当前位置:文档之家› 轮毂电机及其电动车技术发展

轮毂电机及其电动车技术发展

轮毂电机及其电动车技术发展
轮毂电机及其电动车技术发展

1 2 3 4 5

1 前言

随着能源短缺和环境污染形势日渐恶化,新能源汽车已成为世界各国的重点研发领域。

电动车作为最主要的新能源汽车类型,电驱动技术是其核心技术之一。

随着电池、电机等电动车相关技术的日渐成熟,产品级电动车已经实现量产化,轮毂电机以其突出优势,得到国内外整车及零部件厂商持续的关注和研发投入。

本文对轮毂电机进行概述,说明其技术优势和难点,对当前主流轮毂电机产品及其驱动的电动车进行综述,总结由轮毂电机引发的技术发展趋势。

轮毂电机将2个或多个电机集成于轮毂内部,驱动形式可分为减速驱动和直接驱动。

减速驱动型轮毂电机多采用内转子结构实现减速驱动,由于电机转速高,需要配置减速器降低输出转速并增加转矩,以适应车轮的输出需求。

直接驱动型多采用外转子结构实现直接驱动,无需减速机构,可实现驱动系统轻量化,但装备直接驱动轮毂电机的电动车在起步时,转矩从零开始上升,导致加速性较差。

两种驱动形式的优缺点如表1所示。

直流电机、永磁无刷直流电机、开关磁阻电机、异步电机、永磁同步电机等均可用于研发轮毂电机。

目前先进轮毂电机多采用效率高、功率密度大、可靠性好的永磁同步电机。

表1 不同类型轮毂电机优缺点对比

减速驱动类型的轮毂电机按照减速机构类型,又可分为同轴摆线减速器式轮毂电机、同轴行星齿轮减速器式轮毂电机和偏轴式轮毂电机。

2.2 轮毂电机和轮毂电机电动车优势

轮毂电机作为电动车动力源,本身具有一系列优势,包括:响应速度快、转矩控制精度高、可提供驱动和制动转矩、可独立进行转矩控制、使用寿命长等。

轮毂电机直接安装于驱动轮内,无需设计变速器、万向传动装置、差速器等传统传动部件,将给电动车底盘设计与控制带来巨大变革和优化,包括:

(1)系统效率提高,轮毂电机驱动系统比集中式电机驱动效率高出10%以上;

(2)转矩响应精度高、响应速度快,可实现分布式驱动轮独立控制;

(3)底盘布置自由度高,整车轻量化程度大幅提高;是混合动力汽车、纯电动汽车、燃料电池汽车的优选动力源;

(4)有利于实现更加优化的分布式驱动、制动控制,更便于自动驾驶上层控制策略的实现。

虽然轮毂电机具备一系列优势,但同时也存在一系列技术难点需要攻克,才能早日实现产品化应用。

在轮毂电机系统设计方面,由于轮毂电机安装于车轮内,与发动机舱相比,环境恶劣,振动噪声大,需解决以下难点:

(1)轴承与密封设计方面,保证轮毂电机可在高低温冲击环境、大负荷冲击下正常工作;

(2)减震降噪设计方面,当前大多数轮毂电机与车身和轮毂刚性连接,无法过滤转矩波动;

(3)轮毂电机高效、高转矩设计方面,保证轮毂电机全转速范围的高效、高转矩输出。

在轮毂电机与底盘集成设计方面,由于车轮内外空间有限,轮毂电机的布置需要满足整车悬架、转向、制动性能要求,由于轮毂电机安装位置的特殊性,可实现车轮横摆、旋转多自由度控制,更增加了集成设计难度,主要包括:

(1)为集成轮毂电机,底盘零部件需二次开发,且轮毂电机使非簧载质量大幅增加,悬架设计难度加大。

(2)由于轮毂电机占用底盘空间较大,导致底盘各硬点校空间减小,底盘性能调校难度增大。

(3)需要设计特定制动系,满足制动性能和空间布置要求。

在整车集成控制技术上,轮毂电机电动车与传统电动车的运动控制差异明显,轮毂电机电动车可实现更先进的运动控制,基于分布式转矩控制,在驱动转矩分配、驱动/制动防滑控制、车辆稳定性控制等方面仍有大量可研究科学问题。

轮毂电机电动车相对于传统汽车,自由度更多,会导致车辆高速行驶或路面湿滑时,出现失稳(甩尾、侧滑等)危险工况。因而对轮毂电机电动车的运动控制要求更加苛刻,需要深入研究转矩矢量控制、电机TCS控制、电机ABS控制、电机ESC控制等。

由于电机分布于各车轮位置,为整车的能量管理带来诸多难题。需要建立适用于分布式驱动系统的能量分配模型,提出分布式电驱动能量分配和制动能量回收最优化控制策略,研究分布式电驱动系统轮间和轴间功率耦合回归,分析电功率与机械功率的相互转换规律,提出相应的功率循环能量损耗控制策略。

由于轮毂电机分布式布置,对整车功能安全和故障诊断要求提高,必须建立完善的电机故障诊断分析策略和容错机制。

轮毂电机使整车簧下质量大幅增加,会导致整车操纵稳定性和平顺性变差,需要克服轮毂电机造成的负效应。

这就需要研究高智能悬架,悬架系统实时感知路况,支持各轮悬架阻尼自适应独立控制,实现高精度、优化性能的车身侧倾、俯仰及横摆控制。

由于轮毂电机驱动控制会对悬架系统产生影响,需要研究轮毂电机分布式转矩控制与悬架系统自适应控制的协同机制,从而优化整车操稳和平顺性。

由于电机分布于各车轮位置,为整车的能量管理带来诸多难题。需要建立适用于分布式驱动系统的能量分配模型,提出分布式电驱动能量分配和制动能量回收最优化控制策略,研究分布式电驱动系统轮间和轴间功率耦合回归,分析电功率与机械功率的相互转换规律,提出相应的功率循环能量损耗控制策略。

由于轮毂电机分布式布置,对整车功能安全和故障诊断要求提高,必须建立完善的电机故障诊断分析策略和容错机制。

轮毂电机使整车簧下质量大幅增加,会导致整车操纵稳定性和平顺性变差,需要克服轮毂电机造成的负效应。

这就需要研究高智能悬架,悬架系统实时感知路况,支持各轮悬架阻尼自适应独立控制,实现高精度、优化性能的车身侧倾、俯仰及横摆控制。

由于轮毂电机驱动控制会对悬架系统产生影响,需要研究轮毂电机分布式转矩控制与悬架系统自适应控制的协同机制,从而优化整车操稳和平顺性。

由于轮毂电机应用于电动车的突出优势和巨大的市场潜力,国内外已有众多厂商开始着力进行轮毂电机的研发。

在国外,舍弗勒、Protean、丰田等公司均研发出了轮毂电机样机甚至产品,国外公司研发情况如表2所示。

其中,英国Protean公司是研制直驱式轮毂电机的代表。

Protean轮毂电机内部集成逆变器、控制器、制动系统,结构解剖图如图1所示。

图1 Protean PD18轮毂电机

目前,Protean PD18电机已经启动量产,并已经搭载众多车型进行实车测试,PD16已经形成平台样机,PD14已经完成产品概念开发。

图 ProteanDrive Pd18电机

NTN公司是研发的同轴摆线减速器式轮毂电机的代表企业,其研发的轮毂电机(如图2所示)的减速器径向尺寸小,更易于整车搭载,无需改制制动系,且减速器减速比大,可增大转矩。

