)机械手举起管片后,严禁该断面区域站人,以防吊耳脱落,引起管片坠落伤人。

(3)机械手转动前小脚应撑住管片,不得晃动。

(4)小脚调定油压≤6Upa,以免吊耳、预埋件受损伤。

(5)机械手的声、光警报装置齐全。

(6)机械手由专人操作。

小半径曲线盾构始发和到达施工技术

小半径曲线盾构始发和到达施工技术 摘要:为解决盾构在小半径曲线内始发、到达的难点和风险,文章以广佛线地铁某盾构标段盾构在320 m小半径曲线内始发和到达的施工为研究背景,对盾构在小半径曲线内盾构始发和到达施工的风险进行了系统研究,并提出了相应的控制措施、取得了较好的效果,为今后类似工程的施工提供了借鉴。 关键词:小半径曲线;盾构机;铰接;曲线始发;曲线到达 随着城市高速的发展,带引了地下轨道交通建设的飞速发展,但在城市轨道交通线路的选择上,由于受规划及建(构)筑物的制约,使得城市轨道交通的线形设计越来越复杂。不可避免的出现存在小半径曲线的规划线路。小半径曲线盾构法施工技术与常规盾构法施工技术相比存在一定的特殊性,施工难度大、风险大。因此,研究小半径曲线盾构法施工技术,针对盾构在小半径曲线始发、到达以及掘进过程中的风险,提出科学、合理的应对措施,可有效的避免盾构在小半径曲线内施工容易超限、管片容易出现错台、漏水等质量事故。相信对以后类似的小半径曲线盾构法施工具有一定的借鉴作用,可以很好地解决设计线型对盾构施工的影响。 1盾构机的选型 盾构机在曲线内始发或是到达掘进时,首先盾构机必须能够满足曲线内掘进的参数要求,也就是说所选用盾构机的最小转弯半径必须满足小于盾构始发或到达曲线的曲率半径,通常盾构机的最小转弯半径的大小取决于盾构机的长度、是否启用铰接、铰接的开启量等因素,盾构机选取尺寸尽量短。对盾构机选型还要验算盾构机的最小转弯半径,计算方法如下: Rmin=÷sin 式中:LA为盾构机前体长度,mm;LB为刀盘的厚度,mm;􀱺为铰接可开启最大值。 例如广佛线[桂~雷区间]320 m的小转弯半径始发和到达,本工程盾构机采用了日本三菱的泥水平衡盾构机,盾构机总长度(刀盘面至盾尾)为8 420 mm,盾构机筒体的直径为6 260 mm,刀盘的开挖直径为6 280.5 mm,盾构机前体(刀盘面到铰接中心)的长度为 5 028 mm,后体(铰接中心到盾尾)的长度为3 392 mm。盾构机具备中折装置,中折角度最大1.5 ̊,盾构机刀盘面到铰接中心的长度为5 028 mm。根据上面公式,可计算本工程所采用盾构机,在打开铰接后,其能转弯的最小转弯半径为160.81 mm,能满足区间曲线掘进的要求。 2管片的设计 曲线段隧道每掘进一环,管片端面与该处轴线的法线方向在平面上将产生一定的角度θ,为了更好的使得盾构机沿着计划曲线掘进,在管片选型时尽可能选

盾构分体始发掘进专项施工方案

第一章编制依据 1、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建施工项目招标文件、招标图纸、地质勘查报告、补遗书及投标文件。 2、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建工程承包合同。 3、广州市轨道交通六号线盾构7标段补充地质勘测资料、管线调查及现场调查资料。 4、广州市轨道交通六号线盾构7标段施工设计图纸。 5、国家现行有关施工及验收规范、规则、质量技术标准,以及广州地区在安全文明施工、环境保护、交通组织等方面的规定。 6、我公司在广州地铁建设中的成功的施工经验和研究成果及现有的施工管理水平、技术水平、科研水平、机械设备能力。 第二章工程概况 一、始发端头工程地质、水文概况 ㈠工程地质 根据《广州市轨道交通线网岩土工程勘察总体技术要求》的地铁沿线岩土分层系统和沿线岩土层的成因类型和性质、风化状态等,本基坑内各岩土分层及其特征如下: <1>人工填土层(Q4ml) 主要为杂填土和素填土,颜色较杂,主要为褐黄色、灰色、灰褐色、褐红色等,素填土组成物主要为人工堆填的粉质粘土、中粗砂、碎石等,杂填土则含有砖块、砼块等建筑垃圾或生活垃圾,大部分稍压实~欠压实,稍湿~湿。本层标贯击数6~18击,平均击数11击。 <4-2>河湖相沉积土层(Q3+4al) 呈深灰色、灰黑色,主要为淤泥及淤泥质土组成,组成物主要为粘粒,含有机质、朽木,饱和,流塑状,局部夹薄层细砂。标贯实测击数1~2击,平均击数为1.5击。 <5H-2>硬塑~坚硬状花岗岩残积土层 黄褐色、红褐色、灰白色、灰褐色、黑褐色等色,组织结构已全部破坏,矿物成分除石英外大部分已风化成土状,较多细片状黑云母,以粉粘粒为主,含较多中粗砂、砾石。残积土遇水易软化崩解。主要为砾质粘性土、砂质粘性土、粘性土,呈硬塑~坚硬状。

盾构机接收施工方案

目录 第1章编制依据及原则................................... - 1 -1.1 编制依据............................................... - 1 -1.2编制原则............................................... - 2 -第2章工程概况......................................... - 3 -2.1 盾构机接收情况说明..................................... - 3 -2.2 盾构区间工程概况....................................... - 3 -2.3 海上世界站工程概况..................................... - 3 -第3章施工准备......................................... - 4 -3.1盾构机到达前的掘进..................................... - 4 -3.2洞门凿除............................................... - 4 -3.3洞口密封............................................... - 5 -3.3 接收基座定位........................................... - 5 -第4章施工部署......................................... - 7 -4.1 主要机具配置........................................... - 7 -4.2 施工平面布置........................................... - 7 -4.3 施工计划............................................... - 7 -4.4 材料准备............................................... - 9 -第5章盾构机接收出洞解体.............................. - 10 -5.1盾构主机出洞.......................................... - 10 -5.2盾构台车出洞解体...................................... - 11 -第6章组织保证措施和安全保证措施...................... - 12 -6.1 组织保证措施.......................................... - 12 -6.2 安全保证措施.......................................... - 12 -

