当前位置:文档之家› 振动测试综合练习题

振动测试综合练习题

振动测试综合练习题

《振动测试实验》练习题

1、振动传感器的作用?振动传感器主要有那些类型(加速度…)?哪种传感器

目前使用最广泛?

2、加速度传感器安装方式有哪些?说明不同安装方式的优缺点。

3、加速度传感器和力传感器的主要技术指标和定义?

4 、常用的激振器安装方式有哪两种?两种安装方式的分别有何讲究?用一个激

振器做模态试验时,激振位置如何选择?绘出激振器安装示意图,详述激振器安装过程和重点注意事项。

5、动态信号分析仪的基本组成?每个输入通道由哪些基本硬件组成?抗混滤波

器和程控放大器的作用?

6、测量一简单试件固有频率,试件的质量约为50克。现有20Kg激振器一台,

小力锤一把,有两种型号加速度传感器,传感器甲(质量4g),传感器乙(质量22g),请选择其中较合适的设备并说明理由。

7、用比较法校准一个加速度传感器,绘出校准系统原理图,叙述校准传感器频

率响应特性过程。

为200.8mv,若:标准加速度传感器的灵敏度为100.4mv/g,输出电压U

0被校传感器输出电压U

为66.2 mv,被校加速度传感器的灵敏度是多少?

1

8、关于模态试验

试验件:悬臂梁

模态参数识别方法:频域法

数据采集设备:动态信号分析仪(含ICP功能)

激振装置:激振器

1)、详细列出试验所需设备,绘出试件安装、仪器连接示意图,

2)、详述试验过程,

3)、频响函数检验方法及概念?

4)、模态试验结果的检验方法?

5)、你认为模态试验哪个环节最重要?为什么?

振动测试理论和方法综述

振动测试理论和方法综述 摘要:振动是工程技术和日常生活中常见的物理现象。在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。这些都离不开振动的测量。振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。最后分析了振动测试系统的几个发展趋势。 关键词:振动测试;振动测试系统;测试技术;激振测试系统 1.引言 振动问题广泛存在于生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试应运而生。 振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2.振动测试与分析系统(TDM)的发展

高层楼房震动测试报告

目录 第1章测试的目的 (1) 第 2 章高层建筑结构现场动力特性测试方法 (3) 2.1概述 (3) 2.2 影响高层建筑动力测试的环境因素 (3) 2.3高层建筑结构脉动测试测点分类 (3) 2.3.1水平振动测点 (3) 2.3.2扭转振动测点 (4) 2.4测点及测站布置原则 (4) 2.4.1找好中心位置布置平移振动测点。 (4) 2.4.2在建筑物的两侧布置扭转测点 (4) 2.5 传感器布置的方法 (5) 第3章西安建筑科技大学XX大楼现场动力测试 (6) 3.1 结构概况 (6) 3.2 测试目的 (6) 3.4 测试仪器设备 (6) 3.5 测试方案 (6) 3.6 脉动过程记录 (7) 3.7结果分析 (9) 3.8 结论 (11) 参考文献 (12)

第1章测试的目的 高层建筑结构的动力特性指它的自振频率、振型及阻尼比.虽然这些动力特性可以通过理论计算求得,但通过测试所得的动力特性仍然具有重要意义。主要表现在以下几个方面: ①.检验理论计算 理论计算方法求结构的自振频率时存在误差。于在理论计算过程中,要先确定计算简图和结构刚度,而实际结构往往是比较复杂的,计算简图都要经过简化,常填充墙等非结构构件并不记入结构刚度,而且结构的质量分布、材料实际性能、施工质量等都不能很准确的计算。因此,计算周期与实测周期相比,往往相差很多,据统计,大约前者为后者的1.5--3倍。这样,如果直接采用理论计算的自振周期计算等效地震荷载,往往使内力及位移偏小,设计的结构不够安全。因此,理论周期要用修正系数加以修正。现场实测可以得到建筑物建成后实际的动力特性,因此是准确可靠的。所得数据可以与理论计算数据进行对照比较,验证理论计算,也可为设计类似的对于超高层建筑提供经验及依据。 ②.验证经验公式 通过实测手段对各种不同类型的建筑物进行测试以后,可归纳总结出结构周期的规律,得到计算结构振动周期的经验公式。在估算结构动力特性及估算地震作用时采用经验公式可快速得到结果,方便实用。由于实测周期大都采用脉动试验的方法得到,是反映结构在微小变形下的动力特性,得的周期都比较短,如果激振力加大,结构周期会加长。在地震作用下,随着地震烈度不同,房屋会有不同程度的开裂破坏,刚度降低,自振周期会变长。因此,完全按照脉动测试的周期来确定同类型结构的周期,将使计算等效地震力加大,设计偏于保守。所以由脉动方法得到的实测周期需要乘以修正系数,再计算等效地震力。在大量测试工作和积累了丰富资料的基础上,这个修正系数的大小视结构类型、填充墙的多少而定,大约在1.1-1.5之间。在给出经验公式时,计入这一修正系数,这样既可以简化计算,又与实际周期较为接近。 ③.为结构安全性评估及损伤识别提供依据 建筑结构的质量问题不容忽视,它是直接关系着千家万户的生命财产安全和安居乐业的大事,建筑结构的质量状态评估日益受到人们的重视。传统的经验性的评估方法存在许多缺陷和不足,静力检测结构的缺陷也有许多局限性。动力检测应用于整体结构的质量评估受到国内外学者的广泛关注。近10年来,国内外学者一直在寻找一种能适用于复杂结构整体质量评估的方法。目前,到

