当前位置:文档之家› 加氢反应器发展史

加氢反应器发展史

加氢反应器发展史
加氢反应器发展史

《文献综述》结课作业题目:鼓泡床加氢反应器的研究进展

学生姓名:

学号:

专业班级

指导教师:

2014年 9月1日

鼓泡床加氢反应器的研究进展

摘要

综述了我国炼油加氢反应器研制建造,发展历程和取得的成就,指出国内加氢反应器制造技术在以下几方面所面临的挑战: 压力容器新标准的颁布实施,需亟待完善加氢设备用材料的基础性能数据; 超大厚度和超大型筒节锻件及设备制造技术有待进一步完善; 尽早开展加氢反应器服役后的材料性能研究,为即将到来的设备延寿做好技术准备关键词:加氢反应器;材料;技术;进展

Research progress of bubbling bed hydrotreating reactor

Abstract

Review our refinery hydrogenationreactor designconstruction, development and achievements, pointed out that the manufacturing technology of domestichydrogenation reactor in the following aspects: thechallenge of new pressure vessel standards promulgated and implemented, needs to be perfected with theperformance data based hydrogen equipment; large thickness and super large cylinder forgings andequipment manufacturing technology to be further improved; as soon as possible to carry out and Study on material properties of the hydrogenation reactor after service, to prepare for the upcoming equipment life.

Keywords:Hydrogenation reactor; Material; technology; Progress

目录

第1章引言 (1)

第2章鼓泡床加氢反应器概述 (2)

2.1 加氢反应器的发展史 (2)

2.2 加氢反应器各阶段特点 (2)

2.2.1 加氢反应器发展第一、二阶段特点 (2)

2.2.2 加氢反应器发展第三、四阶段特点 (3)

第3章加氢反应器各方面技术新进展 (4)

3.1 加氢反应器设计及材料的技术进展 (4)

3.1.1设计方面的进展 (5)

3.1.2材料方面的进展 (5)

3.2 加氢反应器制造过程中应用的新技术 (5)

3.2.1 中空锻造成形技术 (6)

3.2.2 焊接与堆焊技术 (6)

3.2.3 丝窄间隙焊接技术 (6)

3 .2.4 多头堆焊技术及宽焊带堆工艺 (6)

3.2.5 单层堆焊代替双层堆焊技术 (6)

第4章加氢反应器在我国的应用现状及存在的问题 (6)

4.1加氢反应器在我国的应用现状 (7)

4.2加氢反应器存在的问题 (7)

第5章结论 (8)

参考文献 (9)

第1章引言

第1章引言

在炼油工业中,采用高温高压加氢精制技术已有近半个世纪的历史。随着加氢裂化和加氢脱硫等工艺的改进,轻质油品需求量的增加,重质原料油的裂解精制,防止大气污等的需要,该项工艺技术在不断进步,带动了加氢精制装置和加氢裂化装置中的核心设氢反应器制造技术的改进提高和材料的更新换代。由于目前在役的加氢反应器已经使用多年,出现了一些问题,越来越多的人开始重视其检修和延寿的技术。

从53 世纪43 年代初开始,国内石油石化’冶金和机械等部门的一些科研’设计’制造和生产单位在原来的石油工业部和后续的中国石化总公司的组织领导下,组成了热壁加氢反应器联合攻关组,在消化吸收国外引进技术’跟踪国外技术发展’热壁加氢反应器国产化方面取得了巨大的进步,满足了国内炼油工业发展对加氢反应器的需要$通过联合攻关,从./41 年国产5> 56,\O.ND钢锻焊结构热壁加氢反应器见证件通过鉴定,继而开展国内首台锻焊结构热壁加氢反应器研制起,国内加氢反应器取得了一系列里程碑式的进步$./40 年中国一重由于参与联合攻关所取得的成果,通过()g 的考察认可,于./44 年以反承包形式与()g 合作完成了齐鲁石化重油加氢反应器的制造$这一合作进程又进一步推动了我国热壁加氢反应器技术的进步,./4/ 年,首台由我国自行设计研究并用国产材料制造的锻焊结构热壁加氢反应器顺利出厂,并投入装置运行$该反应器重达553 G,内径. 433 EE,筒体壁厚.63EE,壳体材料5> 56,\O.ND i QX> 210( 最小有效堆焊层厚度2 EE ) ,长度55 333 EE,设计压力53> .7 NXL,设计温度163 h $从./4/ 年6 月投用至今已55 年,运行正常$经多次在役外观检测与无损检验,无异常现象[5].//3 年以后又相继完成了133 G,673 G,. 333 G 级的5> 56,\O.ND 钢锻焊结构热壁加氢反应器的设计制造任务53 世纪/3 年代国外推出了在传统5> 56,\O.ND 和2,\.ND 钢基础上添加矾的改进型,\ND钢$由于新型加矾钢的卓越性能,在提高材料强度的同时,还显著地提高了抗氢腐蚀’氢脆’回火脆性及堆焊层剥离的能力。