地铁盾构小半径曲线施工难点

地铁盾构小半径曲线施工难点 雖然目前的隧道施工技术已经广泛采用了方便快捷的盾构施工法,但是小半径曲线的地铁盾构施工非常特殊和复杂,一个小半径曲线线路路段会直接影响到整条地铁线路的成本、安全性能和速度等控制性因素。本文研究好如何施工小半径曲线地铁隧道,会对之后遇到类似情况的工程提供很强的借鉴意义。 标签:小半径曲线;地铁盾构隧道;施工技术;实例探究 1小半径曲线盾构施工的难点分析 1.1 轴线控制难度比较大 在盾构曲线隧道的时候,盾构机是在设计轴线的周围位置不规则摆动的,因此在盾构机推进的过程当中无法和理论上的设计轴线位置保持一致。如果曲线隧道的转弯半径过小的话,也就是本文研究小半径曲线隧道,会使这种差异更加明显。因为盾构机本身并不弯曲,曲线半径越小、盾构机机身越长,就会导致实际盾构和设想的偏离程度越大。由于转弯弧度比较大,需要盾构机左右两侧的油缸以不同的功率运行,才可以让盾构机转弯,但是由于现在采用的盾构机油缸可调程度不大,所以很难进行隧道轴线控制。此外纠偏的难度也可想而知, 1.2 对土体扰动程度大 在纠偏时盾构机会对周围的土体产生振动和挤压,这就会对周围土体的扰动程度提升,容易引发比较严重的土体沉降。而且在转弯部分盾构机的实际开挖量是大于理论开挖量的,即便采用了最优质的盾构机器、采用最精湛的盾构施工手法,也很难控制挖掘造成的地层损失。 1.3 管片安装开裂和破损可能性大 在小半径曲线的地铁隧道中,每两片管片之间都存在着一定的夹角,在千斤顶的作用下会产生一个水平分力。管片可能会受到这种侧向的水平推力的影响导致发生相对位移,形成错台。形成错台之后相邻管片之间的作用力更加强大,要是真好作用在了某一管片的薄弱位置上,可能会导致管片开裂破损。此外,盾构机在转弯半径很小的路段掘进时,纠偏量过大可能会导致盾构机和管片卡壳,导致相对脆弱的管片破损等情况。 1.4 漏水现象严重 管片出现的问题直接影响的就是隧道的密封性问题,漏水和漏浆等事故很可能随之而来。止水胶条连接出现破损、土壤渗水等问题产生的水分就会顺着管片之间的缝隙进入地铁隧道,对地铁行车造成很大的安全隐患。

盾构区间冬季施工方案

目录 第1章编制依据 (1) 1.1编制依据 (1) 1.2编制目的 (1) 1.3适用范围 (1) 第2章工程概况 (1) 2.1工程简介 (1) 2.2水文地质 (2) 2.3武汉市冬季气温情况 (2) 2.4冬季施工特点及风险分析 (2) 第3章冬季施工准备 (2) 3.1本工程冬季施工期限的确定 (2) 3.2冬季施工准备 (3) 第4章冬季施工技术保证措施 (5) 4.1浆液搅拌 (5) 4.2材料存放 (6) 4.3管片防水材料粘贴 (6) 4.4供水管线 (6) 4.5集土坑内渣土外运 (7) 4.6监测点保护 (7) 4.7龙门吊使用 (7) 4.8构件吊装 (7) 4.9防滑措施 (7) 第5章冬季施工安全措施 (8) 5.1冬季施工安全保证措施 (8) 5.2冬季安全防护措施 (11) 第6章冬季施工应急预案 (12) 6.1触电事故 (12)

6.2火灾事故 (12) 6.3应急就医路线 (12)

第1章编制依据 1.1编制依据 1)土建工程施工合同文件; 2)土建工程工程实施性施工组织设计; 3)地铁施工有关的施工技术规范、规程、标准; 4)适应于本工程冬季施工的规范、规则和标准; 5)《建筑施工手册(第五版)》相关要求; 6)公司内部有关施工技术管理、工程质量管理、安全生产管理、文明施工管理的规章制度和办法; 7)武汉市多年气象信息气候状况。 1.2编制目的 1)规范操作程序,指导现场冬季施工。 2)确保本工程冬季施工防寒的工程质量。 3)以成熟的施工技术及先进的设备,确保冬季施工安全和工程质量。 1.3适用范围 适用于xxxxxx区间冬季施工作业。 第2章工程概况 2.1工程简介 xxxxxxx 本区间起讫里程为:右CK10+xxx~右CK11+xxx(左CK10+xxx~左CK11+xxx),右线长度635.150m,左线长度xxxm(长链xxx m)。线间距为16.2~17.2m,线路平面最小曲线半径为xxxm,最大纵坡为xxx‰。本区间隧道埋深变化较大,在12.70~19.5m之间浮动。 区间设1处联络通道,位于里程右CK10+xxx(左CK10+xxx)。 具体如下图《xxxxx区间平面布置图》所示。

盾构机出洞方案

目录 一、编制依据 (1) 二、工程概况 (1) 三、水文及地质 (1) 四、施工总体部署与进度安排 (2) 五、盾构的到达施工 (3) 盾构到达施工工艺流程 (3) 到达施工前的准备工作 (3) 到达时盾构的推进 (8) 六、盾构的调头施工 (11) 调头前准备 (11) 盾构调头作业流程 (11) 盾构机调头 (13) 七、施工技术保证措施 (19) 八、安全保证措施 (19) 九、应急预案 (20)

