当前位置:文档之家› 三种矢量控制的比较

三种矢量控制的比较

三种矢量控制的比较
三种矢量控制的比较

磁场定向矢量控制技术按照获得磁链的不同方式大致可分为两种:直接和间接方式。直接方式的实现依赖于直接测量或对转子,定子,气隙磁链矢量的幅值和位置的估算。传统的直接矢量控制策略使用检测线圈,具有抽头的定子绕组或霍尔效应传感器对磁通进行检测,但由于电机结构或散热的需要就会产生一定的限制,但随着目前高速DSP的不断面世,在一个PWM周期内,实现负载的控制及磁链估算应成为可能,所以近年来基于磁链观测器的直接方式由重新得到了人们的重视。而间接方式则使用电动机模型,例如对于转子磁通定向控制,它利用了固有的转差关系。与直接的方法相比,间接方式对电机参数有较高的依赖性。多数场合使用间接策略,因为这会使硬件电路相对简单并且在低频下也具有较好的总体性能,但是由于包含了会随着温度,饱和度和频率变化而变化的电机参数,所以需要研究不同的参数自适应策略。

如果从选择的磁链矢量分类的话,磁场定向矢量控制技术一般可分为三种,即气隙磁场定向控制,定子磁场定向控制,转子磁场定向控制。

1. 气隙磁场定向控制方案。气隙磁场的定向控制是将旋转坐标系的M轴定向于气隙磁场的方向,此时气隙磁场的T轴分量为零。如果保持气隙磁通M轴分量恒定,转矩直接和T轴电流成正比。因此,通过控制T轴电流,可以实现转矩的瞬时控制,从而达到控制电机的目的。

2.定子磁场定向控制方案。定子磁场定向的控制方法,是将旋转坐标的M轴放在定子磁场方向上,此时,定子磁通的T轴分量为零。如果保持定子磁通恒定,转矩直接和T轴电流成正比,从而控制电机。定子磁场定向控制使定子方程大大简化,从而有利于定子磁通观测器的实现。然而此方案在进行磁通控制时,不论采用直接磁通闭环控制,还是采用间接磁通闭环控制,均须消除耦合项的影响。因此,需要设计一个解耦器,对电流进行解耦。

3. 转子磁场定向控制方案。转子磁场定向的控制方法是在磁场定向矢量控制方法中,将M,T 坐标系放在同步旋转磁场上,将电机转子磁通作为旋转坐标系的M坐标轴。若忽略由反电动势引起的交叉祸合,只需检测出定子电流的M轴分量,就可以观测转子磁通幅值。当转子磁通恒定时,电磁转矩与定子电流的T轴分量成正比,通过控制定子电流的T轴分量就可以控制电磁转矩。因此称定子电流的M轴分量为励磁分量,定子电流的T轴分量为转矩分量。可由电压方程M轴分量控制转子磁通,T轴分量控制转矩,从而实现磁通和转矩的解耦控制。

下面对它们进行简要的总结和比较:

气隙磁场定向系统中磁通关系和转差关系中存在耦合,需要增加解耦器这使得它比转子磁通的控制方式要复杂,但具有一些状态能直接测量的优点,比如气隙磁通。同时电机磁通的饱和程度与气隙磁通一致,故基于气隙磁通的控制方式更适合于处理饱和效应。

定子磁场定向的矢量控制方案,在一般的调速范围内可利用定子方程作磁通观测器,非常易于实现,且不包括对温度变化敏感的转子参数,可达到相当好的动静态性能,同时控制系统结构也相对简单,然而在低速时,由定子电阻压降占端电压的大部分,致使反电动势测量误差较大,导致定子磁通观测不准,影响系统性能。定子磁场定向的矢量控制系统适用于大范围弱磁运行的情况。转子磁场定向的控制方案,缺点是磁链闭环控制系统中转子磁通的检测精度受转子时问常数的影响较大,降低了系统性能。但它达到了完全的解耦控制,无需增加解耦器,并且不存在静态稳定性限制的条件,控制方式简单,具有较好动态性能和控制精度,故应用最为广泛。

变频器矢量控制的基本原理分析

变频器矢量控制的基本原理分析 矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。基于转差频率控制的矢量控制方式同样是在进行U/f=恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。 无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。它的基本控制思想是根据输入的电动机的铭牌参数,按照一定的关系式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。

异步电动机矢量控制系统的仿真

异步电动机矢量控制系统仿真 1.异步电机矢量控制系统的原理及其仿真 1.1 异步电动机矢量控制原理 异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得使用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。 本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。 图1矢量变换控制系统仿真原理图 如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。 (1) (2) (3) (4)