《机械振动》单元测试题含答案(1)

《机械振动》单元测试题含答案(1) 一、机械振动选择题 1.图(甲)所示为以O点为平衡位置、在A、B两点间做简谐运动的弹簧振子,图(乙)为这个弹簧振子的振动图象,由图可知下列说法中正确的是( ) A.在t=0.2s时,弹簧振子可能运动到B位置 B.在t=0.1s与t=0.3s两个时刻,弹簧振子的速度相同 C.从t=0到t=0.2s的时间内,弹簧振子的动能持续地增加 D.在t=0.2s与t=0.6s两个时刻,弹簧振子的加速度相同 2.如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半.则碰撞后 A 5 6 T B 6 5 T C.摆球最高点与最低点的高度差为0.3h D.摆球最高点与最低点的高度差为0.25h 3.下列说法中不正确的是( ) A.将单摆从地球赤道移到南(北)极,振动频率将变大 B.将单摆从地面移至距地面高度为地球半径的高度时,则其振动周期将变到原来的2倍C.将单摆移至绕地球运转的人造卫星中,其振动频率将不变 D.在摆角很小的情况下,将单摆的振幅增大或减小,单摆的振动周期保持不变 4.甲、乙两单摆的振动图像如图所示,由图像可知

A .甲、乙两单摆的周期之比是3:2 B .甲、乙两单摆的摆长之比是2:3 C .t b 时刻甲、乙两摆球的速度相同 D .t a 时刻甲、乙两单摆的摆角不等 5.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l ,引力常量为G ,地球质量为M ,摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为( ) A .T =2πr GM l B .T =2πr l GM C .T = 2πGM r l D .T =2πl r GM 6.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ, A .若t 时刻和()t t +?时刻物块受到的摩擦力大小相等,方向相反,则t ?一定等于2 T 的整数倍 B .若2 T t ?= ,则在t 时刻和()t t +?时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力 D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于 m kx m M + 7.如图所示是在同一地点甲乙两个单摆的振动图像,下列说法正确的是 A .甲乙两个单摆的振幅之比是1:3

振动测试与数据处理

振动 振动是一种机械振荡。他是指机械或结构系统在其平衡位置附近的往复运动,这种振荡的量值是确定机械系统运动状态的一个参数. 加速度导纳 加速度导纳是正弦激励时,加速度与力的复数比,其中包含着加速度和力之间的相位角.加速度导纳有时称为“惯量”. 加速度阻抗 加速度阻抗是正弦激振时,力与加速度的复数比,其中包含着力和加速度之间的相位角.加速度阻抗有时称为“动态质量”或“视在质量”. 电荷变换器 电荷变换器是一个可提供与瞬时输入电荷成正比的瞬时输出电压的电子线路. 有阻尼固有频率 有阻尼固有频率是有阻尼线性系统自由振动的频率.有阻尼系统的自由振动,尽管相邻周期的振幅逐步减小,但在零点(同向的)间的时间间隔保持不变的少数情况下,仍可看成是周期性的.振动频率是上述时间间隔的倒数(见“固有频率”和“无阻尼固有频率”). 阻尼比 具有粘性阻尼的传感器,其阻尼比等于实际阻尼系数与临界阻尼系数之比. 分贝 分贝是用来表示一个量相对于某个规定的参考值的大小的一种单位,它用这两个量之比的以Iog为底的对数表示. 位移导纳 位移导纳是正弦激振时,位移与力的复数比,其中包含着位移与力之间的相位角.位移导纳有时称为“动柔度”. 位移阻抗 位移阻抗是正弦激振时,力与位移的复数比,其中包含着力与位移之间的相位角.他移阻抗有时称为“动刚度”。 谐波 谐波是一个正弦波,其频率等于相应的周期波的频率的整数倍. 固有频率 固有频率是单自由度系统作自由振动时的频率.对多自由度系统来说,固有频率指的是它的正则振型的频率. 压电式传感器 压电式传感器是利用某种非对称晶体的特性来工作的传感器,这种晶体的材料在变形时会产生电荷. 压电现象 压电现象是某些非对称晶体材料受到适当方向的攻变时,产生与应变成正比的电极化作用的现象;逆压电现象是某些非对称晶体材料受到外部电场作用时,产生与电场成正比的机械应变的现象 压阻式传感器 压阻式传感器的工作原理基于半导体或其他晶体材料的电阻率随施加于其上的应力而变化这一特性. 相位角 一个正弦振动的相位角是该振动相对于某一作为参照的正弦振动的相位超前(或滞后).