本文综述了我国炼油加氢反应器研制建造,发展历程和取得的成就指出国内加氢反应器制造技术在以下几方面所面临的挑战: 压力容器新标准的颁布实施,需亟待完善加氢备用材料的基础性能数据; 超大厚度和超大型筒节锻件及设备制造技术有待进一步完善;尽早开展加氢反应器服役后的材料性能研究,为即将到来的设备延寿做好技术准备。

第2章鼓泡床加氢反应器概述

2.1 加氢反应器的发展史

有人把加氢反应器的发展分为4个阶段[1~3]:

第一代从1963年日本制钢所正式生产第一台加氢反应器为标志,早期是Cr -M 钢板(量用锻件)内壁加不锈钢复合板焊接完成,70年代前后用内壁堆焊不锈钢的板焊或锻焊结构所代替。70年代后期我国开始引进加氢裂化装置。

第二代是改良期,由于材料脆化造成的事故,开始研究回火脆化问题,并控制J 系数≤300、250、180、150(%)。

第三代是成熟期,制造技术逐渐成熟, J系数≤130。这个时期国内开始制造锻焊结构加氢反应器,1983年由洛阳院、一重厂、抚顺石油三厂、北钢院、合肥通用所五家组成的联合攻关组研制2.25Cr-1Mo钢反应器材料和制造工艺,1986年制成模拟环锻件,1989年由抚顺石油三厂生产出我国第一台锻焊结构的加氢反应器-筒体壁厚150mm、内径1800 mm、内壁单层堆焊、单重220 吨、设计温度450℃、设计压力20.6MPa。

第四代是更新期,对服役20多年的设备进行更新,同时又满足新的加工工艺和大型化的要求,不断开发新钢种,如2.25Cr-1Mo-V,3Cr-1Mo-V-Ti-B3Cr-1Mo-V-Nb-Ca,3Cr-1Mo-1/4V,2Cr-1Mo-1/4V 等,以加V为主进行更新。2.25Cr-1Mo钢的J系数≤100(%)。

2.2 加氢反应器发展各阶段特点

伴随新技术、新工艺的不断出现,加氢反应器·在不同阶段具有不同的特点,总体呈现精细化、高效化。

2.2.1加氢反应器发展第一、二阶段特点

第一代处于裂解、脱硫等石油炼制工艺的引进期,这个时期的特点是:反应器的封头为拼焊结构;反应器壳体初期内衬不锈钢筒逐渐发展为后期用不锈钢的带极堆焊方法进行内壁堆焊不锈层;反应器壳体材料用Cr—Mo钢钢板及锻件的J系数没有要求;反应器收口筒节(下筒节)通过锻造环经机械加工而成;反应器用Cr—Mo钢锻件初期采用正火(奥氏体化后空冷)+回火的热处理工艺,使锻件的强度低于钢板的强度,并体现在标准中,对于板焊结构的反应器来说由于壳体既有钢板又有锻件,所以是不利的,随着科

研工作的深入到后期将Cr-Mo钢锻件才用正火(奥氏体化后水冷——用尽可能大的水冷强度)+回火热处理工艺,使锻件的强度达到了钢板的技术指标;冲击性能的试验温为+10 oC、验收指标AKv,>55J(允许一个最低值一>47J)。这个时期的反应器简体最大壁厚260 mm、单台最大重量500t。3加氢反应器发展第二阶段的特点

第二代处于对第一代产品在制造中存在的问题和在使用中发现的损伤问题进行科研攻关并得到解决的改良期,这个时期的特点是:反应器的封头为整体结构——用一张钢板或一块锻板冲压成形;场组焊技术开发研究成功,在第二代初期就得到了应用,解决了500-800t反应器不能运输的问题,并建立了工地焊接、焊后热处理、射线检查、水压机试验的现场施工方法,这一时期用现场组焊方法制造的最大重量的反应器单台重为814 t(筒体壁厚251 mm);在役设备的损伤主要表现之一的材料脆化造成脆性破坏事故,经过研究分析导致事故的原因主要是Cr-Mo钢母材和焊缝有明显的回火脆化倾向性,通过采用抗回火脆化效果较好的VCD法冶炼的低硅Cr-Mo钢,并对钢材中的J系数提出要求,由初期规定的_,≤300%)过渡到.,≤250(%)再发展到后期的_,≤180(%);回火倾向性评定vTr54+2.5△v1’r54≤+38 oC;在制造技术上开发了用收口套锻造下筒节的技术;在役设备的损主要表现之一的壳体内壁不锈钢堆焊层的氢致剥离问题,经过试验研究通过采用高速度、大电流堆焊内壁不锈层的方法来解决;冲击性能试验温度由初期的0 oC依次降到一7℃、-15 oC,试验指标不变仍为AKv,>55J(允许一个最低值≥47J);壳体环焊缝及接管焊缝都采用自动化焊接技术。这个时期反应器简节最大厚260 mm、单台最大重量850t。