(5) 上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率; 是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。 图4所示控制系统中给定转速和实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。、和转子时间常数Lr一起产生转差频率信号,和ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,和定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。 1.2 异步电机转差型矢量控制系统建模 在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。 图2 电流控制变频模型图 整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接和实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、

转差频率控制的异步电动机

转差频率控制的异步电 动机 Revised as of 23 November 2020

转差频率控制的异步电动机 矢量控制系统仿真实训报告 二级学院 专业电气工程及其自动化 班级 指导教师 2014年6月 摘要 矢量变换控制技术的诞生和发展奠定了现代交流调速系统高性能化的基础。交流电动机是个多变量、非线性、强耦合的被控对象,采用参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程,使交流调速系统的动态性能得到了显着的改善和提高,从而使交流调速取代直流调速成为可能。目前对调速性能要求较高的生产工艺已较多地采用了矢量控制型的变频调速装置。实践证明,采用矢量控制的交流调速系统的优越性高于直流调速系统。 本文基于MATLAB?对异步电动机转差频率控制调速系统进行仿真研究。首先分析了异步电动机转差频率控制技术的主要控制方

法、基本组成与工作原理。之后对异步电机的动态模型做了分析,进一步介绍了异步电机的坐标变换,对异步电机转差频率矢量控制系统的基本原理进行了阐述,通过仿真工作,证明了其可行性。最后,通过对仿真结果进行分析,归纳出如下结论:单纯的转差频率控制带载能力差,应用转差频率矢量控制可增强电机对转矩的调节能力且无需电压补偿。 关键词:异步电动机矢量控制转差角频率 MATLAB 目录

一、转差频率控制的异步电动机矢量控制调速系统 1.矢量控制概述 矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 矢量控制(VC)方式:矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1和Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

基于空间矢量控制(SVPWM)技术的三相电压型整流器设计

基于空间矢量控制(SVPWM)技术的三相电压型整流器设计 作者:佚名来源:本站整理发布时间:2010-9-9 10:54:01 [收藏] [评论] 传统的变压整流器和非线性负载的大量使用使电网中电流谐波含量较高,对飞机供电系统和供电质量造成很大影响。消除电网谐波污染、提高整流器的功率因数是电力电子领域研究的热点。空间矢量PWM(SVPWM)控制具有直流侧电压利用率高、动态响应快和易于数字化实现的特点。本文采用空间矢量技术对三相电压型整流器进行研究,使其网侧电压与电流同相位,从而实现高功率因数整流。 1 空间矢量控制技术 SVPWM控制技术通过控制不同开关状态的组合,将空间电压矢量V控制为按设定的参数做圆形旋转。对任意给定的空间电压矢量V均可由这8条空间矢量来合成,如图1所示。任意扇形区域的电压矢量V均可由组成这个区域的2个相邻的非零矢量和零矢量在时间上的不同组合来得到。这几个矢量的作用时间可以一次施加,也可以在一个采样周期内分多次施加。也就是说,SVPWM通过控制各个基本空间电压矢量的作用时间,最终形成等幅不等宽的PWM脉冲波,使电压空间矢量接近按圆轨迹旋转。主电路功率开关 管的开关频率越高,就越逼近圆形旋转磁场。 为了减少开关次数,降低开关损耗,对于三相VSR某一给定的空间电压矢量 ,采用图2所示的合成方法。在扇区I中相应开关函数如图3所示。零矢量均匀地分布在矢量

的起、终点上,除零矢量外, 由V1、V2、V4合成,且中点截出2个三角形。一个开关周期中,VSR上桥臂功率开关管共开关4次,由于开关函数波形对称,谐波主要集中在整数倍的开关频率上。 2 直接电流控制策略 三相VSR的电流控制策略主要分为直接电流控制和间接电流控制。直接电流控制采用网侧电流闭环控制,提高了网侧电流的动、静态性能,并增强电流控制系统的鲁棒性。而在直接控制策略中固定开关频率的PWM电流控制因其算法简单、实现较为方便,得到了较好应用,在三相静止坐标系中,固定开关频率的PWM电流控制电流内环的稳态电流指令是一个正弦波信号,其电流指令的幅值信号来源于直流电压调节器的输出,频率和相位信号来源于电网;PI电流调节器不能实现电流无静差控制,且对有功电流和无功电流的独立控制很难实现。在两相同步旋转坐标系(d,q)中的电流指令为直流时不变信号,且其PI电流调节 器实现电流无静差控制,也有利于分别对有功电流 和无功电流 独立进行控制。 3 三相VSR数字控制系统 三相VSR数字控制系统结构如图4所示,控制系统采用电压外环和两个电流内环组成双环控制结构,电压环控制三相VSR直流侧电压,通过输出直流侧电压Vdc与给定参考电压 差值经过PI调节产生电流参考信号