《机械振动》单元测试题含答案(1)

《机械振动》单元测试题含答案(1) 一、机械振动 选择题 1.如图所示为某物体系统做受迫振动的振幅A 随驱动力频率f 的变化关系图,则下列说法正确的是 A .物体系统的固有频率为f 0 B .当驱动力频率为f 0时,物体系统会发生共振现象 C .物体系统振动的频率由驱动力频率和物体系统的固有频率共同决定 D .驱动力频率越大,物体系统的振幅越大 2.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m 的A 、B 两物体,平衡后剪断A 、B 间细线,此后A 将做简谐运动。已知弹簧的劲度系数为k ,则下列说法中正确的是( ) A .细线剪断瞬间A 的加速度为0 B .A 运动到最高点时弹簧弹力为mg C .A 运动到最高点时,A 的加速度为g D .A 振动的振幅为 2mg k 3.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ, A .若t 时刻和()t t +?时刻物块受到的摩擦力大小相等,方向相反,则t ?一定等于2 T 的整数倍 B .若2 T t ?= ,则在t 时刻和()t t +?时刻弹簧的长度一定相同

C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力 D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于 m kx m M + 4.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A 、B 、C 、D ,用刻度尺测出A 、B 间的距离为x 1;C 、D 间的距离为x 2。已知单摆的摆长为L ,重力加速度为g ,则此次实验中测得的物体的加速度为( ) A . 212 ()x x g L π- B . 212 ()2x x g L π- C . 212 ()4x x g L π- D . 212 ()8x x g L π- 5.如图所示是扬声器纸盆中心做简谐运动的振动图象,下列判断正确的是 A .t =2×10-3s 时刻纸盆中心的速度最大 B .t =3×10-3s 时刻纸盆中心的加速度最大 C .在0?l×10-3s 之间纸盆中心的速度方向与加速度方向相同 D .纸盆中心做简谐运动的方程为x =1.5×10-4cos50πt (m ) 6.在做“用单摆测定重力加速度”的实验中,有人提出以下几点建议,可行的是( ) A .适当加长摆线 B .质量相同,体积不同的摆球,应选用体积较大的 C .单摆偏离平衡位置的角度要适当大一些 D .当单摆经过平衡位置时开始计时,经过一次全振动后停止计时,用此时间间隔作为单摆振动的周期 7.如图所示,弹簧振子在A 、B 之间做简谐运动.以平衡位置O 为原点,建立Ox 轴.向右为x 轴的正方向.若振子位于B 点时开始计时,则其振动图像为( )

振动测试作业报告

振动测试技术期末总结 学号: 班级:建筑与土木工程(1504班) 姓名:杨允宁2016年4月27日

目录 1 振动测试概述 (1) 1.1 振动的分类: (1) 1.1.1 按自由度分类: (1) 1.1.2 按激励类型分类: (1) 1.1.3 振动规律分类: (1) 1.1.4 按振动方程分类: (1) 1.2 振动基本参量表示方法: (2) 1.2.1 振幅(u): 2 1.2.2 周期(T)/频率(f): (2) 1.2.3 相位(:): (2) 1.2.4 临界阻尼(C cr) (2) 1.2.5 结构的阻尼系数(C): (2) 1.2.6 对数衰减率(3): (3) 1.3 振动测试仪器分类及配套使用: (3) 1.3.1 振动测试仪器分类 (3) 1.3.2 振动测试仪器配套使用: (4) 1.4 窗函数的分类及用途 (5) 1.4.1 矩形窗(Rectangular窗) : (5) 1.4.2 三角窗(Bartlett 或Fejer 窗) : 5 1.4.3 汉宁窗(Hanning 窗): 5 1.4.4 海明窗(Hamming 窗) (6) 1.4.5 高斯窗(Gauss 窗) (6) 1.5 信号采集及分析过程中出现的问题及解决方法 (7) 1.5.1 信号采集和分析过程中出现的问题 (7) 1.5.2 解决方法 (7) 2 惯性式速度型与加速度型传感器 (8) 2.1 惯性式传感器的分类: (8) 2.2 常用加速度计传感器的工作原理及力学模型:8 2.2.1 电动式(磁电式)传感器: (8) 2.2.2 压电式传感器: (9) 2.3 非惯性传感器: (11) 2.3.1 电涡流式传感器: (11) 2.3.2 参量型传感器: (11) 3 振动特性参数的常用量测方法 (11) 3.1 简谐振动频率的量测: (12) 3.1.1 李萨(Lissajous)如图形比较法: (12) 3.1.2 录波比较法: (12) 3.1.3 直接测频法: (12) 3.2 机械系统固有频率的测量 (13) 3.2.1 自由振动法: (13) 3.2.2 强迫振动法: (13)

《机械振动》单元测试题(含答案)