但是这种结构轴向尺寸过大,在实车搭载上与减震器、车身纵梁干涉较大,对车身结构的要求高。

图2 NTN同轴摆线减速器式轮毂电机

舍弗勒公司重点研发同轴行星齿轮减速器式轮毂电机(如图3所示),实现了电机与减速器的高度集中,大大减小了电机尺寸,但由于必须为其设计鼓式制动器,故此电机不适于安装于前轮。

其第二代产品电机尺寸为16英寸,并已经在福特嘉年华E-Wheel Drive概念车上进行了搭载试验。

第四代产品针对A0级小型车研发,将电机集成于14英寸轮辋内。

图3 舍弗勒同轴行星齿轮减速器式轮毂电机

丰田自20世纪90年代起,就开始研发轮毂电机,其代表产品为偏轴式轮毂电机,其轮毂电机研发大致分为3个阶段,第1阶段研发外转子直驱式轮毂电机,第2阶段研发行星齿轮式轮毂电机,第3阶段研发偏轴式轮毂电机,如图4所示。

偏轴式轮毂电机通过平行轴齿轮使电机与减速器不同轴,实现对轮内空间的充分利用和悬架小改动下的整车集成。

图4 偏轴式轮毂电机

综上所述,国外对轮毂电机技术的研发投入较大,特别是丰田、NTN等日本企业,其产品经过多次研发集成试验迭代,更接近量产化。

为满足轮毂电机小型化、轻量化的集成要求,偏轴式轮毂电机得到越来越多的关注和研发。

国内研发轮毂电机的企业较少,比较有代表性的是浙江亚太,其轮毂电机产品如图5所示。

目前,浙江亚太也正在为轮毂电机设计开发专门的底盘模块。

轮毂电机电动车由于其巨大的技术优势和市场潜力,早已成为国内外各大整车OEM企业、科研机构的重点研制对象。

由于采用分布式驱动,围绕轮毂电机的众多技术可供研究,包括底盘结构设计、悬架系统设计、底盘控制系统等。

图5 浙江亚太轮毂电机产品

英国Protean公司以其PD18电机为核心设计了360度角模块,实现各个车轮独立控制,支持车轮绕轴向和垂向的旋转运动,并基于此定义了下一代城市交通工具的新型运动模式。

其设计的轮毂电机电动小巴及其360度角度模块如图6所示。

NTN公司将其研发的轮毂电机搭载于其第2代电动车Q mo II 中,可通过调节各个车轮角度实现车辆自转和横向移动,如图7所示。

浙江亚太境外参股子公司斯洛文尼亚依拉菲推进技术有限公司,基于宝马X6成功改制完成轮毂电机驱动样车,被业内认为是最具性能的轮内动力汽车,如图8所示。

该车搭载依拉菲L型轮毂电机,可提供超过6 000 N·m的直驱轮边转矩,产生超过440 kW的功率,百公里加速时间低于4.9 s。

电动汽车用轮毂电机的研究

电动汽车用轮毂电机的研究 张继晨 (武汉理工大学汽车工程学院;汽研1202;学号:1049721202240) 摘要:轮毂电机驱动系统是电动车辆的先进驱动方式,高品质的轮毂电机及其驱动控制系统是国内外电气工程领域的重要研究方向。本文阐述了轮毂电机的不同驱动方式及其国内外研究现状,在分析了轮毂电机驱动特点基础上,介绍了轮毂电机的结构,探讨轮毂电机驱动系统的控制,特别是转向时的差速控制,并思考轮毂电机发展的关键技术。 关键词:电动汽车;驱动系统;轮毂电机;差速控制 Application of In-Wheel Motors Used for Electric Automobile Zhang Jichen (School of Automobile Engineering, Wuhan University of Technology, Class: 1202, Number: 1049721202240) Abstract:As advanced drives for electric vehicles, it is one of the most important edge research areas to develop the high-performance in-wheel motors both at home and abroad. This article described two different driving methods and their application status at home and abroad. With a presentation of the features of in-wheel motors and drives, introduced the structure of the in-wheel motors, and propose the control of the in-wheel motors system, especially the control of the steering differential while some potential technical solutions for the drives are discussed. Key words: electric automobile; driving system; in-wheel motor; differential control 前言 随着全球资源紧缺与环境污染矛盾的不断凸显,作为具有节能和环保双重效益的电动汽车近几年得到了迅速的发展。目前电动汽车的电机、电池性能已经能基本上满足车辆性能的要求,在新结构、新控制、新技术等方面展示出了巨大的发展潜力。在各种形式驱动的电动汽车中,轮毂电机将是电动汽车的最终驱动形式。轮毂电机的快速响应特性可提高电动汽车的动态控制能力,使汽车在驱动、制动、转向等多种工况下均具有较好的表现。轮毂电机不但可以进行防抱死控制、牵引力控制、转矩矢量控制,还可以进行主动平顺性控制,因此轮毂电机可以替代传统汽车底盘中绝大部分执行机构。目前,对轮毂电机来说,最重要的技术是将电动机、传动系统、制动系统和悬架系统共同嵌入到车轮中,而体积过大时轮毂电机电动汽车普及的一个障碍。 1. 轮毂式电动汽车发展现状 轮毂式电动汽车是一种新兴的驱动式电动汽车,有两种基本形式,即直接驱动式电动轮和带轮边减速器电动轮。它直接将电机安装在车轮轮毂中,省略了传统的离合器、变速器、主减速器及差速器等部件,简化了整车结构,提高了传动效率,并且能通过控制技术实现对电动轮的电子差速控制。电动轮将成为未来电动汽车的发展方向。 1.1 国外研究现状 目前国际上对轮毂电机电动汽车的研究主要以日本为主。日本很早就开始了对轮毂电机研究和开发,取得了一系列的研究成果,其技术在世界各国电动汽车研究领域处于领先位置。日本庆应义塾大学的电动汽车研究小组先后研制了IZA、ECO、KAZ等电动汽车均采用轮毂电机驱动技术。2001年该小组研制了超级电动轿车“KAZ”,该车采用8个55kW的永磁同步电机驱动,最高车速达到了311km/h,0~100km/h的加速时间是8s,电动车轮匹配了一套行星齿轮减速机构。2004年,该小组再次推出电动轿车Eliica,该车采用8个直驱式轮毂电机直接驱动车辆,最高车速在良好工况下达到400km/h,0~60km/h加速时间为4s,大大提高了轮毂电动汽车的性能。 美国通用汽车公司也致力于轮毂电机电动汽车的研究,它对未来电动汽车发展提出了名为“Autonomy”的概念,其思想是将电动轮驱动与线控操作技术相结合。大大提高了汽车的操纵稳定性和智能化。轮毂电机驱动技术的采用使底盘空间增大,使汽车的布置结构更加灵活,且汽车的转向、制动和动力控制等系统都能通过线控操纵来实现,