矢量控制系统(FOC)基本原理

矢量控制(FOC)基本原理 2014.05.15 duquqiubai1234163. 一、基本概念 1.1模型等效原则 交流电机三相对称的静止绕组 A 、B 、C ,通以三相平衡的正弦电流时,所产生的合成磁动势是旋转磁动势F ,它在空间呈正弦分布,以同步转速ω1(即电流的角频率)顺着 A-B-C 的相序旋转。这样的物理模型如图1-1a 所示。然而,旋转磁动势并不一定非要三相不可,单相除外,二相、三相、四相…… 等任意对称的多相绕组,通以平衡的多相电流,都能产生旋转磁动势,当然以两相最为简单。 图1 图1-1b 中绘出了两相静止绕组α 和 β ,它们在空间互差90°,通以时间上互差90°的两相平衡交流电流,也产生旋转磁动势F 。再看图1-1c 中的两个互相垂直的绕组M 和 T ,通以直流电流M i 和T i ,产生合成磁动势F ,如果让包含两个绕组在的整个铁心以同步转速旋转,则磁动势F 自然也随之旋转起来,成为旋转磁动势。把这个旋转磁动势的大小和转速也控制成与图 1-1a 一样,那么这三套绕组就等效了。

三相--两相变换(3S/2S 变换) 在三相静止绕组A 、B 、C 和两相静止绕组α、β之间的变换,简称3S/2S 变换。其电流关系为 111221022A B C i i i i i αβ????-- ???????=?????????-????? () 两相—两相旋转变换(2S/2R 变换) 同步旋转坐标系中(M 、T 坐标系中)轴向电流分量与α、β坐标系中轴向电流分量的转换关系为 cos sin 2sin cos M T i i i i αβ??????????=??????-???? ?? () 1.2矢量控制简介 矢量控制是指“定子三相电流矢量控制”。 矢量控制理论最早为解决三相异步电机的调速问题而提出。交流矢量的直流标量化可以使三相异步电机获得和直流电机一样优越的调速性能。将交流矢量变换为两相直流标量的过程见图2。

永磁同步电动机矢量控制(结构及方法)

第2章永磁同步电机结构及控制方法 2.1 永磁同步电机概述 永磁同步电动机的运行原理与电励磁同步电动机相同,但它以永磁体提供的磁通替代后的励磁绕组励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电动机的效率和功率密度。因而它是近年来研究得较多并在各个领域中得到越来越广泛应用的一种电动机。 永磁同步电动机分类方法比较多:按工作主磁场方向的不同,可分为径向磁场式和轴向磁场式;按电枢绕组位置的不同,可分为内转子式(常规式)和外转子式;按转子上有无起绕组,可分为无起动绕组的电动机(用于变频器供电的场合,利用频率的逐步升高而起动,并随着频率的改变而调节转速,常称为调速永磁同步电动机)和有起动绕组的电动机(既可用于调速运行又可在某以频率和电压下利用起动绕组所产生的异步转矩起动,常称为异步起动永磁同步电动机);按供电电流波形的不同,可分为矩形波永磁同步电动机和正弦波永磁同步电动机(简称永磁同步电动机)。异步起动永磁同步电动机用于频率可调的传动系统时,形成一台具有阻尼(起动)绕组的调速永磁同步电动机。 永磁同步伺服电动机的定子与绕组式同步电动机的定子基本相同。但根据转子结构可分为凸极式和嵌入式两类。凸极式转子是将永磁铁安装在转子轴的表面,如图 2-1(a)。因为永磁材料的磁导率十分接近空气的磁导率,所以在交轴(q 轴)、直轴(d 轴)上的电感基本相同。嵌入式转子则是将永磁铁安装在转子轴的内部,如图 2-1(b),因此交轴的电感大于直轴的电感。并且,除了电磁转矩外,还有磁阻转矩存在。 为了使永磁同步伺服电动机具有正弦波感应电动势波形,其转子磁钢形状呈抛物线状,其气隙中产生的磁通密度尽量呈正弦分布;定子电枢绕组采用短距分布式绕组,能最大限度地消除谐波磁动势。永磁体转子产生恒定的电磁场。当定子通以三相对称的正弦波交流电时,则产生旋转的磁场。两种磁场相互作用产生电磁力,推动转子旋转。如果能改变定子三相电源的频率和相位,就可以改变转子的转速和位置。