《机械振动》单元测试题(含答案) 一、机械振动选择题 1.如图所示,一个弹簧振子在A、B两点之间做简谐运动,其中O为平衡位置,某时刻物体正经过C点向上运动,速度大小为v c,已知OC=a,物体的质量为M,振动周期为T,则从此时刻开始的半个周期内 A.重力做功2mga B.重力冲量为mgT 2 C.回复力做功为零 D.回复力的冲量为0 2.下列说法中不正确的是( ) A.将单摆从地球赤道移到南(北)极,振动频率将变大 B.将单摆从地面移至距地面高度为地球半径的高度时,则其振动周期将变到原来的2倍C.将单摆移至绕地球运转的人造卫星中,其振动频率将不变 D.在摆角很小的情况下,将单摆的振幅增大或减小,单摆的振动周期保持不变 3.如图所示,甲、乙两物块在两根相同的弹簧和一根张紧的细线作用下静止在光滑水平面上,已知甲的质量小于乙的质量.当细线突然断开斤两物块都开始做简谐运动,在运动过程中() A.甲的最大速度大于乙的最大速度 B.甲的最大速度小于乙的最大速度 C.甲的振幅大于乙的振幅 D.甲的振幅小于乙的振幅 4.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A、B、C、D,用刻度尺测出A、B间的距离为x1;C、D间的距离为x2。已知单摆的摆长为L,重力加速度为g,则此次实验中测得的物体的加速度为()

A . 212()x x g L π- B . 212()2x x g L π- C . 212()4x x g L π- D . 212()8x x g L π- 5.如图所示是扬声器纸盆中心做简谐运动的振动图象,下列判断正确的是 A .t =2×10-3s 时刻纸盆中心的速度最大 B .t =3×10-3s 时刻纸盆中心的加速度最大 C .在0?l×10-3s 之间纸盆中心的速度方向与加速度方向相同 D .纸盆中心做简谐运动的方程为x =1.5×10-4cos50πt (m ) 6.如图甲所示,一个单摆做小角度摆动,从某次摆球由左向右通过平衡位置时开始计时,相对平衡位置的位移x 随时间t 变化的图象如图乙所示.不计空气阻力,g 取10m/s 2.对于这个单摆的振动过程,下列说法中不正确的是( ) A .单摆的位移x 随时间t 变化的关系式为8sin(π)cm x t = B .单摆的摆长约为1.0m C .从 2.5s t =到 3.0s t =的过程中,摆球的重力势能逐渐增大 D .从 2.5s t =到 3.0s t =的过程中,摆球所受回复力逐渐减小 7.如图所示为某物体系统做受迫振动的振幅A 随驱动力频率f 的变化关系图,则下列说法正确的是 A .物体系统的固有频率为f 0

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

随机振动试验报告

随机振动试验报告 高等桥梁结构试验报告 讲课老师: 张启伟(教授) 姓名: 史先飞 学号: 1232627 试验报告 1 试验目的 1.过试验进一步加深对结构模态分析理论知识的理解; 2.熟悉随机振动试验常用仪器的性能与操作方法; 3.复习和巩固随机振动数据测量和分析中有关基本概念; 4.掌握通过多点激振、单点拾振的方法,利用DASP2005软件进行模态分析的基本操作步骤。

2 试验仪器和设备 1. ZJY-601振动与控制教学实验仪系统(ZJY-601A型振动教学实验仪、激励锤、YJ9-A型压电型加速度传感器等)。 2. DASP 16通道接口箱。 3. 装有“DASP2005智能数据采集和信号分析系统”软件的PC机。 4. 有关设备之间的联接电缆。 3 试验原理 3.1模态叠加原理 N自由度线性振动系统的运动微分方程是一组耦合的方程组: 引入模态矩阵Φ和模态坐标(广义坐标或主坐标)q,使X= Φq。 如果阻尼矩阵能对角化,方程组即可解耦: 解耦后的第i个方程为: 可见,采用固有振型描述振动的模态坐标后,N自由度线性振动系统的振动响应可以表示为N阶模态响应的叠加。 3.2实模态理论 实模态理论建立在无阻尼的假设基础上。在实模态理论中,模态频率就是系统的无阻 ,尼模态固有频率错误~未找到引用源。;而固有振型矩阵中的各元素都是实数,它们之间i 的相位差是0?或180?。 系统在P点激励,l点测量的频响函数为:

K,,式中,称为频率比,,为模态固有频率。当,则: ,,,,,/,,,iiiiiMi 取频响函数矩阵的一列或一行,如第P列,就可确定振动系统的全部动力特性(模态参数)。 3.3伪实模态理论 某些有阻尼振动系统有时会出现与实模态一样的实数振型,而非复数振型,但其模态 2,,,,,1固有频率为,具有这种性质的振动系统的模态称为伪实模态。伪实模态理diii 论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化模态称为伪实模态。在伪实模态下,各测点的相位差都是0?或180?。 伪实模态理论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化的情况。一般情况下,阻尼矩阵对角化的充要条件为: 上式也是有阻尼振动系统方程解耦的充要条件。 总之,H(ω)建立了模态参数与频响函数的关系。因此,利用实验测出的H(ω) 值,即可计算出系统的模态参数。根据频响函数的互易定理及模态理论,只需 H(ω)矩阵的一列(或一行)即可求出全部模态参数。