中国轮毂电机行业市场分析报告

中国轮毂电机行业市场分析报告

目录 第一节轮毂电机简介 (4) 第二节轮毂电机主要特点 (6) 一、轮毂电机优势一:提高整车空间利用率 (6) 二、轮毂电机优势二:提高传动效率有效节能降耗 (7) 三、轮毂电机优势三:驱动模式革命性变化 (8) 四、轮毂电机优势四:降低整车设计、制造成本 (8) 五、轮毂电机存在的问题 (9) 第三节轮毂电机市场和主要厂商 (11) 一、轮毂电机的应用 (11) 二、轮毂电机的应用典范:比亚迪K9 (12) 三、轮毂电机厂商 (13) 第四节轮毂电机重点公司分析 (16) 一、亚太股份 (16)

图表目录 图表1:轮毂机的发展历程 (4) 图表2:轮毂电机的结构形式 (4) 图表3:轮毂电机的驱动方式 (5) 图表4:轮毂电机本体:永磁同步电机未来趋势 (5) 图表5:轮毂电机的优势一 (6) 图表6:整车动力系统架构拓扑图 (7) 图表7:轮毂电机驱动模式 (8) 图表8:轮毂电机的整车设计 (8) 图表9:轮毂电机安装在汽车轮毂内部 (9) 图表10:轮毂电机驱动转矩控制复杂 (10) 图表11:轮毂电机的应用:国外车企积构储备轮毂电机车型技术 (11) 图表12:轮毂电机的应用:国内车企与国际企业基本处于同一水平 (11) 图表13:轮毂电机的应用典范:比亚迪K9 (12) 图表14:轮毂电机厂商一:Elaphe (13) 图表15:Elaphe推出的众多系列化轮毂电机 (13) 图表16:轮毂电机厂商二:Protean (14) 图表17:公司主要合作车型 (14) 图表18:轮毂电机厂商三:米其林 (15) 图表19:载米其林轮毂电机 (15) 图表20:轮毂电机厂商四:成都联腾 (15) 图表21:公司主要客户 (16) 图表22:亚太股份投资看点 (16) 图表23:抢占智能电动汽车核心零部件桥头堡 (17) 表格目录 表格1:公司陆续开发的多款产品 (13)

电动车用轮毂电机研究现状与发展趋势2

电动车用轮毂电机研究现状与发展趋势 褚文强, 辜承林 (华中科技大学电气与电子工程学院,湖北武汉 430074) 摘 要:介绍了轮毂电机相对于燃油汽车和单电机集中驱动系统的优势,比较了各种电动汽车用电机的基本性能。阐述了轮毂电机的不同驱动方式及其国内外研究与应用现状。无位置传感器控制技术、转矩脉动的抑制、弱磁扩速、电机本体的设计及永磁材料等将是今后轮毂电机的研究热点。 关键词:电动汽车;驱动系统;轮毂电机 中图分类号:T M384∶U469.72 文献标识码:A 文章编号:167326540(2007)0420001205 Appli ca ti on St a tus and D evelop i n g Tend of I n2W heel M otors Used for Electr i c Auto m ob ile CHU W en2qiang, G U Cheng2lin (College of Electrical and Electr onic Engineering,Huazhong University of Science and Technol ogy,W uhan430074,China) Abstract:The advantages of in2wheel mot or compared with the driving syste m of traditi onal mot ors are de2 scribed.Then t w o different driving methods and their app licati on status at home and abr oad are intr oduced.The qual2 itative analysis of several kinds of typ ical driving mot or is made next.Their perf or mances are compared and their ad2 vantages/disadvantages are als o point out.Finally the devel op ing trend of wheeled mot or technol ogy is p resented. Key words:electr i c auto m ob ile;dr i v i n g syste m;i n2wheel m otor 0 概 述 早在20世纪50年代初,美国人罗伯特就发明了一种将电动机、传动系统和制动系统融为一体的轮毂装置。该轮毂于1968年被通用电气公司应用在大型的矿用自卸车上。近年来,随着电动汽车的兴起,轮毂电机重新引起了重视。轮毂电机驱动系统的布置非常灵活,可以使电动汽车成为两个前轮驱动、两个后轮驱动或四轮驱动。与内燃机汽车和单电机集中驱动电动汽车相比,使用轮毂电机驱动系统的汽车具有以下几方面优势: (1)动力控制由硬连接改为软连接型式。通过电子线控技术,实现各电动轮从零到最大速度的无级变速和各电动轮间的差速要求,从而省略了传统汽车所需的机械式操纵换档装置、离合器、变速器、传动轴和机械差速器等,使驱动系统和整车结构简洁,有效可利用空间大,传动效率提高。 (2)各电动轮的驱动力直接独立可控,使其动力学控制更为灵活、方便;能合理控制各电动轮的驱动力,从而提高恶劣路面条件下的行驶性能。 (3)容易实现各电动轮的电气制动、机电复合制动和制动能量回馈。 (4)底架结构大为简化,使整车总布置和车身造型设计的自由度增加。若能将底架承载功能与车身功能分离,则可实现相同底盘不同车身造型的产品多样化和系列化,从而缩短新车型的开发周期,降低开发成本。 (5)若在采用轮毂电机驱动系统的四轮电动汽车上导入线控四轮转向技术(4W S),实现车辆转向行驶高性能化,可有效减小转向半径,甚至实现零转向半径,大大增加了转向灵便性。 1 驱动系统 1.1 驱动方式 轮毂电机的驱动方式可以分为减速驱动和直接驱动两大类[1]。 在减速驱动方式下(见图1),电机一般在高 — 1 —

电动汽车轮毂电机参数

电动汽车轮毂电机参数 由于能源问题和环境问题的日益突出,各国和各大汽车厂商不得不寻找传统燃油汽车的替代品。电动汽车具有能量利用率高、对环境污染小等优点,被视为未来重要的交通工具之一。 对轮毂电机驱动方式的电动汽车而言,电机控制策略效果将直接影响整车控制性能的好坏。而驱动电机控制策略的设计又与电机的机械参数(转动惯量)和电气参数(电阻、电感和磁链)息息相关,因此在线辨识这些参数对提高电动汽车的整体控制效果具有重大意义。 机性能试验台,包括轮毂电机控制系统、试验台架和测量与控制系统三部分,通过调节电机的输入量和负载转矩,不仅能测量轮毂电机的基本参数,如输入电压/电流,输入功率,电机转速,输出转矩等,还能对电机进行各种试验,如空载试验、加载试验、效率试验等,全面检测轮毂电机的性能,为轮毂电机的设计和优化提供数据支持。 轮毂电机使用时可分为减速驱动和直接驱动两种驱动方式。 ①采用减速驱动方式,电动车电机一般在高速下运行,选用高速内转子式电