感应电动机转差型矢量控制系统的设计

感应电动机转差型矢量控制系统的设计 1 引言 感应电动机具有结构简单、坚固耐用、转速高、容量大、运行可靠等优点。但是,由于感应电动机是一个高阶、非线性、强耦合的多变量系统,磁通和转矩耦合在一起,不能像直流电动机那样,磁通和转矩可以分别控制。所以,一直到20世纪80年代都没有获得高性能的感应电动机调速系统。近年来,随着电力电子技术、现代控制理论等相关技术的发展,使得感应电动机在可调传动中获得了越来越广泛的应用。矢量控制策略的提出,更是实现了磁通和转矩的解耦控制,其控制效果可媲美直流电动机。本文在分析感应电动机矢量控制原理的基础上,基于matlab/simulink建立了感应电动机转差型矢量控制系统仿真模型,仿真结果证明了该模型的合理性。并在此基础上进行系统的软、硬件设计,通过实验验证控制策略的正确性。 2 矢量控制的基本原理 长期以来,直流电动机具有很好的运行特性和控制特性,通过调节励磁电流和电枢电流可以很容易的实现对转矩的控制。因为它的转矩在主磁极励磁磁通保持恒定的情况下与电枢电流成线性关系,所以通过电枢电流环作用就可以快速而准确地实现转矩控制,不仅使系统具有良好稳态性能,又具有良好的动态性能。但是,由于换向器和电刷的原因,直流电动机有它固有的缺点,如制造复杂,成本高,需要定期维修,运行速度受到限制,难以在有防腐防暴特殊要求的场合下应用等等。矢量控制的设计思想是模拟直流电动机的控制特点进行交流电动机控制。基于交流电动机动态模型,通过矢量坐标变换和转子磁链定向,得到等效直流电动机的数学模型,使交流电动机的动态模型简化,并实现磁链和转矩的解耦。然后按照直流电动机模型设计控制系统,可以实现优良的静、动态性能。 转子磁链ψr仅由定子电流励磁电流ism产生,与定子电流转矩分量ist无关,而电磁转矩te正比于转子磁链和定子电流转矩分量的乘积,这充分说明了感应电动机矢量控制系统按转子磁链定向可以实现磁通和转矩的完全解耦。按转子磁链定向的矢量控制系统的关键是准确定向。但是,转子磁链的直接检测非常困难,而利用磁链模型间接估算磁链的

矢量控制(FOC)基本原理

矢量控制(FOC)基本原理 2014、05、15 一、基本概念 1、1模型等效原则 交流电机三相对称得静止绕组 A 、B、C ,通以三相平衡得正弦电流时,所产生得合成磁动势就是旋转磁动势F,它在空间呈正弦分布,以同步转速ω1(即电流得角频率)顺着A-B-C 得相序旋转。这样得物理模型如图1-1a所示。然而,旋转磁动势并不一定非要三相不可,单相除外,二相、三相、四相……等任意对称得多相绕组,通以平衡得多相电流,都能产生旋转磁动势,当然以两相最为简单。 图1 图1-1b中绘出了两相静止绕组α与β,它们在空间互差90°,通以时间上互差90°得两相平衡交流电流,也产生旋转磁动势F 。再瞧图1-1c中得两个互相垂直得绕组M 与 T,通以直流电流与,产生合成磁动势 F ,如果让包含两个绕组在内得整个铁心以同步转速旋转,则磁动势 F 自然也随之旋转起来,成为旋转磁动势。把这个旋转磁动势得大小与转速也控制成与图 1-1a一样,那么这三套绕组就等效了。

三相--两相变换(3S/2S变换) 在三相静止绕组A、B、C 与两相静止绕组α、β之间得变换,简称3S/2S 变换。其电流关系为 两相—两相旋转变换(2S/2R变换) 同步旋转坐标系中(M、T坐标系中)轴向电流分量与α、β坐标系中轴向电流分量得转换关系为 1、2矢量控制简介 矢量控制就是指“定子三相电流矢量控制”。 矢量控制理论最早为解决三相异步电机得调速问题而提出。交流矢量得直流标量化可以使三相异步电机获得与直流电机一样优越得调速性能。将交流矢量变换为两相直流标量得过程见图2。

图2 图2得上图为静止坐标系下得定子三相交流矢量 图2得中图为静止坐标系下得等效两相交流矢量 图2得下图为旋转坐标系下得等效两相直流标量,就是转矩电流,就是励磁电流。 经图2得变换后,定子三相交流矢量变为了旋转得两相直流标量。进而可以把异步电机瞧作直流电机,分别控制励磁电流与转矩电流。 变换公式即式(1)与式(2)。 1、3关于坐标系 图2得上图得坐标系就是静止得三相互差120°得坐标系,这就是一个非正交坐标系。 图2得中图得坐标系就是静止得两相互差90°得坐标系,这就是一个正交坐标系。 图2得下图得坐标系就是旋转得两相互差90°得坐标系,这就是一个正交坐标系。此坐标系跟随转子旋转。 1、4 为什么要进行坐标变换?