振动测试和分析技术综述分析解析

振动测试和分析技术综述 黄盼 (西华大学,成都四川 610039) 摘要:振动测试和分析对结构和系统动态特性分析及其故障诊断是一种有效的手段。综述了当前振动测试和分析技术,包括振动测试与信号分析的国内外发展概况、振动信号数据采集技术、振动测试技术、以及振动测试与信号分析的工程应用,最后对振动测试与分析技术的未来发展方向进行了展望。 关键词:振动测试; 信号分析; 动态特性; 综述 Summary of Vibration Testing and Analysis HuangPan ( Xihua University,Chengdu 610039,China) Abstract: Vibration testing and analysis is an effective tool in analyzing structure and system dynamic characteristic and detecting the failures of structures,systems and facilities. The present paper reviews the current vibration testing and analysis techniques,including the development of vibration measurement and analysis of domestic and foreign,vibration signal data acquisition,vibration testing technology ,vibration measurement and analysis in engineering application. Finally,the future development in the field of vibration testing and analysis is predicted. Key words: vibration testing; signal analysis; dynamic characteristic;overview

《机械振动》单元测试题含答案

《机械振动》单元测试题含答案 一、机械振动 选择题 1.如图(甲)所示,小球在内壁光滑的固定半圆形轨道最低点附近做小角度振动,其振动图象如图(乙)所示,以下说法正确的是( ) A .t 1时刻小球速度为零,轨道对它的支持力最小 B .t 2时刻小球速度最大,轨道对它的支持力最小 C .t 3时刻小球速度为零,轨道对它的支持力最大 D .t 4时刻小球速度 为零,轨道对它的支持力最大 2.如图所示为甲、乙两等质量的质点做简谐运动的图像,以下说法正确的是() A .甲、乙的振幅各为 2 m 和 1 m B .若甲、乙为两个弹簧振子,则所受回复力最大值之比为F 甲∶F 乙=2∶1 C .乙振动的表达式为x= sin 4 π t (cm ) D .t =2s 时,甲的速度为零,乙的加速度达到最大值 3.如图所示,弹簧的一端固定,另一端与质量为2m 的物体B 相连,质量为1m 的物体A 放在B 上,212m m =.A 、B 两物体一起在光滑水平面上的N 、N '之间做简谐运动,运动过程中A 、B 之间无相对运动,O 是平衡位置.已知当两物体运动到N '时,弹簧的弹性势能为p E ,则它们由N '运动到O 的过程中,摩擦力对A 所做的功等于( ) A .p E B . 12 p E C .13 p E D . 14 p E 4.如图所示,将小球甲、乙、丙(都可视为质点)分别从A 、B 、C 三点由静止同时释放,最后都到达竖直面内圆弧的最低点D ,其中甲是从圆心A 出发做自由落体运动,乙沿弦轨道从一端B 到达最低点D ,丙沿圆弧轨道从C 点运动到D ,且C 点很靠近D 点,如果忽略一切摩擦阻力,那么下列判断正确的是( )

选修1高中物理 《机械振动》单元测试题含答案

选修1高中物理《机械振动》单元测试题含答案 一、机械振动选择题 1.甲、乙两弹簧振子,振动图象如图所示,则可知() A.甲的速度为零时,乙的速度最大 B.甲的加速度最小时,乙的速度最小 C.任一时刻两个振子受到的回复力都不相同 D.两个振子的振动频率之比f甲:f乙=1:2 E.两个振子的振幅之比为A甲:A乙=2:1 2.如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半.则碰撞后 A 5 6 T B 6 5 T C.摆球最高点与最低点的高度差为0.3h D.摆球最高点与最低点的高度差为0.25h 3.某同学用单摆测当地的重力加速度.他测出了摆线长度L和摆动周期T,如图(a)所示.通过改变悬线长度L,测出对应的摆动周期T,获得多组T与L,再以T2为纵轴、L为横轴画出函数关系图像如图(b)所示.由此种方法得到的重力加速度值与测实际摆长得到的重力加速度值相比会()

A .偏大 B .偏小 C .一样 D .都有可能 4.如图所示,甲、乙两物块在两根相同的弹簧和一根张紧的细线作用下静止在光滑水平面上,已知甲的质量小于乙的质量.当细线突然断开斤两物块都开始做简谐运动,在运动过程中( ) A .甲的最大速度大于乙的最大速度 B .甲的最大速度小于乙的最大速度 C .甲的振幅大于乙的振幅 D .甲的振幅小于乙的振幅 5.如图所示为甲、乙两等质量的质点做简谐运动的图像,以下说法正确的是() A .甲、乙的振幅各为 2 m 和 1 m B .若甲、乙为两个弹簧振子,则所受回复力最大值之比为F 甲∶F 乙=2∶1 C .乙振动的表达式为x= sin 4 t (cm ) D .t =2s 时,甲的速度为零,乙的加速度达到最大值 6.下列叙述中符合物理学史实的是( ) A .伽利略发现了单摆的周期公式 B .奥斯特发现了电流的磁效应 C .库仑通过扭秤实验得出了万有引力定律 D .牛顿通过斜面理想实验得出了维持运动不需要力的结论 7.如图所示,弹簧下面挂一质量为m 的物体,物体在竖直方向上做振幅为A 的简谐运动,当物体振动到最高点时,弹簧正好处于原长,弹簧在弹性限度内,则物体在振动过程中 A .弹簧的弹性势能和物体动能总和不变 B .物体在最低点时的加速度大小应为2g C .物体在最低点时所受弹簧的弹力大小应为mg