工~文区间盾构机到达、调头施工方案 一、编制依据 1、《地下铁道工程施工及验收规范》(GB50299-1999)(2003年版)。 2、《盾构法隧道施工与验收规范》(GB50446-2008)。 3、《沈阳地铁盾构施工技术要求(暂行)》沈地铁司发[2008]2号。 4、《沈阳地铁工程重大危险源管理办法》沈地铁司发[2009]62号。 5、《关于进一步加强盾构施工安全管理工作的通知》沈地铁司发[2009]63号。 6、沈阳地铁盾构施工相关设计文件。 二、工程概况 工~文区间线路是自工业展览馆站出发,沿青年大街由北向南至文体路站为止,区间隧道为单洞单线圆形断面,右线起点设计里程为K12+,左线起点设计里程为K12+,终点设计里程为K13+,区间右线长度为,左线长度为。本区间设两个联络通道,设置里程分别为K12+和K13+230。本区间盾构从文体路站右线始发,到达工业展览馆站调头后再从工业展览馆站左线始发,最终从达文体路站左线吊出。 三、水文及地质 本区间地下水类型为第四系松散岩类孔隙潜水主要含水层厚度~,主要赋存在中粗砂、砾砂及圆砾层中,由于左右线到达井均采用降水井人工降水,稳定水位埋深将达到管片结构1m以下。 区间右线到达工业展览馆站时管片埋深米,从地质剖面图上来看,到达掘进段穿越地层主要为砾砂与中粗砂层,地层自上而下分别是: 0~为杂填土,~21m 为砾砂,21~为中粗砂。 区间左线到达文体路站时管片埋深米,从地质剖面图上来看,到达掘进段穿越地层主要为砾砂层,地层自上而下分别是: 0~为杂填土,~为中粗砂,~为砾砂,~为圆砾,~为砾砂。

小半径曲线隧道盾构施工工艺

小半径曲线隧道盾构施工工艺 1 前言 1.1工艺工法概况 小半径曲线盾构隧道是指曲线半径在250~400米的曲线隧道,由于施工采用盾构法施工,盾构机的设计转弯能力直接影响到隧道的施工难易程度,目前使用较多的德国海瑞克Φ6280mm的土压平衡盾构机的最小水平转弯半径为200米、日本小松TM625PMD盾构机最小水平转弯半径为150米,可以满足小半径曲线的施工要求。但施工过程中需采用相应的辅助措施及加强施工各个方面的控制才能有力确保小半径曲线隧道施工质量。 1.2工艺原理 1.2.1盾构掘进过程中通过刀盘的超挖刀,推进油缸的压力、行程差、铰接油缸的行程差使盾构机根据隧道的设计曲线前行以完成曲线段的隧道施工 1.2.2通过增大每环管片的楔型量、减少环宽以增大管片转弯的能力来拟合隧道较小的设计曲线。 2 工艺工法特点 有效减小了建筑物密集区等特殊条件下隧道选线的难度,适用于较小半径曲线盾构隧道的施工,施工具有安全、经济、高效的特点。 3 适用范围 适用于小半径曲线盾构隧道。 4 主要引用标准 4.1《地铁设计规范》(GB50157) 4.2《地下铁道工程施工及验收规范》(GB50299) 4.3《混凝土结构设计规范》(GB50010) 4.4《混凝土结构工程施工质量验收规范》(GB50204) 4.5《地下防水工程质量验收规范》(GB50208) 4.6《建筑防腐蚀工程施工及验收规范》(GB50212) 5 施工方法

小半径曲线盾构隧道施工是在土压平衡的前提下,采用VMT导向系统控制掘进方向、通过刀盘的超挖刀扩挖掌子面、推进油缸压力差使盾构机沿曲线方向前行、盾构铰接油缸行程差使盾体与盾尾有效的拟合曲线,最后通过楔型量较大的管片拼装来拟合盾构机开挖的曲线形成小半径曲线隧道。 6 工艺流程及操作要点 6.1施工工艺流程 图1 施工工艺流程图 6.2操作要点 6.2.1施工准备 工程开工前了解隧道地质情况、地面建筑物情况,做好盾构机的选型工作,确保使用盾构机满足小半径曲线的施工能力。进入小半径曲线掘进前2个月前做好施工的各项准备工作,准备工作的重点为小半径曲线使用管片的生产。 6.2.2掘进控制 1进入小半径曲线启用超挖刀、仿形刀,使开挖空间满足盾构机转弯的能力。掘进过程中根据掘进参数选择合适的超挖量,一般超挖量20~50mm。装有超挖刀的刀盘如图2所示: 2在小半径曲线隧道中盾构机每推进一环,由于推进油缸与管片受力面不垂直,在油缸的推力作用下产生一个水平分力,使管片拖出盾尾后,受到侧向分力

盾构到达施工方案

第三章盾构到达施工 1、盾构到达工艺流程 盾构到达工艺流程(见图 图盾构到达工艺流程图 2、到达端头井地层加固 根据设计要求,盾构到达端头加固采用两排三重管旋喷桩Φ800@600+袖阀管注浆加固。先注外围,后注中部,以达到一序外围成墙、二序内部压密的目的。采用跳孔注浆的原则,以达到释放压力,防止地面隆起。加固范围:水平盾构区间左右各3m;竖向盾构隧道上部6m处,下部深入中风化岩层1m。加固后的土体应有良好的均匀性和自立性,无侧限单轴抗压强度≥,地层渗透系数不大于10-5cm/sec。 3、盾构接收托架安装 托架安装前,通过车站临时预留口将地面控制点坐标引入车站底板,根据设计中心线计算出线路中心线坐标,进行中心线放样,托架高程放样时,高程一般比设计高程低2cm左右,测量点位放样精度控制在3mm以内。 接收托架主要采用型钢(工字钢、H型钢、钢板)焊接组成。 将预制好的盾构托架(见盾构机接收架构造图-1a、)吊入工作井内,按照测量放样的基线进行接收托架定位,托架定位采用吊车进行初步定位,再通过千斤顶和手拉倒链进行精确定位,定位精度在±5mm之内。(见盾构机接收托架定位

图考虑接收架在盾构到达时要承受纵向、横向的推力以及抵抗盾构旋转的扭矩,所以在盾构到达之前,对接收架两侧用H型钢进行加固(见盾构机接收架加固图)。 图-1a 盾构机接收架构造平面图 mm。 图盾构机接收架构造立体图