变频器的VF控制与矢量控制

变频器的V/F控制与矢量控制 U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 一、矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。 V/F控制与矢量都是恒转矩控制。U/F相对转矩可能变化大一些。而矢量是根据需要的转矩来调节的,相对不好控制一些。对普通用途。两者一样 1、矢量控制方式—— 矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。 矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制。 在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。 具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 2、V/F控制方式—— V/F控制,就是变频器输出频率与输出电压的比值为恒定值或成比例。例如,50HZ时输出电压为380V的话,则25HZ时输出电压为190V。 变频器采用V/F控制方式时,对电机参数依赖不大,V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制

转差频率控制的异步电动机矢量控制系统的仿真建模

转差频率控制的异步电动机矢量控制系统 的仿真建模 *** (江南大学物联网工程学院,江苏无锡214122) 摘要:矢量控制是目前交流电动机的先进控制方式,本文对异步电动机的动态数学模型、转差频率矢量控制的基本原理和概念做了简要介绍,并结合Matlab/Simulink软件包构建了异步电动机转差频率矢量控制调速系统的仿真模型,并进行了试验验证和仿真结果显示,同时对不同参数下的仿真结果进行了对比分析。该方法简单、控制精度高,能较好地分析交流异步电动机调速系统的各项性能。 关键词:转差频率;交流异步电动机;矢量控制;Matlab Modeling and Simulation of induction motor vector control system Based on Frequency control Luxiao (School of Communication and Control, Jiangnan University, Wuxi, Jiangsu 214036,China) Abstract: Vector control is an advanced AC motor control, this paper dynamic mathematical model of induction motor, slip frequency vector control of the basic principles and concepts are briefly introduced, and combined with Matlab / Simulink software package ,give the slip frequency vector Control System of the simulation model of the induction motor .Showed the simulation results, and simulation results under different parameters were compared. The method is simple, high control precision, can better analyze the AC induction motor drive system of the performance. Keywords: AC asynchronism motor; vector control; modeling and simulation; Matlab; 引言: 由于交流异步电动机属于一个高阶、非线性、多变量、强耦合系统。数学模型比较复杂,将其简化成单变量线性系统进行控制,达不到理想性能。为了实现高动态性能,提出了矢量控制的方法。所谓矢量控制就是采用坐标变换的方法,以产生相同的旋转磁势和变换后功率不变为准则,建立三相交流绕组、两相交流绕组和旋转的直流绕组三者之间的等效关系,从而求出异步电动机绕组等效的直流电机模型,以便按照对直流电机的控制方法对异步电动机进行控制。因此,它可以实现对电机电磁转矩的动态控制,优化调速系统的性能。 Matlab是一种面向工程计算的高级语言,其Simulink环境是一种优秀的系统仿真工具软件,使用它可以大大提高系统仿真的效率和可靠性。本文在此基础上构造了一个矢量控制的交流电机矢量控制调速系统,包含了给定、PI调节器、函数运算、二相/三相坐标变换、PWM脉冲发生器等环节,并给出了仿真结果。 1.异步电动机的动态数学模型 异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。在研究异步电动机的多变量非线性数学模型时,常作如下的假设: 1)忽略空间谐波,设三相绕组对称,在空间中互差120°电角度,所产生的磁动势沿