2.2.2加氢反应器发展第三、四阶段特点

第三代处于第二代时期所建立起来的若干改良技术进一步完善与提高的过程,建立了生产周期短、可靠性高、价格低的反应器制造体系,标志着反应器的设计、制造进入了成熟期。这个时期的特点:对钢材中J系数的要求进一步提高,J系数由初期的150降低到后期的130;冲击性能的试验温度继续降低至初期一20℃,随后又降低到一30℃,验收指标同第二代一样,AKv≥55J(允许一个最低值≥47J)。这个时期反应器筒体最大壁厚282 mm、单台最大重量为1 150t。中国第一重型机械(集团)有限责任公司、北京钢铁研究总院、抚顺石油三厂、中国石化洛阳工程公司(设计院)、机械部通用机械研究所等五家单位组成的课题组从1983年1月开始进行2÷Cr-lMo钢反应器材料及其制造工艺研制,用28 t锭锻造出01 745 mm/01 360 mmx2 200 mm的简体模拟件,1986年取得成功。首台为抚顺石油三厂制造了一台2士Cr一1Mo钢锻焊结构的、内壁单层堆焊

的加氢反应器——简体壁厚150 mm、内径01 800 mm、反应器总长22 000 mm、单重220t;与此同时与日本制钢研究所合作为齐鲁胜利炼油厂制造了一台2÷Cr一1Mo钢锻焊结构的、内壁双层堆焊的加氢反应器——简体壁厚231 nlln、内径03505mm、反应器切线长为4 415 lnnl、单重182t。

加氢反应器发展第四阶段的特点第四代是对长期服役20多年的退役反应器进行设备更新,同时为满足新的精制和裂化工艺流程的需要以及设备大型化的需要,开发了高强度Cr-Mo钢和添加V的改进型Cr—Mo钢,这些新钢种即使在450 oC(850 oF)以上的条件下,也能具有较高的强度,并能长期连续运转,发挥其良好的可靠性,使反应器技术进入一个新时代。美国石油学会(API)1983年制定了API/MPC高温高压临氢压力容器用材的开发计划,由材料委员会负责实施。美国钢铁协会(AISI)、美国机械工程师学会(ASME)、美国材料石油协会(ASTM)以及某些生产厂和用户的科技人员参加了这一开发计划。首先提出了高强的2士Cr一1Mo 钢,室温抗拉强度由原来的515~685 MPa,提高N585-760MPa。ASME锅炉和压力容器规范委员会于1984年以规范案例1960一I予以认可(材质为Enh.2÷Cr一1Mo)后来纳入了ASME标准。但这种高强度2}Cr-lMo钢是在普通2÷Cr-lMo钢的基础上采用了630~650oC的低温回火来提高强度的,所以在氢侵蚀、氢脆化等高温氢损伤方面存在问题,因此在反应器制上只有欧洲国家采用,美国和日本等国家不采用。

在开发高强度Cr-Mo钢的基础上,他们接着又开发了2÷C卜1Mo—V钢,1991年ASME以规范案例2098一I予以认可。现在已经正式纳入ASME标准,牌号为SA336一F22 V。由于2÷Cr 一1Mo—V钢的焊接性能差,导致相应的焊接材料(日本神户制钢)开发研制的时间比较长,所以2÷Cr一1Mo—V钢锻焊反应器的推广应用在1995年才开始。从1980年开始,日本新能源开发组织(NEDO)开始了“阳光”计划。日本制钢所开发了3Cr-lMo—V—Ti—B钢及其焊接技术,日本制钢所于1987年将该技术用于制造工程试验用3C卜1Mo—V—Ti—B钢锻焊加氢反应器,3Cr一1Mo—V —Ti—B钢经ASME以规案例1961一I予以认可后,于1988年纳入ASME相应材料标准,牌号为SA336一F3V。不久日本神户制钢开发了3Cr一1Mo—V-Nb-Ca钢,1993年ASME以规范案例2151予以认可。中国第一重型机械(集团)有限责任公司、中石化北京设计院、洛阳石化工程公司、抚顺石油三厂等多家单位组成的课题组,于1994年开始开发3Cr一1Mo一÷V材料、进行焊接工艺试验,1998年取得成功,并很快得到应用;于1999年又开始开发2÷Cr一1Mo一÷V材料、进行焊接工艺试验,2000年取得成功,并得到应用。这个时期的特点:2÷Cr一1Mo钢反应器母材的J系数≤100(%),回火脆化倾向性评定vTr54+2.5△v1'r54≤+100C;添加V的改进型Cr—Mo钢分为3Cr 一1Mo—V系列钢和2÷Cr—IMo—V系列钢,3Cr一1Mo—V系列钢比2士Cr一1Mo—V系列钢