图 盾构机接收架安装定位 图 到达托架的加固 4、洞门混凝土的凿除 洞门混凝土凿除分两次进行,第一次洞门凿除在盾构掘进到到达端前进行,切除外排钢筋,并凿除外排钢筋和内排钢筋间混凝土;第二次洞门凿除在盾构机掘进到到达端后,切除内排钢筋。 1)脚手架的搭设 盾构到达前需凿除洞圈范围内的围护结构。施工前,在洞圈内搭设钢管脚手架(钢材规格:Q235,外径42.7mm ,壁厚2.3mm ),搭设高度6~7m,洞门凿除时间为7天左右。(详见洞口内脚手架布置图)。 @1000 7700 @1000观测孔 脚手架 1200 300 1500盾构 脚手架 图 洞口内脚手架布置图 凿除洞门混凝土之前,对洞门加固土体进行钻芯取样,检测土体的加固强度是否达到设计要求(加固体抗压强度不小于1Mpa ,渗透系数1×10-5cm/min ),

盾构区间测量施工方案

1、概况 (1) 2、技术编制依据 (2) 3、仪器设备配置 (3) 4、施工测量组织机构........ (3) 5 、测量技术保证措施 (4) 6、技术方案............ (5) 7、贯通后的测量 (20) 8 、全线贯通误差分析 (20)

郑州市轨道交通 2 号线一期工程土建施工 06 工区盾构区间施工测量设计方案 一、概况 1.1 、工程概况 本标段共包括三个盾构区间南环站~长江站区间右线,长江站~航海站区间右线,航海站~帆布厂站区间右线。 帆布厂街站?航海东路站右线盾构区间隧道 帆布厂街站?航海东路站盾构区间右线起讫里程YCK22+655.200?YCK23+352.900,右线全长697m;区间出帆布厂街站后以20%。的坡度下坡200m, 以4.155%的坡度上坡389.422m,最后以2%。的坡度上坡25m进入航海东路站。隧道拱顶最深埋深11.05米,区间半径5000m,在区间中部设联络通道兼水泵房两处。 航海东路站?长江路站右线盾构区间隧道航海路站?长江路站盾构区间,右线起讫 里程YCK23+543.509? YCK24+981.000,右线全长1355.001m,区间出航海东路站后以26%的坡度下坡250m,以5%。的坡度下坡225m,再以5.85%。的坡度上坡525m,然后分别以26% 的坡度上坡330m,最后以2%。的坡度上坡25m进入长江路站。 长江路站?南环路站右线盾构区间隧道 长江路站?南环路站盾构区间线路从长江路站南端头井(YCK25+177.700)出发,沿花寨路南行,横穿端午路、白桦路,以10%的坡度下坡250m,以16.872%。的坡度上坡229.0250m,再以2%。的坡度上坡270m进入南环路站,南环路站北端头井(YCK25+719.000),右线全长589m为双线单圆盾构区间。其中区间设一处联络通道结合泵站设置在线路最低点附近。 1.2、控制点概况: 本标段施工中总共利用3个GPS及精密导线点和3个二等水准点,其中相邻 两控制点相互通视。水准点均设在房角及硬化层上。 、编制依据 《城市轨道交通工程测量规范》GB50308---2008 《工程测量规范》 GB50026---2007

小半径曲线地铁隧道盾构施工工法

小半径曲线地铁隧道盾构施工工法 中铁二局股份有限公司城通公司 1.前言 上海市轨道交通9号线一期工程R413标段盾构隧道由正线(双线)及出入段线(两段)两部分组成,全长6249.676m,采用盾构法施工。两岔道井将区间正线分割成三部分共六段盾构隧道。在正线的东、西岔道井之间及线路北侧为东、西车辆出入段线,呈“八”字形分布,东、西出入段线最小曲率半径为230m。 中铁二局股份有限公司城通公司联合设计单位和大专院校开展了科技创新,取得了“三线近距、斜交、小半径、大坡度地铁盾构法施工综合技术”研究成果,于2007年通过四川省科技成果鉴定,获得四川省科技进步三等奖。我们对此技术的应用进行了总结,形成了本工法。 2.工法特点 2.1适用范围广,适用于软土地层土压平衡盾构机小半径曲线掘进 2.2轴线偏差小,控制在2~3cm内 2.3管片外弧碎裂和管片渗水较少 2.4采用带有超挖刀的铰接式盾构用于小半径曲线掘进 3.适用范围 软土地层平面小半径曲线(R≤350)盾构法施工的隧道工程。 4.工艺原理

4.1利用详细的盾构机参数选型及具体的管片宽度选择,预偏量设定,密集的监控量测频率和及时优化的盾构施工参数控制的综合运用,保障了盾构小半径曲线掘进的顺利施工。 4.2 将数据处理和信息反馈技术应用于施工,利用监控量测指导施工,动态修正施工方法和支护参数,以信息化施工技术为贯穿全过程的主线,全面控制和优化盾构施工参数,确保施工安全、快速。 5.施工工艺流程及操作要点 5.1施工工艺流程 图5.1 小半径曲线隧道盾构法施工工艺流程图 5.2操作要点 5.2.1盾构机选择 1、适当的超挖量 盾构刀盘上需安装有一定超挖范围的超挖刀。在小半径曲线施工时,进行盾构外周(大于盾构机外径)的超挖,超挖范围可在切削刀盘旋转角度范围0-359度之间设定。超挖量能根据下限设定

区间盾构临建专项施工方案

目录 1.工程概况 (1) 2.临建的施工组织 (1) 施工准备工作 (1) 施工内容 (1) 总体部署 (1) 施工进度计划安排 (2) 施工组织机构 (2) 施工平面布置 (2) 3.临建施工方法 (2) 用电线路 (3) 场地平整 (3) 泥浆处理场施工 (3) 浆池施工 (3) 弃渣场施工 (5) 搅拌站的施工 (5) 充电池 (5) 充电房、小仓库和值班室的施工 (5) 仓库的施工 (6) 4.冬季施工保证措施 (6) 5.质量保证措施 (7) 6.工期保证措施 (9) 7.安全文明施工保证措施 (10)