机。减速机构放置在电机和车轮之间,起到减速和增加转矩的作用。减速驱动具有如下优点:电机运行在高速下,具有较高的效率,转矩大,爬坡性能好,能保证汽车在低速运行时获得较大的平稳转矩。 不足之处是:难以实现液态润滑,齿轮磨损严重,使用寿命短,不易散热,噪声大。减速驱动方式适合于丘陵或山区使用,以及要求过载能力大和城区客车等需要频繁起动/停车等场合。 ②采用直接驱动方式,多采用外转子式电机。为了使汽车能顺利起步,要求电机在低速时能提供大的转矩。直接驱动的优点有:不需要减速机构,使得整个驱动结构更加简单、紧凑,轴向尺寸也较小,而且效率也进一步提高,响应速度也较快。 其缺点是:起步、爬坡以及承载较大载荷时需要大电流,易损坏电池,电机效率峰值区域小。直接驱动方式适合平路或负荷较小的场合。

轮毂电机项目立项申请报告

轮毂电机项目立项申请报告 规划设计/投资方案/产业运营

报告说明— 该轮毂电机项目计划总投资6796.39万元,其中:固定资产投资5785.81万元,占项目总投资的85.13%;流动资金1010.58万元,占项目总投资的14.87%。 达产年营业收入8475.00万元,总成本费用6591.46万元,税金及附加115.11万元,利润总额1883.54万元,利税总额2258.45万元,税后净利润1412.65万元,达产年纳税总额845.79万元;达产年投资利润率27.71%,投资利税率33.23%,投资回报率20.79%,全部投资回收期6.31年,提供就业职位150个。 随着传统能源加速消耗,新能源汽车成为汽车行业的重要发展方向。近年来,随着世界各国加速推广新能源汽车,相关产业链内掀起了一股新能源汽车核心配件的更新浪潮。在驱动技术上,新能源汽车与传统内燃机汽车有较大差别,传统汽车的驱动系统主要由发动机、变速器、传动轴、差速器、半轴、驱动轮等部分组成,新能源汽车则依靠电机驱动。

第一章项目概述 一、项目概况 (一)项目名称及背景 轮毂电机项目 (二)项目选址 某产业基地 项目选址应符合城乡建设总体规划和项目占地使用规划的要求,同时具备便捷的陆路交通和方便的施工场址,并且与大气污染防治、水资源和自然生态资源保护相一致。场址应靠近交通运输主干道,具备便利的交通条件,有利于原料和产成品的运输,同时,通讯便捷有利于及时反馈产品市场信息。 (三)项目用地规模 项目总用地面积20983.82平方米(折合约31.46亩)。 (四)项目用地控制指标 该工程规划建筑系数56.90%,建筑容积率1.60,建设区域绿化覆盖率5.27%,固定资产投资强度183.91万元/亩。 (五)土建工程指标

【CN109774457A】一种电动汽车用轮毂电机【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910156189.6 (22)申请日 2019.03.01 (71)申请人 北京精密机电控制设备研究所 地址 100076 北京市丰台区南大红门路1号 (72)发明人 王福德 郑继贵 李鹏飞 郭喜彬  赵青  (74)专利代理机构 中国航天科技专利中心 11009 代理人 张辉 (51)Int.Cl. B60K 7/00(2006.01) H02K 7/00(2006.01) H02K 5/20(2006.01) (54)发明名称 一种电动汽车用轮毂电机 (57)摘要 本发明公开了一种电动汽车用轮毂电机,包 括轮胎轮毂和轮毂电机本体。轮胎轮毂与轮毂电 机本体固定连接。轮毂电机本体包括转动部件和 固定部件,转动部件铰接于固定部件的固定轴 上。本发明整体结构形成箱型、半箱型结构,且定 子外壳和转子外壳设置有加强筋结构,具有高强 度、高刚度、轻量化的特点,在满足轮毂电机强度 和刚度的同时大大降低整车簧下质量,成本低、 可靠性及冗余性高、散热性和密封性好、抗振动 及冲击性能力强、电机单元性好、提高了功率密 度,适应电动汽车、大型特种电动车辆的高功率 高扭矩需求。权利要求书2页 说明书5页 附图5页CN 109774457 A 2019.05.21 C N 109774457 A

权 利 要 求 书1/2页CN 109774457 A 1.一种电动汽车用轮毂电机,其特征在于:包括轮胎轮毂(1)和轮毂电机本体(2);轮胎轮毂(1)与轮毂电机本体(2)固定连接。 2.根据权利要求1所述的一种电动汽车用轮毂电机,其特征在于:所述轮毂电机本体 (2),包括转动部件(3)和固定部件(4),所述转动部件(3)铰接于固定部件(4)的固定轴上。 3.根据权利要求2所述的一种电动汽车用轮毂电机,其特征在于:所述转动部件(3)包括转子外壳(17)、外侧弹性挡圈(16)、内侧弹性挡圈(15)、过渡连接架(18)、转子模块(36)、第一轴承(23)、第二轴承(14)、动密封圈(24)、动密封圈挡板(7)、过渡挡板(25)和刹车片(6); 转子外壳(17)为“C”型结构,其上加工有法兰孔,内侧开有多个槽,每个槽内加工有两个键,外侧设置有多个加强筋; 过渡连接架(18)为柱状结构,内部加工有轴孔,过渡连接架(18)从转子外壳(17)中心穿出,并通过螺柱头固定于转子外壳(17)的法兰孔中,第二轴承(14)和第一轴承(23)依次安装于过渡连接架(18)的轴孔内,内侧弹性挡圈(15)挡在第一轴承(23)的外侧,外侧弹性挡圈(16)挡在第二轴承(14)的外侧,防止轴承窜动; 每个转子模块(36)安装于转子外壳(17)的一个内侧槽中,每个转子模块(36)内圈设置有槽,转子外壳(17)内侧槽内的键嵌入转子模块(36)内圈槽中,形成稳定结构; 转子模块(36)侧面设置动密封圈挡板(7),动密封圈(24)安装于转子外壳(17)内侧,动密封圈(24)与动密封圈挡板(7)相接触,过渡挡板(25)和刹车片(6)依次通过螺栓安装于转子外壳(17)的法兰孔上,过渡挡板(25)用于压紧动密封圈(24)。 4.根据权利要求3所述的一种电动汽车用轮毂电机,其特征在于:所述每个转子模块(36)包括两个导磁体(13)和一个磁钢(21),磁钢(21)两侧设置有键,导磁体(13)两侧设置有槽,两个导磁体(13)夹住磁钢(21),且磁钢(21)两侧的键分别插入两侧导磁体(13)槽内。 5.根据权利要求3所述的一种电动汽车用轮毂电机,其特征在于:还包括第一静密封圈(32)、第二静密封圈(33)和第三静密封圈(34),所述第一静密封圈(32)安装在转子外壳(17)和过渡连接架(18)相接触位置的内密封槽内;第二静密封圈33)安装在转子外壳(17)和过渡连接架(18)相接触位置的外密封槽内,第三静密封圈(34)安装在过渡连接架(18)和轮胎轮毂(1)相接触位置的密封槽内。 6.根据权利要求3所述的一种电动汽车用轮毂电机,其特征在于:所述过渡连接架(18)伸出转子外壳(17)的一端通过螺柱头固定在轮胎轮毂(1)上。 7.根据权利要求3所述的一种电动汽车用轮毂电机,其特征在于:所述固定部件(4)包括定子外壳(8)、固定轴(5)、水道密封外环(10)、水道密封内环(11)、定子模块(37)、旋转变压器(19)和轴窜动锁紧螺母(20); 定子外壳(8)外侧设置有加强筋,固定轴(5)固定于定子外壳(8)上,固定轴(5)的轴侧插入第一轴承(23)和第二轴承(14)孔内,轴窜动锁紧螺母(20)安装于固定轴(5)末端,防止固定轴(5)轴向窜动,水道密封外环(10)、水道密封内环(11)固定于定子外壳(8)上,且水道密封外环(10)套于水道密封内环(11)上,旋转变压器(19)外圈安装于水道密封内环(11)上,旋转变压器(19)内圈通过键插入过渡连接架(18)上; 定子模块(37)相对的两个侧面中,一侧加工有连接键,一侧加工有连接槽,底面加工有固定键,固定键插入水道密封外环(10)的固定槽内,各个定子模块的连接键和连接槽首尾 2