开发应用早5年,但后者比前者的用途更广、发展前景更好。添加V的改进型Cr—Mo钢与2士Cr 一1Mo钢相比有很多的优点。因此第四代反应器主要是添加V的改进型Cr—Mo钢加氢反应器的研制应用,所以称为更新期。这个时期添加V的改进型Cr—Mo钢(3Cr-1Mo—V系列钢)加氢反应器的内径04 500 mm、最大壁厚273 mm、最大重量1 450 t;2÷Cr—lMo钢反应器最大壁厚344 rain、内径04 800 inln单台重量650t。

第3章加氢反应器各方面技术新进展

3.1 加氢反应器设计及材料的技术进展

3.1.1设计方面的进展

加氢反应器设计遵循的最重要准则是安全性,在设计观点和方法上,从以弹性失效准则为理论基础的“常规设计”发展到以塑性失效与弹性失效准则为理论基础的“分析设计”,应用流体分析模型和应力分析技术进行流体场和温度场的模拟,解决了反应器高应力区和高温度区的应力计算,大大提高了计算的准确性和使用的安全性。

3.1.2材料方面的进展

加氢反应器过去基本采用2.25Cr-1Mo 钢制造。由于加氢反应器使用条件更趋高温、高压化和大型化,从20世纪80年代开始,在2.25Cr-1Mo钢使用经验的基础上,开发成功了增强性2.25Cr-lM0钢和改进型2.25Cr-1Mo钢(2.25Cr-1Mo-0.25V和2.25 Cr-1Mo-0.25V-Cb-Ca)及改进型3Cr-1M0钢(3Cr-1 Mo-0.25V-Ti-B和3Cr-1Mo-0.25V-Cb-Ca)。增强型2.25Cr-1Mo钢通过改进热处理工艺,使抗拉强度由原来的515~690MPa 提高到585~760MPa。改进型钢在原有材料化学成分的基础上,添加0.2~0.3%的钒等元素来达到更高强度、更好的抗高温回火脆性及优越的抗堆焊层氢剥离性能,近年来得到迅速推广应用,特别是2.25Cr-1Mo-0.25V是目前制造加氢反应器的首选材料。

3.2 加氢反应器制造过程中应用的新技术

3.2.1中空锻造成形技术

目前,国内锻焊加氢反应器的壳体筒节均采用实心浇铸,通过加工去掉锻件的中央部分后锻造成形。实心浇铸锻造的筒节钢材使用率较低,制造工艺比较复杂,特别是采用实心浇铸成形的筒节,热处理工艺要求比较严格。近年来国外开发并应用了中空锻造成形技术,在浇铸时中心部分放置模具形成中空锻件,再通过锻造加工成形为筒节。采

用中空成形技术,提高了钢材的利用率.热处理时加快了筒节的冷却速度,改善了筒节的组织性能。国内近年来也在进行这方面的试验,摸索浇铸和热处理工艺。相信在不远的将来,采用中空浇铸锻造成形的筒节锻件将会应用于国内加氢反应器。

3.2.2 焊接与堆焊技术

加氢反应器的焊接技术包括母材焊接和内壁堆焊技术。母材的焊接从手工焊到自动焊,从采用常规坡口到采用窄间隙焊坡口。从采用单丝自动焊到双丝窄间隙焊接技术;堆焊技术从双层堆焊到单层和宽焊带堆焊,加氢反应器的焊接技术日趋成熟。

3.2.3 双丝窄间隙焊接技术

双丝窄间隙焊接技术是指采用两根焊丝同时进行主焊缝焊接。通过改善焊接工艺,使焊缝各项性能指标达到技术规范的要求。双丝窄间隙焊提高了焊接速度,缩短了加氢反应器的制造周期。双丝窄间隙焊在国外广泛应用于加氢反应器的制造过程中。

3.2.4 多头堆焊技术及宽焊带堆焊工艺

多头堆焊是在一个反应器筒节上采用两个以上焊机同时进行堆焊作业。多头堆焊主要解决两焊带中间搭接的问题,保证焊带搭接处过渡圆滑,堆焊层表面平整,性能满足规范要求。由于过渡层堆焊技术要求高,过渡层较少采用多头堆焊。宽焊带堆焊技术是指采用 100mm 以上的堆焊焊带(国外主要采用l20mm以上的堆焊焊带)进行堆焊,在带宽增加的情况下,通过调整焊接工艺,保证堆焊层的各项性能指标。多头堆焊和宽焊带堆焊技术的应用,提高了加氢反应器的堆焊效率,缩短了反应器的制造周期。