临建专项施工方案 1.工程概况 汪河路站-曹仲站区间,自浑河北岸汪河路站起,向南下穿大堤路、浑河以及浑河南岸规划地块至浑南西路后东转,沿浑南西路道路下方走行,至曹仲站,本工程起点里程CK12+,终点里程CK14+,区间全长双线米,区间中段下穿浑河,采用2台泥水平衡盾构机施工。区间共设置4个联络通道,一处风井,其中,1号、2号、4号联络通道采用冷冻法施工,3号联络通道结合区间风井设置,采用明挖施工。施工顺序安排:盾构从汪河路站始发,曹仲站吊出。 2.临建的施工组织 施工准备工作 (1)施工现场情况调查 现场情况调查的目的是为了解决下述问题:施工场地的布置;施工机械进入现场和进行组装的可能性;给排水和供电条件;噪声、振动与污染等公害引起的有关问题等。 (2)施工前应准备的资料有:施工区域内的工程地质、水文地质资料、管线、施工图及测量交桩记录等资料。 (3)平整场地,测量放线。 施工内容 盾构始发井南端头段及东侧区域,约3192m2的施工场地,为汪河路站~曹仲站区间始发场地。结合目前现场情况及泥水盾构施工工艺特点,本方案阐述的施工内容包括泥浆处理场地、地面控制室、仓库、搅拌站等进行临时设施布置施工。 办公室、宿舍、食堂、厨房、卫生间、洗浴室用房,16T龙门吊均延用车站现有的临建。 总体部署

地铁车站冬季施工方案

页眉

页脚 页眉 xx市城市轨道交通x号线一期工程xxx站 冬季施工方案 编制: 审核: 批准:

分部xxxxx有限公司xx工程指挥部xx月年xxxxxx日页脚 页眉 目录 1、工程概况 (1) 2、编制依据 (1) 2.1冬期施工期限的确定 (1) 2.2冬季施工任务情况 (1) 3、冬期施工组织体系及前期部署 (1) 3.1组织机构设置 (1) 3.2工期要求及前期准备 (2) 3.2.1物资准备 (3) 3.2.2测点保护 (3) 3.2.3管线防冻保护 (3) 3.2.4钢筋及焊接工程 (3) 3.2.5防水施工 (4) 3.2.6混凝土工程 (5) 3.2.7砌筑施工 (6) 4、施工方法 (7) 4.1钢筋及钢筋加工防寒 (7) 4.2混凝土的防寒 (8) 4.3地面施工现场上、下水的防寒 (9)

4.4机械设备防寒 (9) 4.5其他防寒措施 (10) 5、冬期施工技术管理 (10) 6、现场施工安全管理措施 (11) 7、冬期施工管理 (12) 8、混凝土质量检查和养护温度检测方法 (13) 9、冬季施工材料储备计划 (13) 页脚 页眉 、工程概况1车站概况:xxx站位于xxxx大街与xxxx路交叉口,沿xxxx大街布置,车站有效站台中心里程为右DK8+616.952,起始里程为右DK8+531.952,终点里程为右DK8+763.952。车站纵向为2‰下坡,地下双层岛式站台车站,站台宽12.0m,车站全长232m,结构标准段总宽度21.1m。车站共设2座风道,4个出入口(A出入口为预留口)。1号风道设在车站主体结构北端的东侧;2号风道设在车站主体南端的东侧;B、C号出入口设在xxxx大街的西侧,D出入口设在xxxx大街东侧。车站两端设置盾构始发井和盾构接收井。 2、编制依据 2.1冬期施工期限的确定 冬季施工实行“双控制”,当天气条件符合下述①或②款中任何一款时,即进入冬季施工状态。 ①温控 根据《建筑工程冬期施工规程》(JGJT104-2011)的规定,当室外日平均气温连

曲线钢箱梁顶推施工技术

曲线钢箱梁顶推施工技术 摘要:在城市立交桥或高速公路桥梁跨越设计中一般采用钢箱梁,钢箱梁具有外形轻巧美观、现场施工周期短、对外部环境影响小等优点。文章介绍某高速公路钢箱梁的顶推施工技术。 关键词:曲线;钢箱梁;顶推施工技术 一、工程概况 某大跨桥跨越某高速公路,全长450m,径布置为(55+45+220+45+55)m,桥面总宽度34.5m,双向六车道,为一联双塔双索面斜拉桥,采用半漂浮体系。主梁采用混合主梁,其中两侧边跨各采用预应力混凝土箱梁,预应力混凝土箱梁各长109.4m,伸入主跨9.4m,中跨197.2m范围内采用钢箱梁,在钢箱梁两端与预应力混凝土箱梁相交位置放置2m长的钢混结合段,中跨197.2m范围钢箱梁采用顶推法施工。钢箱梁纵向为大跨度变曲线,中段159.88m竖曲线是半径为2000m的圆曲线,两侧各为18.66m直线段,横断面顶推支点处为半径2500m的圆弧面,顶推重量为20t/m,总重约4000t,顶推行程255m。 二、顶推方案说明 钢桥架设安装方法很多,主要方法有自行吊机整孔架设法、门架吊机整孔架设法、浮吊架设法、支架架设法、缆索吊机拼装架设法、转体架设法、顶推滑移架设法、拖拉架设法、浮运架设法、浮运拖拉架设法、浮运平转架设法、悬臂拼装架设法等方法。 钢桥架设方法的选用,不仅要考虑桥梁形式、跨度、宽度、桥位处的水文、地质、地形等条件,还要考虑交通状况、现有设备条件、安全程度、工期、工程费用等因素。经过技术、经济比较,为了减少顶推次数,降低对既有高速公路的影响,同时不与钢箱梁相接的混凝土箱梁施工,节约施工空间,另外减少支架使用数量,节约成本,本次考虑采用顶推和支架结合架设法进行钢箱梁架设,此法综合了支架法和顶推(或拖拉)滑移架设法的优点,并将对既有高速公路的影响降至最低。 具体过程为:钢箱梁施工采用单向顶推方法施工,即从水洪口方向朝沌口方向顶推。顶推采用千斤顶连续牵引的顶推方法以实现跨高速公路水平移动。施工前先在高速公路两侧搭设顶推反力支墩、下滑道支墩、焊接平台支墩、落梁支墩等,在中央分隔带位置安装下滑道支墩。 根据现场施工条件,在高速公路侧桥位处搭设墩,分段拼装钢箱梁实施顶推。其中箱梁最前端一段作为嵌补梁段,待其余钢箱梁顶推至设计位置落梁后再采用汽车吊安装嵌补梁段。具体步骤为:第一次在支墩上拼装前导梁及4段钢梁,顶推20m;第二次依次拼装2段钢梁,顶推30m;第三次依次拼装3段钢梁,顶推30m;第四次安装尾端1个梁段,顶推15m后拆除前导梁,将其安装在最后端钢梁的