矢量控制学习心得体会

矢量控制学习心得体会 这学期跟着严老师学习了运动控制这门课程,加深了对电机拖动在实例中的运用,而矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,虽然通过坐标变换可以使之降阶并简化,但并没有改变其非线性、多变量的本质。因此,需要异步电动机调速系统具有高动态性能时,必须面向这样一个动态模型。按转子磁链定向的矢量控制系统便是其中一种。异步电动机经过坐标变换可以等效成直流电动机,那么,模仿直流电动机的控制策略,得到直流电动机的控制量,经过相应的坐标反变换,就能够控制异步电动机了。由于进行坐标变换的是电流的空间矢量,所以这样通过坐标变换实现的控制系统就叫作矢量控制系统,简称VC系统。在设计矢量控制系统时,可以认为,在控制器后面引入的反旋转变换器VR-1与电机内部的旋转变换环节VR抵消,2/3变换器与电机内部的3/2变换环节抵消,如果再忽略变频器中可能产生的滞后,则图6-53中虚线框内的部分可以完全删去,剩下的就是直流调速系统了。可以想象,这样的矢量控制交流变压变频调速系统在静、动态性能上完全能够与直流调速系统相媲美。 矢量变换包括三相/两相变换和同步旋转变换。在进行两相同步旋转坐标变换时,只规定了d,q两轴的相互垂直关系和与定子频率同步的旋转速度,并未规定两轴与电机旋转磁场的相对位置,对此是有选择余地的。按照图6-53的矢量控制系统原理结构图模仿直流调速系统进行控制时,可设置磁链调节器AψR 和转速调节器ASR分别控制ψr和ω,如图6-55所示。为了使两个子系统完全解耦,除了坐标变换以外,还应设法抵消转子磁链ψr对电磁转矩T e的影响。比较直观的办法是,把ASR的输出信号除以ψr,当控制器的坐标反变换与电机中的坐标变换对消,且变频器的滞后作用可以忽略时,此处的(÷ψr)便可与电

《电机矢量控制技术》矢量控制综述资料

福建工程学院 研究生课程论文 课程名称电机及其系统分析教师姓名 研究生姓名 研究生学号 研究生专业电气工程 研究方向电力工程 年级一年级 所在学院信息学院 日期2016年01 月13日

评语

矢量控制技术的发展以及在应用中的改善 摘要:电机在很多场合得到了广泛的使用,因为它具有的独特优点,例如它为现代运动控制系统提供了一种具有诸多优点和适用广泛的装置。异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。在上世纪70年代西门子工程师F.Blaschke 首先提出异步电机矢量控制理论来解决交流电机转矩问题。矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。 关键词:矢量控制,异步电机,解耦 ABSTRACT:In many occasions, the motor has been widely used because it has unique advantages, such as it provides a lot of advantages and is suitable for a wide range of modern device having the motion control system. Dynamic mathematical model of the induction motor is a high order, nonlinear, strongly coupled multivariable systems. In the 1970s, Siemens engineers F.Blaschke first proposed induction motor vector control theory to solve the problem of the AC motor torque. The basic principle of vector control is achieved by measuring and controlling asynchronous motor stator current vector, based on the principle of field-oriented asynchronous motor excitation current and torque current control, respectively, so as to achieve the purpose of control of induction motor torque. Key Word : Vector control ,Induction motor ,Decoupling 0、序言 异步电动机的数学模型是一个极其复杂的模型。总的归结起来可以异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统[1]。而且在研究三相异步电动机的复杂的数学模型中,我们常常会做出以下几方面的假设。第一,我们往往会忽略空间谐波。第 二、忽略磁路饱和。并且假设它们的自感和互感都是线性的。第三、忽略铁芯损耗。第四、不考虑频率和温度对绕组的影响。由于感应电动机的励磁和电枢都是同一个绕组,所以转矩和磁链之间就相对比较复杂。电磁转矩的物理表达式为 22?φCOS I C T T e = 可以知道感应电动机各个参量相互耦合,这也是感应电动机难以控制的根本原因[2]。由于矢量控制具有转矩控制的线性特性,控制效率很高,调节器的设计也比较容易实现。而且,速度的调节较宽在接近零转速时仍然可以带动额定负载运行,具有良好的起制动性能,所以矢量控制技术才会被人们慢慢的所利用[3]。异步电机数学模型的电压方程、磁链方程、转矩方程和运动方程如下: 电压方程:

转差频率控制地异步电动机

转差频率控制的异步电动机矢量控制系统仿真实训报告二级学院 专业电气工程及其自动化 班级 指导教师 2014年6月

摘要 矢量变换控制技术的诞生和发展奠定了现代交流调速系统高性能化的基础。交流电动机是个多变量、非线性、强耦合的被控对象,采用参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程,使交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速取代直流调速成为可能。目前对调速性能要求较高的生产工艺已较多地采用了矢量控制型的变频调速装置。实践证明,采用矢量控制的交流调速系统的优越性高于直流调速系统。 本文基于MATLAB 对异步电动机转差频率控制调速系统进行仿真研究。首先分析了异步电动机转差频率控制技术的主要控制方法、基本组成与工作原理。之后对异步电机的动态模型做了分析,进一步介绍了异步电机的坐标变换,对异步电机转差频率矢量控制系统的基本原理进行了阐述,通过仿真工作,证明了其可行性。最后,通过对仿真结果进行分析,归纳出如下结论:单纯的转差频率控制带载能力差,应用转差频率矢量控制可增强电机对转矩的调节能力且无需电压补偿。 关键词:异步电动机矢量控制转差角频率 MATLAB