3.2.5 单层堆焊代替双层堆焊技术

目前国内基本上采用双层堆焊层来保证反应器的抗腐蚀性能。第一层为过渡层,主要是保证堆焊层和母材的结合强度,表面为抗腐蚀层。双层堆焊(TP 309L+TP 347)的优点为堆焊工艺成熟、堆焊质量容易得到保证,但焊材耗量大,反应器价格相对较高。通过开发新型的堆焊材料和堆焊工艺,国外单层堆焊技术得到广泛应用(约占60%)。单层堆焊(TP 309 Cb)的优点是焊材消耗量少,焊接周期短,技术要求高,经济性较好。采用单层堆焊已成为加氢反应器堆焊技术发展的主流。

目前无论是国内还是国外 , 除了个别情况 , 很少有关于加氢反应器修复的文献报道。因此 , 如果在用检验发现了严重的缺陷 , 必须准确判定缺陷的具体位置、形态、尺寸大小等, 对其成因进行分析, 由有关方面专家共同商讨处理的对策 , 决不能轻易行事。通常情况下, 通过断裂力学方法对缺陷进行安全评定 , 是有足够的安全裕度的。

第4章加氢反应器在我国的应用现状及存在的问题

4.1 加氢反应器的应用现状

我国从20世纪70年代末开始有了加氢反应器的制造技术。第一重型机器厂2002年初完成了用2.25Cr-1Mo-0.25V钢材料制造出我国第一台锻焊结构加氢裂化反应器。反应器设计压力为11.68MPa,设计温度450℃,内径Ф4000mm,切线长23300mm,壁厚150mm,堆焊层为TP309L和TP347L,总重为542吨。由中国一重大连加氢反应器制造有限公司为中石油大连石化分公司建造的1400吨的特大型加氢反应器,2007年3月在一重加氢反应器制造公司的棉花岛基地研制成功,并起运运往大石化。该加氢反应器总长46m,外围直径4.9m,是我国自主建造的最大吨位原油冶炼装备。

为获得高质量的石油加工产品或增产石油化工原料和中馏分油,以及适应高含硫原油,劣质原油深加工的需要与改善环境条件等目的,在现代化石油加工工业中出现了加氢工艺装置。与此同时,加氢反应器分为加氢精制反应器和加氢裂化反应器。加氢反应器在加氢工艺中的目的就是为原料油和氢气在催化剂和温度压力条件下进行反应提供场所。随着现代炼油技术的不断发展与提高,热壁加氢反应器以其效率高、故障率低、结构简单等独特的优点,相继在炼油厂加氢装置中投人运行,取得了很高的经济效益。八十年代以来,我国石化系统热壁加氢反应器已逐步取代了原来的冷壁加氢反应器。

4.2加氢反应器在使用过程中存在的问题

由于热壁加氢反应器主体材料面临介质腐蚀、应力腐蚀、氢腐蚀、氢脆、回火脆化和蠕变脆化等一系列问题,其危险性在逐年递增。

表4-2 加氢反应器产生的缺陷及部位

续表4-2

第5章结论

虽然我国热壁加氢反应器技术的开发比国外一些国家较晚,但在国家有关主管部门的领导下,组织了研究’设计’制造和使用单位联合攻关,充分发挥各自优势,利用较短的时间,取得了显著成绩,已具有可与世界先进技术相比拟和竞争的水平与实力今后只要坚持科学发展观,积极支持技术创新,认真落实国家提出的实现重大技术装备国产化战略任务的决策,并对前述所提出的一些建议给予足够的重视,我国加氢反应器技术一定会取得更大的成就,为整个加氢技术的发展和企业经济效益的提高做出更大的贡献。

目前,加氢反应器制造技术的改进提高和材料的更新换代正在如火如荼的进行。随着装置模不断扩大, 加氢反应器也日趋大型化。加氢反应器的大型化和其苛刻的操作条件对设备材料选择、结构设计等都提出了较高要求。因此,加氢反应器的设计改进和对在役加氢反应器的局部的改进,从而提高加氢反应器的安全性和延长加氢反应器的使用寿命越来越受到人们的关注。

参考文献

1] 张振戎,张文辉,卢庆春.加氢反应器的发展历史[J].一重技术,2004,1-3.

[2] D. M. Altrichter. Shell Chemical Company LP. New Cata-lystTechnologiesforIncreasedHydrocrackerProfitabilityand Product Quality. NPRA Annual Meeting.March 21~23,2004.3~22.

[3] Magnus Harrod. Hydrogenation of oleo chemicalsatsupercritical single-phase conditions:influence ofhydrogenand substrate concentrations on the processAppliedCatalysis A:General 210(2001)207~215.

[4] 程丽华.石油炼制工艺学.中国石化出版社,2005.

[5] 洪学立,韩冰.热壁加氢反应器的制造和检验[J].压力容器,2003,20(6)46.