盾构法隧道小转弯半径掘进中存在的问题及采取的措施

盾构法隧道小转弯半径掘进中存在的问题及采取的措施 李卫国 广东水电二局股份有限公司广东广州511340 摘要:在轨道交通线路的选择上,越来越多的小转弯半径曲线隧道被应用于盾构法隧道施工中。小转弯半径曲线隧道的盾构法施工技术与常规盾构法施工技术相比存在一定的特殊性,本文结合车陂南~三溪和魁奇路~祖庙两个区间小转弯半径曲线隧道工程实例,浅谈盾构法隧道小转弯半径掘进中存在的问题及采取的措施,相信对今后类似的小转弯半径曲线隧道盾构法施工具有一定的借鉴作用。关键词:盾构法,小转弯半径,掘进,盾构机轴线,隧道轴线,管片轴线。1、前言 现代化城市的蓬勃发展,带动了城市轨道交通的大力建设,在轨道交通线路的选择上,往往受线路规划或建、构筑物的制约,使得地铁线路的线形越来越复杂,越来越多的小转弯半径曲线被应用于盾构区间设计中。小转弯半径盾构施工技术一直来是盾构施工的重点、难点,其特征在于盾构机使用超挖刀时的盾尾间隙、超挖刀超挖量、最小转弯半径的理论计算,管片选型,推力控制参数,盾构姿态实时控制与调整,同步注浆及二次补充注浆的运用,以及小半径盾构施工采取的其它辅助措施,解决盾构机通过小转弯半径掘进施工带来诸多的难题,使隧道轴线的控制均符合设计线路要求。下面就小转弯半径盾构掘进过程中,隧道轴线偏离设计轴线,隧道管片轴线偏离设计轴线,隧道管片轴线脱盾尾后偏离设计轴线和其它影响小转弯半径的因素,这几个常见的问题,结合工程实践中已经成功运用过的方法和措施,进行总结分析以求共同探讨。 2、盾构掘进过程中,隧道轴线偏离设计轴线 2.1产生的原因 ①、软土层中掘进,前端(土仓侧)反力无法满足推进所需的分区推力差;(要点) ②、主推千斤顶分区推力设置不合理,无法推出盾体偏转角度;(无主动铰接时) ③、刀盘与盾体直径差过小,无法满足盾体偏角度所需空间; ④、由缓和曲线过渡到圆曲线时,盾体偏转滞后(盾构机走外弧线)。

冬季施工方案

冬季施工方案 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

目录

冬季施工方案 1 编制说明 1.1 编制依据 (1)武汉轨道交通8号线一期土建工程第4标段的施工招投标文件以及工程施工合同; (2)《建筑工程冬期施工规程》(JGJ104-97); (3)《工程建设强制性标准》; (4)有关施工技术规范、规程、标准; (5)我单位多年从事铁路、地铁、市政等工程的施工经验;? (6)根据武汉市市气象信息气候状况。 1.2 编制原则 (1)严格执行国家及武汉市政府所制订有关冬季施工的法律、法规和各项管理条例,并做到模范守法、文明施工。? (2)根据本标段总体施工进度计划安排,有针对性对冬季施工项目采取保护措施。? (3)以成熟的施工技术及先进的设备,确保冬季施工安全和工程质量,按期为业主 提供一个优质的工程产品。 2 工程概况 2.1 项目介绍 标段位置位于武汉市武昌区徐东大街,线路沿徐东大街东西布置,西起徐家棚,东止梨园东湖路,从徐家棚(不含)到梨园站,共4个车站和3个区间。区间从徐家棚大里程出发,向东以半径R=350曲线侧穿汉飞滨江国际,进入徐东大街,沿线侧穿武汉大道徐东高架前行,并依次下穿友谊大道立交工程、沃尔玛地下过街通道到达徐东站,然后继续沿徐东大街向东前行,在岳家嘴立交附近偏离徐东大街进入英特小区地块内,之后进入岳家嘴站,然后出站沿徐东大街南侧继续向东前行,在东湖中学大门附近到达终点梨园站。具体包括:徐家棚站(不含)~徐东站区间、徐东站、汪家墩站、汪家墩站~岳家嘴站区间、岳家嘴站、岳家嘴站~梨园站区间、梨园站。标段起讫里程为: YDK13+514.568~YDK17+202.900,单线总长3688.332m。本标段位置见图2.1-1。 图2.1-1 本标段位置图 2.2 设计概况 2.2.1 徐家棚(不含)~徐东站区间 本区间从徐家棚站大里程端头出发,向东以半径R=350曲线侧穿汉飞滨江国际,进

盾构到达接收方案

盾构到达接收方案 1 盾构到达接收 根据区间隧道施工总体安排,盾构机首先从文化宫站西端始发井组装、始发,向西施工,至省博物馆站东端解体、调头。中间穿过联络通道,联络通道在盾构区间完成后采用矿山法施工。盾构到达段掘进参数见下表。 盾构到达段施工技术参数表1-1 1.1 盾构到达接收流程 盾构到达施工流程见下图。