轮毂电机行业实施方案

轮毂电机行业实施方案 —— 随着传统能源加速消耗,新能源汽车成为汽车行业的重要发展方向。近年来,随着世界各国加速推广新能源汽车,相关产业链内掀起 了一股新能源汽车核心配件的更新浪潮。在驱动技术上,新能源汽车 与传统内燃机汽车有较大差别,传统汽车的驱动系统主要由发动机、 变速器、传动轴、差速器、半轴、驱动轮等部分组成,新能源汽车则 依靠电机驱动。 以转型升级、提质增效为主线,以技术创新和管理创新为支撑点,加快推进供给侧结构性改革,扩大新型产品生产和应用,积极开展产 能合作,有效提高区域产业的质量和效益。 为了加快区域产业结构调整和优化升级,推进未来几年产业健康 快速发展,按照“领先发展、科学发展、又好又快发展”和“产业倍增”的战略部署,结合区域产业发展情况,制定本规划。 第一部分指导路线 按照全面建设小康社会和构建社会主义和谐社会的要求,全面落 实科学发展观,走新型产业化道路,以市场需求为导向,以发展产业 化为契机,继续调整产业结构,进一步提升行业发展总体水平;优化

区域布局,培育产业带和企业集群;增强自主创新能力,推动行业科技进步。促进产业健康、稳定和可持续发展。 第二部分坚持原则 1、坚持总量控制。继续严格控制产能盲目扩张,把调整产业结构放在更加突出位置,加快推进联合重组,调整产品结构,提高生产集中度。 2、机制创新,部门协同。创新管理体制和运营监管机制,强化部门协同,持续推进产业发展,实现可持续发展。 3、坚持融合发展。推进业态和模式创新,促进信息技术与产业深度融合,强化产业与上下游产业跨界互动,加快产业跨越式发展。 4、因地制宜,特色发展。紧密结合区域发展要素条件,充分发挥比较优势,围绕核心产业,引进培育龙头企业,形成各具特色、差异发展的发展新格局。 5、市场主导,政府引导。发挥市场配置资源的决定性作用,尊重企业主体地位,激发企业活力和创造力,创新经营模式和业态,推动联合重组,增加有效供给,促进优胜劣汰;健全公平开放透明的市场规则,完善支持政策,搭建服务平台,优化产业发展环境。 第三部分产业环境分析

电动自行车与电动汽车轮毂电机轮毂电机差别

汽车轮毂电机比电动自行车轮毂电机功率大,扭矩大。最大的差别在控制系统上。自行车是两个轮子,但汽车有四个,要解决差速问题和同步问题,这是最大的难题。 使用轮毂电机的电动自行车无电骑行会有电磁阻力,使用离合机构可减小电磁阻力。也可以使用离合机构来调节齿轮转速比。 电机的优点 省略大量传动部件,让车辆结构更简单 对于传统车辆来说,离合器、变速器、传动轴、差速器乃至分动器都是必不可少的,而这些部件不但重量不轻、让车辆的结构更为复杂,同时也存在需要定期维护和故障率的问题。但是轮毂电机就很好地解决了这个问题。除了结构更为简单之外,采用轮毂电机驱动的车辆可以获得更好的空间利用率,同时传动效率也要高出不少。 折叠可实现多种复杂的驱动方式 由于轮毂电机具备单个车轮独立驱动的特性,因此无论是前驱、后驱还是四驱形式,它都可以比较轻松地实现,全时四驱在轮毂电机驱动的车辆上实现起来非常容易。同时轮毂电机可以通过左右车轮的不同转速甚至反转实现类似履带式车辆的差动转向,大大减小车辆的转弯半径,在特殊情况下几乎可以实现原地转向(不过此时对车辆转向机构和轮胎的磨损较大),对于特种车辆很有价值。 便于采用多种新能源车技术 新能源车型不少都采用电驱动,因此轮毂电机驱动也就派上了大用场。无论是纯电动还是燃料电池电动车,抑或是增程电动车,都可以用轮毂电机作为主要驱动力;即便是对于混合动力车型,也可以采用轮毂电机作为起步或者急加速时的助力,可谓是一机多用。同时,新能源车的很多技术,比如制动能量回收(即再生制动)也可以很轻松地在轮毂电机驱动车型上得以实现。 轮毂电机的缺点 增大簧下质量和轮毂的转动惯量,对车辆的操控有所影响 对于普通民用车辆来说,常常用一些相对轻质的材料比如铝合金来制作悬挂的部件,以减轻簧下质量,提升悬挂的响应速度。可是轮毂电机恰好较大幅度地增大了簧下质量,同时也增加了轮毂的转动惯量,这对于车辆的操控性能是不利的。不过考虑到电动车型大多限于代步而非追求动力性能,这一点尚不是最大缺陷。 电制动性能有限,维持制动系统运行需要消耗不少电能 现在的传统动力商用车已经有不少装备了利用涡流制动原理(即电阻制动)的辅助减速设备,比如很多卡车所用的电动缓速器。而由于能源的关系,电动车采用电制动也是首选,不过对于轮毂电机驱动的车辆,由于轮毂电机系统的电制动容量较小,不能满足整车制动性能的要求,都需要附加机械制动系统,但是对于普通电动乘用车,没有了传统内燃机带动的真空泵,就需要电动真空泵来提供刹车助力,但也就意味了有着更大的能量消耗,即便是再生制动能回收一些能量,如果要确保制动系统的效能,制动系统消耗的能量也是影响电动车续航里程的重要因素之一。 此外,轮毂电机工作的环境恶劣,面临水、灰尘等多方面影响,在密封方面也有较高要求,同时在设计上也需要为轮毂电机单独考虑散热问题。