[6] 王天普.石油化工设备维护检修技术.中国石化出版社,2005.

[7] 王学川.带缺陷加氢反应器的安全评估[J].无损探伤,2002(6):31~33.

[8] 王淑贤.热壁加氢反应器常见缺陷与防治措施[J].氯碱工业,2002(7):3745.

[9] 于利春.加氢裂化反应器损伤分析及对策[J].中国化工装备.

[10] 谢孝文.加氢精制反应器焊接缺陷安全评定[J].石油化工设备技术,2005,26(1) :31~38.

11] 陈颖锋.加氢精制反应器的检验与分析[J].压力容器,2001,18(1):75~78.

[12] 偶国富.国产化加氢裂化装置反应器的运行和首次检验[J].炼油设计,2000,30(5):14~19.

[13] 袁耀如.加氢反应器制造与使用中的问题及对策[J].石油化工设备,2004,33(2):70~72.

[14] 张国信.对加氢反应器国外制造商的考察报告[J].炼油技术与工程,2005,35(8):24~27.

[15] 李超.国内外加氢技术特点及发展趋势[J].石油规划设计,2004,15(6):5~8.

[16] 陈建玉,袁榕.热壁加氢反应器深厚焊缝的TOFD检测技术[J].压力容器2004,21(8):46~48.

[17] 廖景娱.金属构件失效分析,化学工业出版社,2003.

[ 18] 魏新利, 吴金星.压力容器现代设计与安全技术, 化学工业出版社, 2004.

[ 19] 张兴福, 宣鸿彬, 王东.裂解汽油加氢反应二段反应器裂纹分析和修复[ J] .化工设备与防腐蚀;2003 (2):24-26.

[ 20] 蔡萍, 尹彩霞, 王钦, 张亮, 王小莉.加氢反应器管板与壳体焊接接头裂纹返修[ J] .石油化工设备, 2006, 35(4):64-65.

[ 21] 郑春华.PD一201加氢反应器腐蚀原因分析及修复[ J] .石油化工技术经济, 2007, 23 (3):50-58.

[22.]李大东> 加氢处理工艺与工程[N]> 北京: 中国石化出版社,5331: 23O20> [23]黎国磊> 我国高压加氢设备国产化的成绩及面临的挑战[(]>石油化工设备,.//0,57( 2) : 4O.3>

[ 24] 刘学立, 韩冰.热壁加氢反应器的制造和检验[ J] .压力容器, 2003, 20 (6):46 -50.

[ 25] 王淑贤.热壁加氢反应器常见缺陷与防治措施[ J] .氯碱工业, 2002 (7):37-45. [ 26] 鄂运中.R301加氢精制反应器缺陷的安全性评价[ J] .炼油与化工, 2003, 14 (2):24-26.

[ 27] 谢孝文.加氢精制反应器焊接缺陷安全评定[ J] .石油化工设备技术, 2005, 26 (1):31-38.

[ 28] 陈颖锋.加氢精制反应器的检验与分析[ J] .压力容器,2001, 18 (1): 75 -78. [ 29] 偶国富.国产化加氢裂化装置反应器的运行和首次检验[ J] .炼油设计, 2000, 30 (5):14-19.

[ 30] 袁耀如.加氢反应器制造与使用中的问题及对策[ J] .石油化工设备, 2004, 33(2):70 -72.