机械振动实验报告

《机械振动基础》实验报告 (2015年春季学期) 姓名 学号 班级 专业机械设计制造及其自动化报告提交日期2015.05.07 哈尔滨工业大学

报告要求 1.实验报告统一用该模板撰写,必须包含以下内容: (1)实验名称 (2)实验器材 (3)实验原理 (4)实验过程 (5)实验结果及分析 (6)认识体会、意见与建议等 2.正文格式:四号字体,行距为1.25倍行距; 3.用A4纸单面打印;左侧装订; 4.报告需同时提交打印稿和电子文档进行存档,电子文档由班长收 齐,统一发送至:liuyingxiang868@https://www.doczj.com/doc/6e8053195.html,。 5.此页不得删除。 评语: 教师签名: 年月日

实验一报告正文 一、实验名称:机械振动的压电传感器测量及分析 二、实验器材 1、机械振动综台实验装置(压电悬臂梁) 一套 2、激振器一套 3、加速度传感器一只 4、电荷放大器一台 5、信号发生器一台 6、示波器一台 7、电脑一台 8、NI9215数据采集测试软件一套 9、NI9215数据采集卡一套 三、实验原理 信号发生器发出简谐振动信号,经过功率放大器放大,将简谐激励信号施加到电磁激振器上,电磁激振器振动杆以简谐振动激励安装在激振器上的压电悬臂梁。压电悬臂梁弯曲产生电流显示在示波器上,可以观测悬臂梁的振动情况;另一方面,加速度传感器安装在电磁激振器振动杆上,将加速度传感器与电荷放大器连接,将电荷放大器与数据采集系统连接,并将数据采集系统连接到计算机(PC机)上,操作NI9215数据采集测试软件,得到机械系统的振动响应变化曲线,可以观测电磁激振器的振动信号,并与信号发生器的激励信号作对比。实验中的YD64-310型压电式加速度计测得的加速度信号由DHF-2型电荷放大器后转变为一个电压信号。电荷放大器的内部等效电路如图1所示。 q

振动测试技术模态实验报告

研究生课程论文(2016-2017学年第二学期) 振动测试技术 研究生:

模态试验大作业 0 模态试验概述 模态试验(modal test)又称试验模态分析。为确定线性振动系统的模态参数所进行的振动试验。模态参数是在频率域中对振动系统固有特性的一种描述,一般指的是系统的固有频率、阻尼比、振型和模态质量等。 模态试验中通过对给定激励的系统进行测量,得到响应信号,再应用模态参数辨识方法得到系统的模态参数。由于振动在机械中的应用非常普遍。振动信号中包含着机械及结构的内在特性和运行状况的信息。振动的性质体现着机械运行的品质,如车辆、航空航天设备等运载工具的安全性与舒适性;也反映出诸如桥梁、水坝以及其它大型结构的承载情况、寿命等。同时,振动信号的发生和提取也相对容易因此,振动测试与分析已成为最常用、最基本的试验手段之一。 模态分析及参数识别是研究复杂机械和工程结构振动的重要方法,通常需要通过模态实验获得结构的模态参数即固有频率、阻尼比和振型。模态实验的方法可以分为两大类:一类是经典的纯模态实验方法,该方法是通过多个激振器对结构进行激励,当激振频率等于结构的某阶固有频率,激振力抵消机构内部阻尼力时,结构处于共振状态,这是一种物理分离模态的方法。这种技术要求配备复杂昂贵的仪器设备,测试周期也比较长;另一类是数学上分离模态的方法,最常见的方法是对结构施加激励,测量系统频率响应函数矩阵,然后再进行模态参数的识别。 为获得系统动态特性,常需要测量系统频响函数。目前频响函数测试技术可以分为单点激励单点测量( SISO)、单点激励多点测量( SIMO) 、多点激励多点测量( MIMO)等。单点激励一般适用于较小结构的频响函数测量,多点激励适用于大型复杂机构,如机体、船体或大型车辆机构等。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分。瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分,瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。 振动信号的分析和处理技术一般可分为时域分析、频域分析、时频域分析和时间序列建模分析等。这些分析处理技术从不同的角度对信号进行观察和分析,为提取与设备运行状态有关的特征信息提供了不同的手段。信号的时域分析包括时域统计分析、时域波形分析和时域相关分析。对评价设备运行状态和