新能源电动汽车用轮毂电机技术思考

新能源电动汽车用轮毂电机技术思考 发表时间:2019-01-15T15:39:55.390Z 来源:《基层建设》2018年第34期作者:周厚桥[导读] 摘要:结合实际,对新能源电动汽车用轮毂电机技术进行分析,首先探讨电动汽车驱动方式比较,其次对轮毂电机驱动方式的经济性进行比较,最后总结了新能源电动汽车用轮毂电机技术要点,希望分析后能给相关人员提供参考。 江苏金彭车业有限公司江苏 221000摘要:结合实际,对新能源电动汽车用轮毂电机技术进行分析,首先探讨电动汽车驱动方式比较,其次对轮毂电机驱动方式的经济性进行比较,最后总结了新能源电动汽车用轮毂电机技术要点,希望分析后能给相关人员提供参考。 关键词:新能源;电动汽;车用轮毂;电机技术 0前言 随着社会的高速发展与社会的进步,煤炭、石油、天然气等能源的逐渐应用,其资源产量的逐渐下降,所排放出的废气却非常多,给环境造成了巨大的影响,比如光化学污染、酸雨、臭氧层破坏等问题日益严重,严重的威胁了人们的身体健康。当前的人们对于环境问题的重视程度比较高,在全社会中都逐步的实施产业结构调整,低碳、绿化的生产方式逐渐被提倡,这也符合了节能环保工作的需要,同时也是实现可持续发展的重要举措。 1 电动汽车驱动方式比较 1.1 传统内燃机汽车驱动模式 传统内燃机的驱动形式中,是通过内燃机产生动力进行车辆的驱动,发动机所产生机械动能来驱动车轮运动,其整个机械结构构造比较大、质量较大、噪声非常大、组成部分复杂、维修比较困难、空间较为紧张,最为关键的就是需要使用石油等资源来进行驱动,这是传统汽车驱动方式的主要缺陷。 1.2 新能源电动汽车驱动模式 新能源电动汽车在驱动中主要采用的是集中电机驱动、轮边驱动以及轮毂驱动等基本的形式。集中电机驱动的方式与传统汽车的驱动方式并不存在明显的差异,只是将传统汽车中的发动机转换成为电动机来进行车辆的驱动。这种驱动形式的整体改变较小,技术方面改造也比较容易,所存在的缺陷也比较明显,就是传递效率无法提升,电能消耗量巨大。而当前的动力电池技术却相对比较差,容量也比较小,续航里程比较短,这些限制了整个行业无法实现快速的发展。 轮边电机是当前主要应用的驱动形式,此时可以将电动机直接与减速器连接起来安装在车轮的内部结构中,技术方面比较简单,可以减少缩减传动结构,减少车身重量、提升工作效率。 轮毂电机的主要结构就是将集成动力系统、传动系统以及制动系统全部安装在汽车轮毂结构中,减少了到车轮中传输的动力结构,也就是离合器、变速器等等结构,系统结构实现了更加的简化,可以大大提升传动效率,避免电池过度的消耗,乘用空间也能够大幅提升,所以给未来发展带来了巨大的契机。同时,该电机结构形式可以更好的进行汽车结构布置,还能够更好合理的进行系统控制,只是通过电动机的控制就能够完成启动、加减速等操作,还能够利用计算机进行有效的控制,可以更好的实现汽车性能的提升,整体的操作更加的平顺。但是轮毂电机的运行环境比较恶劣,制动过程中也会产生高温的状况,且雨水的存在也能够导致潮湿、震动等方面,所以对于电机质量要求比较高。 2 轮毂电机驱动方式 轮毂电机的驱动方式主要就分为减速式与直接驱动的方式。减速轮毂电机的主要的组成形式就是内转子形式,可以通过系统结构来实现达到行星齿轮等来进行减速,在轮毂电机在高速旋转的过程中来达到减速增矩的需要,为了可以给汽车提供持续、稳定的动力,其技术优势非常的明显,工作效率也比较高,且结构比较小,不会占用较大的空间,特别是在低速运行的过程中,可以更好的实现转矩的稳定输出。但是机械齿轮在高速运行的过程中,会造成结构部分的大力磨损,就会导致工作效率比较低,故障率比较高,运行的噪声也比较大。 而轮毂电机直接驱动方式主要采用的是外转子结构形式,因为在设计中直接优化了机械结构部分,所以动态响应速度比较大,可以更好的提升工作效率。较之减速式结构形式,直接驱动的轮毂电机结构尺寸比较大,但是其故障发生率比较低,可以在日常运行中实现维护、保养更加便捷,但是机械设计中所存在的缺陷问题,整体设计成本比较高,具体的两种电动机优缺点详见下表1所示。 3 轮毂电机技术特点 轮毂电机因为其具备独特的特性和功能,其主要具备如下的技术特点:恒转矩高转矩低转速、恒功率高转速低转矩,并且具备有可调范围比较大、转矩密度大以及工作效率比较高等优势,可以有效的实现制动与能量回馈。在实践中主要分为如下几种形式: 3.1 直流电机 该电动机是最为基础与简单的轮毂电机的形式,因为长期的应用,所以其技术非常的成熟。直流电机在应用的过程中可以实现更加稳定的动力输出与电机控制,在应用电枢控制与弱磁控制中可以满足汽车稳定运行的需要,可以更好的获取稳定的转矩和较高的转速。但是所有的直流电动机全部存在的缺陷就是电刷实现换向,在应用中会造成极为严重的磨损问题,所以其使用寿命会比较低,维护成本非常高。 3.2 异步电机 异步电机的成本相对来说比较低,且结构构造相对比较简单,还能够满足降噪与延长寿命的需要。但是也存在很多的缺陷和问题,最为严重的就是调速性较差,无法大道轮毂电机对于启动、制动等方面的要求。 3.3 永磁电机

电动车轮毂电机及其电传动系统简析

电动车轮毂电机及其电传动系统简析 雷王宏永济电机厂 内容摘要:介绍了美国德莱赛公司170D电动车(电动轮卡车)的电传动系统,并对其轮毂电机、谐波同步发电机这两个大部件的结构特点作了简要分析。 关键词:电动车轮毂电机发电机 EV 一、前言 目前,在我国山西平朔安太堡露天煤矿,因其特殊的作业形式,煤的运输周转是使用大吨位运煤装卸卡车,这些卡车为进口美国德莱赛公司的电动车(型号有170D等几种),载重量达150吨,时速最高可达30公里/小时,这在我国目前还是独一无二。 电动轮卡车外形像一辆大翻斗汽车,其牵引传动控制系统与一般内燃机车的有很大相似之处,但又有特殊性,特别是其特有的电动轮胎别具特色,笔者在此结合对776电动轮大修中遇到的部分零部件实物,并结合对搜集的一些零散外文资料的阅读和规整,对它们作以简要系统的介绍,以供同行共同探讨。 二、传动控制系统 1.系统分析

整个车的动力来源为燃油发动机,主要有美国的卡特发动机、康明斯发动机等几种型号。我们以170D车为例,其装配的传动控制系统均为美国GE公司的配套装置,有关发动机、发电机、电动轮,整流控制柜等的布置示意图如下: 系统硬件布置示意图 1----发动机 2----发电机 3----整流及控制柜 4---- 电阻制动柜 5----电动轮 6----风机 由示意图可见,发动机---同步发电机机组安装在司机室下方,维修时可整体由卡车前方出入,电动轮分别安装在翻斗下方左右两侧,司机室的后面是电气控制柜。实际上,在翻斗下方的中部还安装有液压系统,液压泵在中间,其两侧为油箱,液压系统主要是控制翻斗箱的起落,在此不予赘述。 卡车制停时,司机可通过脚踏板控制刹车盘,其安装在电动轮换向器端(结构示意图见后),同时也可借助电阻制动协助卡车制停。