[ 31] Roger Bate, Sandy Shrum, CMM Integration Framework[J], CMU/SEI Spotlight。

加氢反应器设计

加氢反应器的设计 一:加氢反应器的设计背景 工程科学是关于工程实践的科学基础,现代过程装备与控制工程是工程科学的一个分支,因此,生产实习是工科学习的重要环节。在兰州兰石集团实习期间,对化工设备的发展前景和各种化工容器如反应釜、换热器、储罐、分液器和塔器等的有所了解和学习。生产实习的主要任务是学习化工设备的制造工艺和生产流程,将理论知识与生产实践相结合,理论应用于实际。因此,过程装备与检测的课程设计的设置是十分必要的。由于我们实习的加工车间正在进行加氢反应器的生产,而加氢反应器是石油化工行业的关键设备,其生产工艺和设计制造在化工设备中具有显著的代表性,为此,选择加氢反应器这一典型的化工设备作为课程设计的设计题目。 二:加氢反应器的发展背景: 加氢反应器是石油化工行业的关键设备,通常是在高温(350— 480℃)、高压(0一25MPa)、临氢、有硫化氢等腐蚀介质的恶劣工作条件下运行。近30年来,加氢技术发展迅速,加氢反应器由内部衬非金属隔热层的冷壁结构发展成为壳体内壁堆焊不锈钢层的热壁结构即热壁加氢反应器。热壁加氢反应器与冷壁加氢反应器相比具有以下显著优点:(1)在相同外形尺寸条件下,增大了反应器内部的有效容积,提高了生产能力;(2) 由于无内衬隔热层,避免了内衬板易破坏造成壳体局部超温导致局部鼓泡破坏;(3) 避免了上述原因造成设备频繁停车修复所造成经济和产量上的损失。因此,热壁加氢反应器逐步取代了冷壁加氢反应器,且具有越来越大型化的趋势。随着工业技术的发展,加氢反应器的用途也越来越多,在石油炼制工业中除用于加氢裂化外,还广泛用于加氢精制,以脱除油品中存在的含氧、硫、氮等杂质,并使烯烃全部饱和、芳烃部分饱和,以提高油品的质量。在煤化工中用于煤加氢液化制取液体燃料。 在有机化工中则用于制备各种有机产品,例如一氧化碳加氢合成甲醇、苯加氢制环己烷、苯酚加氢制环己醇、醛加氢制醇、萘加氢制四氢萘和十氢萘(用作溶剂)、硝基苯加氢还原制苯胺等。此外,加氢过程还作为化学工业的一种精制手段,用于除去有机原料或产品中所含少量有害而不易分离的杂质,例如乙烯精制时使其中杂质乙炔加氢而成乙烯;丙烯精制时使其中杂质丙炔和丙二烯加氢而成丙烯;以及利用一氧化碳加氢转化为甲烷的反应,以除去氢气中少量的一氧化碳等。 三加氢反应器的主要设计参数 1:引用的主要标准及规范

加氢反应器的应用与设计_李浩波

加氢反应器的应用与设计 李浩波 (宁波市化工研究设计院有限公司,宁波 315040) 摘要:本文结合实例阐述了煤焦油加氢项目中加氢反应器在高温、高压、临氢工况下的设计参数、结构设计等方面的内容。 关键词:新型抗氢钢;临氢设备;选材 中图分类号:TE966 文献标识码:A 1前言 在炼油化工行业中,为提高出油率和油的品位,60年代就开始采用“加氢”技术。目前在我国炼油行业广泛应用的“加氢”技术设备,主要为加氢精制及裂化装置。 加氢反应器是用于高温、高压,并在含有氢或氢加硫化氢介质条件下工作的重要炼油工艺设备,其操作条件极为苛刻,一旦发生事故将造成严重损失;另外其设备的造价比较昂贵,制造周期又长,所以,从设备的设计、制造及使用都必须予以极大地重视。 反应器按使用状态分为冷壁结构反应器和热壁结构反应器。在60年代及70年代初期,由于当时的冶金及制造工业水平所限(厚板的制造工艺技术、力学性能指标的保证、不锈钢堆焊技术等),为保证安全操作,从设计上多选择冷壁结构形式,即在反应器壳体内壁装焊保温钉增设一定厚度的隔热内衬层,以保证壳体的壁温一般不超过300o C,故称为冷壁加氢反应器。 热壁加氢反应器与冷壁加氢反应器的不同在于,壳体设计取消了内壁表面的隔热内衬层。这样,壳体将直接与反应器内部介质接触,从而使壳体在工作条件下的壁温升高,目前一般设计壁温已达450 o C左右,因此对壳体材料在化学成分及力学性能,尤其是高温力学性能方面有着更高、更严格的要求。 2反应器的设计参数 加氢精制反应器(R-0101)设计参数:设计压力18MPa,设计温度450o C;介质为油气、氢气、硫化氢,其中硫化氢含量为0.1%;氢分压15MPa;反应器内径1800mm,切线长度17400mm。 相对而言,与目前国内正运行的反应器相比,这两台反应器的压力较大,温度较高。 3反应器材料的选择 根据反应器的设计温度和氢分压,按照API 抗氢曲线(临氢作业用钢防止脱碳和微裂的操作极限)和SH/T 3096-2012 《高硫原油加工装置设备和管道设计选材导则》,反应器壳体基层可选用2.25Cr-1Mo-0.25V钢。 热壁加氢反应器的壳体材料在使用中经受不了反应过程中高温、高压条件下氢和硫化氢的腐蚀,为此设计采用在其内壁堆焊耐腐蚀不锈钢层的措施。目前具体应用于产品的有单层堆焊及双层堆焊两种结构。单层堆焊为只堆一层T.P.347L,双层堆焊是先堆焊一层T.P.309L成分的不锈钢作为过渡层,再堆焊一层T.P.347成分的不锈钢。采用单层或双层堆焊结构,其关键是堆焊的工艺技术水平能否保证设计技术条件对不锈钢堆焊层的性能指标要求。本设备采用双层堆焊层:厚度为3mm的E309L和厚度为3.5mm的E347。 4反应器结构特点 加氢过程由于存在有气、液、固三相的放热反应,欲使反应进料(气、液两相)与催化剂(固