1.2 洞门破除 由于隧道洞门为地下连续墙,盾构到达前要将盾构通过范围内的钢筋全部取出。凿除洞门采用人工手持风镐的方法。为了保护盾构刀盘初装刀具、保证洞门土体的稳定,采取以下措施: (1)洞门一次凿除到位。在到达井土体加固检验合格、盾构刀盘贴上连续墙迎土面、帘布橡胶安装完毕并且在地下水位降到底板以下1m 的前提下,组织人员进场开始破除施工,使用风镐进行破除。破除洞门范围内所有的连续墙;洞门范围内的钢筋必须清楚干净保证预留洞门的直径。破除完毕后,盾构机立即前推进洞。 (2)开凿前,搭设双排脚手架,由上往下分层凿除,洞门凿除的顺序见下图。首先将连续墙背土面钢筋凿出裸露并用氧焊切割掉,然后继续凿至迎土面钢筋外露为止。当盾构刀盘抵达连续墙迎土面停止前推,然后再将余下的钢筋割掉。 6620说明: 洞门凿除顺序严格按照图 示分块进行。 875496213

图1.2-1 洞门凿除顺序图 洞门的内径为6.80米,凿除洞门上部时须搭设脚手架,脚手架的搭设需遵循以下几点: (1)搭设脚手架的钢管需要经过挑选,弯曲或破损严重不可使用; (2)搭设脚手架的架子工须持证上岗; (3)脚手架采用Φ48的钢管扣件式脚手架施工荷载不得大于200KN/㎡,脚手架的步距为180cm,排距为150cm,行距为150cm; (4)脚手架上搭设平台,按照40cm间距布设方木,方木上铺设竹胶板并用铁丝固定。 洞门凿除过程中需要注意的事项: (1)由于洞门直径过大,因此在洞门凿除时需要进行高空作业,进行高空作业时必须佩带安全带; (2)如果在洞门破除的过程中出现砂石塌落的现象应及时远离洞门并用喷射混凝土进行喷射对土体进行加固; (3)洞门凿除后要对洞门的净空进行测量保证盾构机能够顺利通行; (4)洞门凿除要将连续墙的钢筋清理干净以免对盾构机的运行产生影响。 1.3 接收托架的安装与固定 在盾构到达前,先在省博物馆站盾构井浇筑混凝土垫层,沿隧道线路中线安放并焊接固定托架(固定与预埋钢板上)。接收托架的构

小半径曲线钢箱梁架设施工技术总结

小半径曲线钢箱梁架设施工技术总结 【内容提要】:随着国家高速路网的逐步完善,跨越公路和铁路的互通立交桥也随之大量修建,尤其是山区布线困难地区极限小半径曲线桥梁跨越线路更为常见。跨线施工要求快速、安全、优质,因此对于现场的施工组织、技术和安全保障要求高,本文根据线路桥梁跨越陇海铁路小半径曲线桥梁架设施工实际,对施工中的技术、安全保障和现场组织进行了总结,施工中未发生安全、质量事故,现场组织规范合理,获得了业主及铁路部门的一致好评。 【关键词】:小半径曲线钢箱梁架设施工 1.工程概况: 连霍国道主干线天水至定西高速公路TD19合同段定西北互通立交桥位于甘肃省定西市安定区马家庄北侧,共有A、D、E匝道桥三座,跨径布置分别为:A-16×25+42(钢)+5×30m、D-4×30+45(钢)+2×20m、E-16.622+17+45(钢)+3×30m,桥梁全长965.622m,均采用钢砼叠合梁跨越陇海铁路。 钢箱梁采用工厂化制作,运至现场拼装成整体,采用DJ40m/160t架桥机架设就位后焊接梁间横向连接,使其连接成整体并在梁端箱体内填充钢纤维砼。然后在钢箱梁顶面及梁间铺设预制C50钢筋砼板,绑扎钢筋网,浇筑整体桥面砼。 本桥施工难点在于大跨度小曲线钢梁架设的桥机通过性、架设过程中的防倾覆及架设施工组织,对于多次跨越既有线短时间内架设小半径曲线桥梁施工具有一定的借鉴作用。 图1定西北互通立交桥位布置图

图2 钢箱梁横断面图 2.施工难点: 2.1施工时间紧 三次跨越陇海铁路,陇海铁路为国家铁路主干线,客、货运输繁忙,施工计划安排紧张,施工天窗时间短,每次施工天窗时间仅为40分钟,对施工现场组织要求高; 2.2施工难度大 D、E匝道桥面宽度8.5m,架桥机宽4.7m,桥梁整体位于半径为R-240m和-R160m的圆曲线上,架桥机的布设及过孔行走线路要求高,难度大;桥机最大通过梁宽为3.5m,钢箱梁最大总通过宽度为3.43m,曲线梁的运输、喂梁精度要求高,通过性差,架梁空间有限; 2.3 安全风险大 D、E匝道为曲线梁,半径小,最小曲线半径(E匝道内边梁)为156.25m,最大内矢距仍有1.43m,钢箱梁横向稳定性差,架设过程中容易发生侧翻,必须采取相应有效的技术保障措施; 3.施工准备: 3.1钢箱梁试拼与组装,组织业主、监理进行钢箱梁的验收评定工作,确保产品符合设计及规范要求; 3.2 DJ40/160架桥机进场,报地方技术监督局备案,拼装完成后请求技术监督局特检所予以验收,出具检验报告; 3.3根据现场工程实际编制施工技术方案和施工安全专项技术方案,组织专家会审,报监理工程师及业主审批,报兰州铁路局审批、备案; 3.4 复测桥梁支座垫石纵横向位置、高程、桥梁中线,标示出支座中心线、纵横轴线、钢箱梁边线、中线及端线,在已拼装完成的钢箱梁上标示出对应梁位钢箱梁的中线、边线。 3.5根据桥梁实际施工情况,在电脑上模拟架梁状态、计算出每一步骤所需时间,根据模拟结