目录 一、转差频率控制的异步电动机矢量控制调速系统 (4) 1.矢量控制概述 (4) 2.转差频率控制 (4) 3.转差频率矢量控制系统组成 (5) 4.转差频率矢量控制系统工作原理 (5) 二、基于Simulink的转差频率矢量控制系统仿真 (7) 1.仿真模型的建立 (7) 2.主电路模块 (7) 3.转速调节器(ASR)模块 (7) 4.函数运算模块 (8) 5.坐标变换模块2r/3s (9) 6.转差频率矢量控制系统仿真参数设置 (9) 7. 转差频率矢量控制系统仿真模型图 (10) 三、仿真结果及分析 (11) 1.仿真波形图 (11) 2.仿真结果分析 (14) 四、总结 (15) 五、参考文献 (16)

VF控制与矢量控制 瞬间弄懂

针对异步电机,为了保证电机磁通和出力不变(转矩不变),电机改变频率时,需维持电压V和频率F的比率近似不变,所以这种方式称为恒压频比(VF)控制。VF控制-控制简单,通用性强,经济性好,用于速度精度要求不十分严格或负载变动较小的场合。从本质上讲,VF控制实际上控制的是三相交流电的电压大小和频率大小,然而交流电有三要素,就是除了电压大小和频率之外,还存在相位。VF 控制没有对电压的相位进行控制,这就导致在瞬态变化过程中,例如突加负载的时候,电机转速受冲击会变慢,但是电机供电频率也就是同步速还是保持不变,这样异步电机会产生瞬时失步,从而引起转矩和转速振荡,经过一段时间后在一个更大转差下保持平衡。这个瞬时过程中没有对相位进行控制,所以恢复过程较慢,而且电机转速会随负载变化,这就是所谓VF控制精度不高和响应较慢的原因。 矢量控制国外也叫磁场定向控制,其实质是在三相交流电的电压大小和频率大小控制的基础上,还加上了相位控制,这个相位在具体操作中体现为一个角度,简单的讲就是电机定子电流相对于转子的位置角。 综上,我觉得矢量控制和VF控制的最本质的区别就是加入了电压相位控制上。从操作层面上看,矢量控制一般把电流分解成转矩电流和励磁电流,这里转矩电流和励磁电流的比例就是由转子位置角度(也就是定子电压相位)决定的,这时转矩电流和励磁电流共同产生的转矩是最佳。宏观上看,矢量控制和VF控制的电压,电流,频率在电机稳定运行时相差不大,都是三相对称交流,基本上都满足压频比关系,只是在瞬态过程如突加、突减负载的情况下,矢量控制会随着速度的变化自动调整所加电压、频率的大小和相位,使这个瞬时过程更快恢复平衡。 变频器采用V/F控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。变频器作矢量控制时,对电机参数的依赖很大,所以必须对电机作旋转

矢量控制和伺服控制

矢量控制方式—— 矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制。 在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。 具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 电机伺服控制方式 一般伺服包含三种控制方式:速度控制方式,转矩控制方式,位置控制方式。速度控制和转矩控制都是用模拟量来控制的,位置控制是通过发脉冲来控制的。 (1)如果对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 (2)如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。 换一种说法是: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm;如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。 应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。 应用领域如数控机床、印刷机械等等。 3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时,速度模式也可以进行定位,但必须将电机的位置信号或直接负载的位置信号作为上位机的反馈信号,以进行运算控制。位置模式也支持直接负载外环检

转差频率控制的异步电动机矢量控制系统仿真

目录 转差频率控制的异步电动机矢量控制系统仿真 (1) 引言 (1) 1 转差频率矢量控制概述 (1) 2 转差频率控制的基本原理 (3) 2.1 控制原理叙述 (3) 2.2 转差频率控制系统组成 (6) 3转差频率矢量控制系统构建 (7) 4 转差频率矢量控制调速系统仿真和分析 (8) 4.1 仿真模型的建立 (8) 4.1.1转速调节器模块 (8) 4.1.2 函数运算模块 (9) 4.1.3 坐标变换模块 (9) 4.1.4电动机转差频率矢量控制系统的仿真模型 (10) 4.2仿真条件 (11) 4.3仿真结果 (11) 5结语 (14) 参考文献 (15)