机械振动单元测试题

机械振动单元测试题 一、机械振动选择题 1.如图所示,PQ为—竖直弹簧振子振动路径上的两点,振子经过P点时的加速度大小为6m/s2,方向指向Q点;当振子经过Q点时,加速度的大小为8m/s2,方向指向P点,若PQ之间的距离为14cm,已知振子的质量为lkg,则以下说法正确的是() A.振子经过P点时所受的合力比经过Q点时所受的合力大 B.该弹簧振子的平衡位置在P点正下方7cm处 C.振子经过P点时的速度比经过Q点时的速度大 D.该弹簧振子的振幅一定为8cm 2.如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半.则碰撞后 A 5 6 T B 6 5 T C.摆球最高点与最低点的高度差为0.3h D.摆球最高点与最低点的高度差为0.25h 3.甲、乙两单摆的振动图像如图所示,由图像可知

A .甲、乙两单摆的周期之比是3:2 B .甲、乙两单摆的摆长之比是2:3 C .t b 时刻甲、乙两摆球的速度相同 D .t a 时刻甲、乙两单摆的摆角不等 4.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l ,引力常量为G ,地球质量为M ,摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为( ) A .T =2πr GM l B .T =2πr l GM C .T = 2πGM r l D .T =2πl r GM 5.如图所示,弹簧的一端固定,另一端与质量为2m 的物体B 相连,质量为1m 的物体A 放在B 上,212m m =.A 、B 两物体一起在光滑水平面上的N 、N '之间做简谐运动,运动过程中A 、B 之间无相对运动,O 是平衡位置.已知当两物体运动到N '时,弹簧的弹性势能为p E ,则它们由N '运动到O 的过程中,摩擦力对A 所做的功等于( ) A .p E B . 1 2 p E C .13 p E D . 14 p E 6.如图所示,弹簧下面挂一质量为m 的物体,物体在竖直方向上做振幅为A 的简谐运动,当物体振动到最高点时,弹簧正好处于原长,弹簧在弹性限度内,则物体在振动过程中 A .弹簧的弹性势能和物体动能总和不变 B .物体在最低点时的加速度大小应为2g C .物体在最低点时所受弹簧的弹力大小应为mg D .弹簧的最大弹性势能等于2mgA 7.如图所示的弹簧振子在A 、B 之间做简谐运动,O 为平衡位置,则下列说法不正确的是( )

振动实验报告..

振动与控制系列实验 姓名:李方立 学号:201520000111 电子科技大学机械电子工程学院

实验1 简支梁强迫振动幅频特性和阻尼的测量 一、实验目的 1、学会测量单自由度系统强迫振动的幅频特性曲线。 2、学会根据幅频特性曲线确定系统的固有频率f 0和阻尼比。 二、实验装置框图 图3.1表示实验装置的框图 图3-1 实验装置框图 K C X 图3-2 单自由度系统力学模型 三、实验原理 单自由度系统的力学模型如图3-2所示。在正弦激振力的作用下系统作简谐强迫振动, 设激振力F 的幅值B 、圆频率ωo(频率f=ω/2π),系统的运动微分方程式为: 扫频信号源 动态分析仪 计算机系统及分析软件 打印机或 绘图仪 简支梁 振动传感器 激振器 力传感器 质量块 M

或 M F x dt dx dt x d M F x dt dx n dt x d F Kx dt dx C dt x d M /2/222 22 2 222=++=++=++ωξωω (3-1) 式中:ω—系统固有圆频率 ω =K/M n ---衰减系数 2n=C/M ξ---相对阻尼系数 ξ=n/ω F ——激振力 )2sin(sin 0ft B t B F πω== 方程①的特解,即强迫振动为: ) 2sin()sin(0?π?ω-=-=f A A x (3-2) 式中:A ——强迫振动振幅 ? --初相位 2 0222024)(/ωωωn M B A +-= (3-3) 式(3-3)叫做系统的幅频特性。将式(3-3)所表示的振动幅值与激振频率的关系用图形表示,称为幅频特性曲线(如图3-3所示): 3-2 单自由度系统力学模型 3-3 单自由度系统振动的幅频特性曲线 图3-3中,Amax 为系统共振时的振幅;f 0为系统固有频率,1f 、2f 为半功率点频率。 振幅为Amax 时的频率叫共振频率f 0。在有阻尼的情况下,共振频率为: 2 21ξ-=f f a (3-4) 当阻尼较小时,0f f a =故以固有频率0f 作为共振频率a f 。在小阻尼情况下可得 01 22f f f -= ξ (3-5) 1f 、2f 的确定如图3-3所示: M X C K