新能源汽车轮毂电机直驱技术发展趋势【最新版】

新能源汽车轮毂电机直驱技术发展趋势 随着国内石油能源紧张以及环境污染的日益加剧,采用新能源汽车替代传统燃油车成为今后国内汽车行业主要的发展方向。随着政府政策的大力支持和各大主机厂的广泛宣传,近些年新能源汽车特别是纯电动汽车和插电式混合动力汽车受到了大量消费者的青睐。同时,分布式驱动系统作为区别于中央驱动的另外一种驱动方式,也受到了广泛关注。 其实早在1900年,费迪南德保时捷就把轮毂电机技术应用到了汽车制造上,首先制造出了前轮装备轮毂电机的电动汽车。但是受制于当时的电池寿命等原因,该技术并未得到广泛应用。直到20世纪70年代,轮毂电机技术逐步在矿山运输车等专业领域得到应用。目前市面上生产销售的电动自行车,多采用轮毂电机直驱方案,但该电机功率小、扭矩低,并不能满足乘用车的动力要求。 图1:早期装载轮毂电机的汽车 随着电机技术的不断发展,国外已有几家企业,如Protean、Elaphe 和e-Traction等设计了适用于乘用车和商用车的轮毂电机产品。但笔者认为乘用车应用门槛高、产品验证周期长,对系统的安全性、可靠性和耐久性等要求高,同时采用轮毂电机直驱系统对现有底盘平台的

颠覆太大,短期内轮毂电机并不会在乘用车上首先实现批量生产。但其高效的驱动形式、紧凑的结构设计和灵活的控制方式,在商用车、专用车和无人驾驶等领域应该会先于乘用车得到广泛的应用。本文主要针对商用车、专用车和无人驾驶平台,阐述和分析采用轮毂电机直驱系统的优势和目前还需克服的技术难题,也希望和大家共同探讨分布式驱动系统的应用前景。 一.商用车和物流车领域 现代物流业作为国民经济的基础产业,也间接推动了物流车行业的发展。物流配送主要可分为城际物流和同城物流:由于受到续航里程和充电时间的限制,目前用于城际配送的物流车基本采用传统的柴油车,今后可以重点发展串联式混合动力或者燃料电池物流车来解决里程焦虑和充电问题,不论哪种形式均可采用轮毂电机后驱方案;但对同城物流来说,国内很多大城市都限制燃油物流车进入市区,故同城物流配送采用纯电动物流车替换如依维柯、全顺、海狮等车型将成主要趋势。 目前市面上大部分的纯电动物流车都是在传统柴油车的基础上改装而来,采用中央电机替换柴油发动机,整车质量重、底盘离地间隙高、载重量和装载空间有限、能耗高,不能满足物流行业对于车辆大装载空间、高载重比和长续航的需求。如采用分布式驱动系统,可

轮毂电机及其电动车技术发展

1 2 3 4 5

1 前言 随着能源短缺和环境污染形势日渐恶化,新能源汽车已成为世界各国的重点研发领域。 电动车作为最主要的新能源汽车类型,电驱动技术是其核心技术之一。 随着电池、电机等电动车相关技术的日渐成熟,产品级电动车已经实现量产化,轮毂电机以其突出优势,得到国内外整车及零部件厂商持续的关注和研发投入。 本文对轮毂电机进行概述,说明其技术优势和难点,对当前主流轮毂电机产品及其驱动的电动车进行综述,总结由轮毂电机引发的技术发展趋势。

轮毂电机将2个或多个电机集成于轮毂内部,驱动形式可分为减速驱动和直接驱动。 减速驱动型轮毂电机多采用内转子结构实现减速驱动,由于电机转速高,需要配置减速器降低输出转速并增加转矩,以适应车轮的输出需求。 直接驱动型多采用外转子结构实现直接驱动,无需减速机构,可实现驱动系统轻量化,但装备直接驱动轮毂电机的电动车在起步时,转矩从零开始上升,导致加速性较差。 两种驱动形式的优缺点如表1所示。 直流电机、永磁无刷直流电机、开关磁阻电机、异步电机、永磁同步电机等均可用于研发轮毂电机。 目前先进轮毂电机多采用效率高、功率密度大、可靠性好的永磁同步电机。

表1 不同类型轮毂电机优缺点对比 减速驱动类型的轮毂电机按照减速机构类型,又可分为同轴摆线减速器式轮毂电机、同轴行星齿轮减速器式轮毂电机和偏轴式轮毂电机。

2.2 轮毂电机和轮毂电机电动车优势 轮毂电机作为电动车动力源,本身具有一系列优势,包括:响应速度快、转矩控制精度高、可提供驱动和制动转矩、可独立进行转矩控制、使用寿命长等。 轮毂电机直接安装于驱动轮内,无需设计变速器、万向传动装置、差速器等传统传动部件,将给电动车底盘设计与控制带来巨大变革和优化,包括: (1)系统效率提高,轮毂电机驱动系统比集中式电机驱动效率高出10%以上; (2)转矩响应精度高、响应速度快,可实现分布式驱动轮独立控制; (3)底盘布置自由度高,整车轻量化程度大幅提高;是混合动力汽车、纯电动汽车、燃料电池汽车的优选动力源; (4)有利于实现更加优化的分布式驱动、制动控制,更便于自动驾驶上层控制策略的实现。