转差频率控制的异步电动机矢量控 制系统仿真 引言 电动机调速是电动机应用系统的关键环节。在19世纪,高性能的可调速传动控制大多采用直流电动机。但直流电动机在结构上存在难以克服的缺点,即存在电刷和机械换向器,使得直流电动机事故率高,维修工作量大,容量受到换向条件的制约,而交流电动机结构简单,造价小,坚固耐用,事故率低,容易维护,因此20世纪80年代以后,,交流调速技术开始迅速发展,并陆续出现了一些先进可靠的交流调速技术,首先是变压变频调速系统(VVVF),后来出现了转差频率矢量控制,无速度传感中矢量控制和直接转矩控制(DTC)等。其中,转差频率矢量控制系统结构简单且易于实现,控制精度高,具在良好的控制性能,因此,早期的矢量控制通用变频器上采用基于转差频率控制的矢量控制方式。基于此,本文在Matlab/Simulink环境下对转差频率矢量控制系统进行了仿真研究。 1转差频率矢量控制概述 由于异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。上世纪70年代西门子工程师F.Blaschke首先提出异步电机矢量控制理论来解决交流电机转矩控制问题。矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。简单的说,矢量控制就是将磁链与转矩解耦,

三种磁场定向矢量控制技术的比较知识讲解

磁场定向矢量控制技术按照获得磁链的不同方式大致可分为两种:直接和间接方式。直接方式的实现依赖于直接测量或对转子,定子,气隙磁链矢量的幅值和位置的估算。传统的直接矢量控制策略使用检测线圈,具有抽头的定子绕组或霍尔效应传感器对磁通进行检测,但由于电机结构或散热的需要就会产生一定的限制,但随着目前高速DSP的不断面世,在一个PWM周期内,实现负载的控制及磁链估算应成为可能,所以近年来基于磁链观测器的直接方式由重新得到了人们的重视。而间接方式则使用电动机模型,例如对于转子磁通定向控制,它利用了固有的转差关系。与直接的方法相比,间接方式对电机参数有较高的依赖性。多数场合使用间接策略,因为这会使硬件电路相对简单并且在低频下也具有较好的总体性能,但是由于包含了会随着温度,饱和度和频率变化而变化的电机参数,所以需要研究不同的参数自适应策略。 如果从选择的磁链矢量分类的话,磁场定向矢量控制技术一般可分为三种,即气隙磁场定向控制,定子磁场定向控制,转子磁场定向控制。 1. 气隙磁场定向控制方案。气隙磁场的定向控制是将旋转坐标系的M轴定向于气隙磁场的方向,此时气隙磁场的T轴分量为零。如果保持气隙磁通M轴分量恒定,转矩直接和T轴电流成正比。因此,通过控制T轴电流,可以实现转矩的瞬时控制,从而达到控制电机的目的。 2. 定子磁场定向控制方案。定子磁场定向的控制方法,是将旋转坐标的M 轴放在定子磁场方向上,此时,定子磁通的T轴分量为零。如果保持定子磁通恒定,转矩直接和T轴电流成正比,从而控制电机。定子磁场定向控制使定子方程大大简化,从而有利于定子磁通观测器的实现。然而此方案在进行磁通控制时,不论采用直接磁通闭环控制,还是采用间接磁通闭环控制,均须消除耦合项的影响。因此,需要设计一个解耦器,对电流进行解耦。 3. 转子磁场定向控制方案。转子磁场定向的控制方法是在磁场定向矢量控制方法中,将M,T坐标系放在同步旋转磁场上,将电机转子磁通作为旋转坐标系的M坐标轴。若忽略由反电动势引起的交叉祸合,只需检测出定子电流的M轴分量,就可以观测转子磁通幅值。当转子磁通恒定时,电磁转矩与定子电流的T 轴分量成正比,通过控制定子电流的T轴分量就可以控制电磁转矩。因此称定子电流的M轴分量为励磁分量,定子电流的T轴分量为转矩分量。可由电压方程M 轴分量控制转子磁通,T轴分量控制转矩,从而实现磁通和转矩的解耦控制。 下面对它们进行简要的总结和比较: 气隙磁场定向系统中磁通关系和转差关系中存在耦合,需要增加解耦器这使得它比转子磁通的控制方式要复杂,但具有一些状态能直接测量的优点,比如气隙磁通。同时电机磁通的饱和程度与气隙磁通一致,故基于气隙磁通的控制方式更适合于处理饱和效应。 定子磁场定向的矢量控制方案,在一般的调速范围内可利用定子方程作磁通观测器,非常易于实现,且不包括对温度变化敏感的转子参数,可达到相当好的动静态性能,同时控制系统结构也相对简单,然而在低速时,由定子电阻压降占

相关主题
文本预览
相关文档 最新文档