《机械振动》单元测试题

《机械振动》单元测试题 时间:90分钟 总分:100分 姓名 分数 、选择题(每小题3分,共30分) 弹簧振子作简谐运动,t 1时刻速度为V,t 2时刻也为v,且方向相同。 A .可能大于四分之一周期 B .可能小于四分之一周期 C .一定小于二分之一周期 D .可能等于二分之一周期 一弹簧振子的振幅为 A,下列说法正确的是 A .在T/4时间内,振子发生的位移一定是 A,路程也是A B .在T/4时间内,振子发生的位移不可能是零,路程不可能为 C .在T/2时间内,振子发生的位移- -定是 -定是 D .在T 时间内,振子发生的位移一定为零,路程一定是 某单摆的振 动图象如右图所示,这个单摆的最大偏角最接近 A . 2° B . 3° C . 4° D . 5° 如图所示,置于地面上的一单摆在小振幅条件下摆动的周期为 A .单摆摆动的过程,绳子的拉力始终大于摆球的重力 B .单摆摆动的过程,绳子的拉力始终小于摆球的重力 C .将该单摆悬挂在匀减速下降的升降机中,其摆动周期 已知 (t 2-t l )小于周期「则(t 2-t l ) 2A 4A T °。 T < T o F 列说法中正确的是 D .将该单摆置于高空中相对于地球静止的气球中,其摆动周期 T > T 0 一物体在某行星表明所受万有引力是在地球表面时的 16,在地球上走得很准的摆钟搬到该行星上, 分针走一圈所用时间实际是 A . 1/4h B . 1/2h C . 3h D . 4h 如图所示,固定曲面AC 是一段半径为4.0米的光滑圆弧形成的,圆弧与水平方向相切于 A 点,AB=10cm , V 1 6. 现将一小物体先后从斜面顶端 C 和斜面圆弧部分中点 D 处由静止释放,到达斜曲面低端时速度分别为 和V 2,所需时间为t l 和t 2,以下说法正确的是: A . V 1 > V 2 , t l = t 2 B . v i > V 2 , t l > t 2 C . V i < V 2 , t l = t 2 D . V i < V 2 , t l > t 2 7 ?如图所示,一轻弹簧与质量为 m 的物体组成的弹簧振子 为平衡位置,C 为AO 的中点,已知OC=h,振子的周期为T,某时刻物体恰好经过 刻开始的半个周期内,下列说法错误的是 A .重力做功2mgh B .重力的冲量大小为 mgT/2 C .回复力做功为零 D .回复力的冲量为零 8.在张紧的绳子上挂了 ,O C 点并向上运动,则从该时 ------ A C ~rl - O A . b 摆发生振动其余摆均不动 a 、 b 、 c 、 角不超过10° )则下列说法正确的 是 C .所有的摆均以相同摆角振动 9.原长为30cm 的轻弹簧竖立于地面,下端与地面固定,质量为 m=O 」kg 的物体放到弹簧顶部,物体静止 平衡时弹簧长为26cm .如果物体从距地面130cm 处自由下落到弹簧上,当物体压缩弹簧到距地面 22cm 时, 不计空气阻力,取g=10m/s 2,重物在地面时重力势能为零,则

(完整版)机械振动单元测试题(1)

(完整版)机械振动单元测试题(1) 一、机械振动选择题 1.甲、乙两弹簧振子,振动图象如图所示,则可知() A.甲的速度为零时,乙的速度最大 B.甲的加速度最小时,乙的速度最小 C.任一时刻两个振子受到的回复力都不相同 D.两个振子的振动频率之比f甲:f乙=1:2 E.两个振子的振幅之比为A甲:A乙=2:1 2.甲、乙两单摆的振动图像如图所示,由图像可知 A.甲、乙两单摆的周期之比是3:2 B.甲、乙两单摆的摆长之比是2:3 C.t b时刻甲、乙两摆球的速度相同D.t a时刻甲、乙两单摆的摆角不等 3.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m的A、B两物体,平衡后剪断A、B间细线,此后A将做简谐运动。已知弹簧的劲度系数为k,则下列说法中正确的是() A.细线剪断瞬间A的加速度为0 B.A运动到最高点时弹簧弹力为mg C.A运动到最高点时,A的加速度为g D.A振动的振幅为2mg k 4.如图所示,质量为m的物块放置在质量为M的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T,振动过程中m、M之间无相对运动,设弹簧的劲度系数为k、物块和木板之间滑动摩擦因数为μ,

A .若t 时刻和()t t +?时刻物块受到的摩擦力大小相等,方向相反,则t ?一定等于2 T 的整数倍 B .若2 T t ?= ,则在t 时刻和()t t +?时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力 D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于 m kx m M + 5.如图所示,固定的光滑圆弧形轨道半径R =0.2m ,B 是轨道的最低点,在轨道上的A 点(弧AB 所对的圆心角小于10°)和轨道的圆心O 处各有一可视为质点的静止小球,若将它们同时由静止开始释放,则( ) A .两小球同时到达 B 点 B .A 点释放的小球先到达B 点 C .O 点释放的小球先到达B 点 D .不能确定 6.如图所示,水平方向的弹簧振子振动过程中,振子先后经过a 、b 两点时的速度相同,且从a 到b 历时0.2s ,从b 再回到a 的最短时间为0.4s ,aO bO =,c 、d 为振子最大位移处,则该振子的振动频率为( ) A .1Hz B .1.25Hz C .2Hz D .2.5Hz 7.如右图甲所示,水平的光滑杆上有一弹簧振子,振子以O 点为平衡位置,在a 、b 两点之间做简谐运动,其振动图象如图乙所示.由振动图象可以得知( ) A .振子的振动周期等于t 1 B .在t =0时刻,振子的位置在a 点

相关主题
文本预览
相关文档 最新文档