轮毂电机在电动车应用概述

1 轮毂电机系统的概念与应用领域 轮毂电机系统是本文提出的概念。通常,人们称其为轮毂电机,也有的研究者称其为轮式电机、车轮电机或者电动轮,英文名称以“in-wheel motor”居多,也有称“wheel motor”和“wheel direct drive motors”的。实际上,以上称谓严格来说都是不准确的。“轮毂电机、轮式电机和车轮电机”都侧重于电机,而“电动轮”侧重于车轮。若从系统观点出发,我们所指确切应为驱动电机和车轮紧密集成而形成的一体化的多功能系统,即为“integrated motor and wheel system”。为了方便起见,本文对已经被工程界广泛应用的“轮毂电机”和“in-wheel motor”稍作修改,以“轮毂电机系统”和“in-wheel motor system”作为中英文称谓。 轮毂电机系统在各种交通工具中都有应用。不同的应用场合对轮毂电机的结构型式和技术性能等都提出了不同的要求,相应的产生了各种轮毂电机系统及其特色技术。本文的主要研究对象是汽车用轮毂电机系统。 2 轮毂电机系统的发展历史 轮毂电机系统的诞生可以一直追溯到电动汽车诞生的初期,而轮毂电机在电动汽车上的广泛应用主要集中在近几年的概念车上。 最早见诸于文献的有关轮毂电机及其应用来自于著名汽车公司保时捷的创始人保时捷(F. Porsche)。1900年,保时捷研制了两个前轮装备轮毂电机的前轮驱动双座电动汽车,并在电动汽车比赛中取得了最好的成绩。图2所示为保时捷研制的轮毂电机驱动电动汽车。值得引起注意的是,保时捷在1902年就研制出了采用发动机和轮毂电机的混合动力汽车,取得山地汽车拉力赛的好成绩。1910年,保时捷研制了军用陆地列车,最前面的机车装备发动机和发电机,后面的10辆列车利用轮毂电机驱动(图3)。可以说,保时捷是基于轮毂电机的电动汽车和混合动力汽车之父。 20世纪50年代,美国人罗伯特发明了电动汽车轮毂,并申请了专利。1968年这种轮毂被通用电器公司应用在大型矿用自卸车上。采用轮毂电机的电动汽车具有一个明显的优点,就是可以采用采用扁平的车架结构,因此在需要频繁上下车的城市公共交通客车上大量应用。图所示为许多汽车公司研制的低车架和低地板公交车上应用的轮毂电机结构。 轮毂电机系统驱动作为电动汽车的一种重要驱动形式,得到了各大汽车厂商和组织的重视。自90年代起,日本就推出了一系列轮毂电机系统驱动的电动汽车,如TEPCO的IZA,NIES的Eco,Luciole等等,最近又有三菱的Colt、Lancer Evolut MIEV,本田的FCX concept等新车型。通用自2002年开始推出的概念车AUTOnomy(自主魔力)、Squel采用的都是轮毂电机系统驱动。与此同时,各大厂商加大了对轮毂电机系统的研发力度,高性能的新型轮毂电机系统不断涌现,轮毂电机的门

2017年中国轮毂电机行业市场分析报告

2017年中国轮毂电机行业市场分析报告

目录 第一节轮毂电机简介 (4) 第二节轮毂电机主要特点 (6) 一、轮毂电机优势一:提高整车空间利用率 (6) 二、轮毂电机优势二:提高传动效率有效节能降耗 (7) 三、轮毂电机优势三:驱动模式革命性变化 (8) 四、轮毂电机优势四:降低整车设计、制造成本 (8) 五、轮毂电机存在的问题 (9) 第三节轮毂电机市场和主要厂商 (11) 一、轮毂电机的应用 (11) 二、轮毂电机的应用典范:比亚迪K9 (12) 三、轮毂电机厂商 (13) 第四节轮毂电机重点公司分析 (16) 一、亚太股份 (16)

图表目录 图表1:轮毂机的发展历程 (4) 图表2:轮毂电机的结构形式 (4) 图表3:轮毂电机的驱动方式 (5) 图表4:轮毂电机本体:永磁同步电机未来趋势 (5) 图表5:轮毂电机的优势一 (6) 图表6:整车动力系统架构拓扑图 (7) 图表7:轮毂电机驱动模式 (8) 图表8:轮毂电机的整车设计 (8) 图表9:轮毂电机安装在汽车轮毂内部 (9) 图表10:轮毂电机驱动转矩控制复杂 (10) 图表11:轮毂电机的应用:国外车企积构储备轮毂电机车型技术 (11) 图表12:轮毂电机的应用:国内车企与国际企业基本处于同一水平 (11) 图表13:轮毂电机的应用典范:比亚迪K9 (12) 图表14:轮毂电机厂商一:Elaphe (13) 图表15:Elaphe推出的众多系列化轮毂电机 (13) 图表16:轮毂电机厂商二:Protean (14) 图表17:公司主要合作车型 (14) 图表18:轮毂电机厂商三:米其林 (15) 图表19:载米其林轮毂电机 (15) 图表20:轮毂电机厂商四:成都联腾 (15) 图表21:公司主要客户 (16) 图表22:亚太股份投资看点 (16) 图表23:抢占智能电动汽车核心零部件桥头堡 (17) 表格目录 表格1:公司陆续开发的多款产品 (13)

一种电动车轮毂电机

一种电动车轮毂电机 作者:暂无 来源:《电动自行车》 2017年第11期 著录项 申请号:CN201621318582.9 申请日:20161202 公开(公告)号:CN206180760U 公开日:20170517 申请(专利权)人:温岭市九洲电机制造有限公司 发明人:钟治平,付开强 主分类号:H02K7/00 分类号:H02K7/00,H02K5/04,H02K1/16,B60K7/00 摘要 本实用新型涉及一种电动车轮毂电机。本实用新型的一种电动车轮毂电机,包括:定子总成、转子总成、电机轴和端盖。轮辋上具有用于安装气门嘴的气门嘴安装孔,端盖固定在轮辋上,端盖的外周边缘上具有与气门嘴安装孔位置相对且供气门嘴穿出的缺口,定子铁芯外径为 205.01~212 mm。其有益效果是:通过在外周边缘上设计缺口,并通过对缺口的位置进行合理布置,使得气门嘴在安装时能够从缺口穿出使得气门嘴的安装位置不会发生偏差,进而使得气门嘴的密封效果不受影响。本实用新型的定子结构合理优化了电机磁路设计中的电功率与磁功率,避免了因电机在短时过载出现急剧发热的现象,防止了绕组绝缘层被破坏和霍尔位置传感器失效的问题,增加了电机的使用寿命。 权利要求 1. 一种电动车轮毂电机,包括:定子总成、转子总成、电机轴和端盖。所述转子总成包括轮辋、固定在轮辋内周的导磁环和设置在导磁环内壁上的永磁体,定子总成包括定子铁芯和支架,定子铁芯固定在支架上,电机轴穿设在支架的安装孔内;所述轮辋上具有用于安装气门嘴的气门嘴安装孔;所述端盖固定在轮辋上。其特征在于:所述端盖的外周边缘上具有与气门嘴安装孔位置相对且供气门嘴穿出的缺口;所述定子铁芯外径为 205.01~212 mm,定子铁芯槽的槽口宽度与定子铁芯外径、定子铁芯内径、定子铁芯的轭部厚度、定子铁芯槽数满足以下关系:定子铁芯槽的槽口宽度=(α+ 定子铁芯的单层硅钢片厚度的数值)×π×(定子铁芯外径 - 定子铁芯内径 - 定子铁芯的轭部厚度)/ 定子铁芯槽数。其中:α 的取值范围是 0.31~0.89;α+ 定子铁芯的单层硅钢片厚度的数值为 0.9~1.2。 2. 根据权利要求 1 所述的一种电动车轮毂电机,其特征在于:端盖上设置的缺口的体积占端盖总体积的 0.01%~2%。 3. 根据权利要求 1 所述的一种电动车轮毂电机,其特征在于:所述端盖上还设置有与供气门嘴穿出的缺口对称的另一缺口,两个缺口以端盖的中心点形成中心对称。 4. 根据权利要求 1 所述的一种电动车轮毂电机,其特征在于:所述缺口为弧形凹口、半圆形凹口或者方形凹口。 5. 根据权利要求 1 所述的一种电动车轮毂电机,其特征在于:所述轮辋内周上具有呈环状的导磁环;所述端盖固定在导磁环的端面上;所述缺口的底部与导磁环内壁之间的距离为 1.2~7.5 mm。

相关主题
文本预览
相关文档 最新文档