浅谈小曲线半径盾构施工难点

浅谈小曲线半径盾构施工难点 [摘要]通过对小曲线半径盾构施工技术的研究,使盾构机能从软土到硬岩等各类不同地质条件下实现小曲率半径的急转弯施工,有效拓展盾构施工技术,丰富盾构隧道的线型设计与选用。 【关键字】盾构;小曲线;半径 1.引言 小曲率半径的盾构施工技术涵盖盾构机选型、管片设计、测量控制、盾构机的姿态与线型控制、管片配置与选用、管片姿态控制、管片保护、铰接装置与盾构千斤顶的组合选用、注浆控制技术、刀具超挖量的控制技术、掘进参数的选用与控制等一系列技术措施的有效组合。 2.施工难点 2.1盾构推力设定 一般情况下的纠偏和大曲率半径施工时,通常是采用千斤顶的偏选来使盾构机转弯或纠偏的,但对于急转弯段来说,千斤顶的过分偏选,将造成两个问题:①每个千斤顶能提供的推力约120t,若选用的千斤顶太少,无法提供盾构掘进所需的推力;②管片受力过于集中,会对管片产生破坏。 2.2防止盾构机被卡 盾构机在岩层中转弯,需要的超挖量是多少,如何保证开挖直径,必须预先计算清楚,并制定好相关措施,使盾构机在岩层中能顺利沿计划曲线转弯。如若盾构机在岩层中被卡住,将使盾构机的推力变得很大,甚至无法掘进。 2.3如何使盾构机在软弱地层中转弯 盾构机是一个刚体,在软土地层中掘进时,容易出现隧道整体平移现象,这使得盾构机在软弱土层中掘进时,须预先制定好相关措施,使盾构机能顺利沿计划曲线转弯。若盾构机在软弱土层中无法转弯,将使盾构机远离计划曲线,施工失败。 2.4盾构管片的破损问题 盾构机的推进是依靠管片提供推进反力,在一个循环过程中,特别在小半径曲线段上掘进时,盾构机的姿态变化较大,这就在推进油缸靴板与管片之间产生一个微小的侧向滑移量,导致管片局部受力过大而产生裂纹或崩裂。管片向外侧扭曲挤压地层,使地层和管片结构均受到复杂的影响,极易造成盾构与管片之间

盾构下穿建筑物专项施工方案word参考模板

盾构隧道下穿建筑物专项方案 一、编制依据 1、珠江三角洲城际快速轨道交通广州至佛山段工程18标南洲站~沥滘站区间平纵断面及洞门设计布置图; 2、珠江三角洲城际快速轨道交通广州至佛山段18标工程南洲站~中间风井建筑物调查报告; 3、珠江三角洲城际快速轨道交通广州至佛山段18标工程南洲站~中间风井区间盾构推进监测方案; 4、《地下铁道工程施工及验收规范》(GB 50299-1999)(2003年版); 5、《盾构法隧道施工与验收规范》(GB 50446-2008) 6、《建筑地基基础设计规范》(GB 50007-2011) 二、工程概况 2.1 工程简介 珠江三角洲城际快速轨道交通广州至佛山段南洲站~沥滘站区间(简称“南沥区间”)位于广州市海珠区。本次设计起点为南洲站,终点为沥滘站。 根据广东广佛轨道交通有限公司穗铁广佛建会【2012】68号会议纪要,盾构从南洲站始发,中间风井吊出;再根据拆迁情况而实施从沥滘站始发,中间风井吊出。起点为南洲客运站、向东南方延伸,途经南环立交、沥滘水道,进入沥滘村。区间沿线地形平坦,地面高程为7.87~10.32m,沥滘村沿线密布建筑物群。 盾构区间上方主要有南环高速公路等构筑物;沿线两边主要有南洲大酒店(A7)、大量居民房等建筑物。 工程由两台Φ6250海瑞克复合式土压平衡盾构机进行施工。先后施工上行线和下行线隧道,盾构从南洲站东端头下井始发,掘进至中间风井吊出。 本区间隧道由上、下行线两条隧道构成,区间最大覆土厚约32.2米,最小覆土9.5米。区间最小曲线半径为350米,线间距约12.5米。线路纵坡设计为双向坡,最大坡度为29‰。 本区间穿越海珠区南洲街三滘经济社、南洲二手车市场,穿越土层主要为<3-1>冲洪积层—砂层、<3-2>冲洪积层—砂层、<4-1>冲洪积层—粉质粘土、<4-2

盾构过小半径曲线段施工技术总结

盾构过小半径曲线段施工技术总结 刘丹林广州盾构地铁项目部 摘要:以杨珠盾构区间300m半径转弯为例,分析和探讨盾构掘进过小半径曲线段的技术要点和措施,代以对一年的盾构施工技术作个总结。 关键字:盾构施工土压平衡小半径曲线 盾构施工是以盾构机盾壳为临时支撑,对土体进行开挖,同时用钢筋混凝土管片对围岩进行衬砌的一种机械化隧道施工方法。杨珠盾构区间采用的是土压平衡盾构,起原理是:刀盘开挖切削下来的渣土进入土仓积累起来,形成土压作用在掌子面上,当渣土积累到一定的数量时,这个压力与开挖面的土压力、地下水压力平衡,从而使掌子面保持稳定而不坍塌。此时只需维持土仓的进土量与螺旋输送机从土仓的输出的渣土量相等,就能持续稳定掘进。 盾构施工有一个很重要的技术要求就是控制盾构掘进姿态符合符合设计线路,而小半径转弯更是盾构施工技术控制的一个难题。小半径转弯会对盾构掘进施工带来诸多的难题,下面就以杨珠盾构区间的300m半径转弯为例,分析一下小半径转弯的难点和解决措施。 一、工程概况 杨珠区间盾构掘进于里程YDK14+671.787~+881.969(右线约383环~523环)、 ZDK14+658.946~+869.129(左线约381环~521环)范围内通过300m小半径往杨箕站方向为右转弯的圆曲线。右线坡度为7.9‰(YDK14+671.787~+690.0)和25.675‰ (YDK14+690.0~881.969),左线坡度为7.901‰(ZDK14+658.946~+685.0)和26.071‰(ZDK14+685.0~+968.129),左右线往杨箕站方向均为下坡。盾构隧道上部及中部主要为<8>红层中等风化粉砂岩、泥质粉砂岩,Ⅳ类围岩和<9>红层微风化泥质粉砂岩、局部砾岩,Ⅴ类围岩;下部主要为<9>红层微风化泥质粉砂岩、局部砾岩,Ⅴ类围岩。隧道洞身围岩综合类别为Ⅳ类。其线路平面图如图1:

相关主题
文本预览
相关文档 最新文档