加 氢 反 应 器

加氢反应器 分类号:TE966文献标识码:A 文章编号:1000-7466(2000)02-0010-03 Safety analyses on operating condition for hydrogenation reactor YANG Huo-sheng DONG Shao-ping CAO Shui-quan (Zhenhai Refining & Chemical Company Limited,Ninbo 315207,China) LIN Jian-ho ng CHEN Jin (East China University of Science and Technology, Shanghai 200237,China) Abstract:On the basis of the dissection results for specimen block, the estimation of the minimum pressurization temperature was conducted, the flaw that exists in the reactor was also evaluated with fracture mechanics method. The results showed that reactor has enough safety tolerance. Key words:hydrogenation reactor;minimum pressurization tem perature;safety assessment▲由于制作热壁加氢反应器的2.25Cr-1Mo钢是Cr-Mo钢中回火脆化敏感性较高的钢种,而热壁加氢反应器的操作温度又长期处在325~575℃的回火脆化温度区。因此,热壁加氢反应器投入使用后,其材料的回火脆化是不可避免的。在反应器开停工过程中,当器壁温度较低时,器壁材料的韧性就有可能由于氢脆和回火脆共同作用而大幅度下降。此时,如果反应器器壁中的应力水平较高,就有可能诱发脆性破坏事故。为了避免此类事故发生,通常采取的措施是设定反应器的最低升压温度。即当反应器内温度低于最低升压温度时,内压力不能超过预先设定的压力限。对于加氢裂化反应器,通常规定在床层温度低于135℃时,压力不得超过反应器设计压力的1/3。由于在热壁加氢反应器的服役过程中,其材质劣化状况会随着服役时间的增长而逐渐增加,这使得在反应器投用初期偏于安全的限压升温措施到了反应器服役的后期就可能变得危险。因此,根据反应器的材质劣化状况来准确地推断反应器的使用安全状态,并确定合理的最低升压温度,对于保障热壁加氢反应器长期使用的安全性是十分重要的。 根据对试板材料性能所开展的一系列研究结果可以确定,反应器在经过近3万h的运行后,其材料没有发生明显的回火脆化,在现行工况条件下运行发生氢致开裂的可能性也很小。因此,加氢反应器的运行安全更多要取决于操作条件的变化状况。 1最低升压温度估算 1.1估算最低升压温度方法 目前比较传统的确定热壁加氢反应器的最低升压温度的方法,是采用如图1所示的安全分析线图。采用这种方法设定最低升压温度时需要具备材料的脆性系数J、材料屈服强度σ0.2和材料的上平台冲击功CNV-us。推算过程按下面的基本步骤进行。 (1)根据材料的脆性系数J,由图1a推算出反应器长期服役后材料的FATT。 图1确定最低升压温度的安全分析线图 (2)根据材料的屈服强度σ0.2和上平台冲击功CNV-us,由Rolfe-Novak关联式推算出材料在上平台温度下断裂韧度K IC-US。Rolfe-Novak关联式为: (KIC/σ0.2)2=0.6478(CNV-us/σ0.2-0.0098) (3)根据材料的屈服强度σ0.2,由图1d求出在屈服应力σ0.2作用下反应器中对应于裂纹长度为a cr的假定裂纹所具有的应力强度因子KIC。 (4)根据以上推算所得的FATT、K IC-US和K IC,即可通过图1b和图1c推算出含有长度为a cr假想裂纹的反应器不发生脆性破坏的最低升压温度。 1.2最低升压温度估算 为了在进行最低升压温度估算时有对比性,以反应器为对象,假设其内表面存在

加氢反应器介绍

加氢反应器介绍 加氢反应器是加氢裂化装置的核心设备,它操作于高温、高压、临氢(含H2S)环境下,且进入反应器内的物料中往往含有硫和氮等杂质。由于加氢反应器使用条件苛刻,在反应器的发展历史上主要围绕提高反应器使用的安全性。所以无论是设计还是制造,除了需要强调使用性能外,还必须强调其安全性能。 1.影响加氢过程的因素 1.1氢气分压 提高氢分压有利于加氢过程反应的进行,加快反应速度。在固定反应温度及其他条件下,压力对转化深度有正的影响。产品的质量受氢分压影响较大。 1.2 反应温度 影响反应速率和产品的分布和质量。 1.3 空速 空速影响反应器的体积和催化剂用量,降低空速对于提高加氢过程反应的转化率是有利的。 1.4 氢油比 氢油比对加氢过程的影响主要有三个方面:影响反应的过程;影响催化剂使用寿命;过高的氢油比将增加装置的操作费用及设备投资。 2.加氢反应器可能发生的主要损伤型式有哪些呢? 2.1 高温氢腐蚀 在高温高压操作状态下,侵入并扩散在钢中的氢与固溶碳或不稳定的碳化物发生化学反应,生成甲烷; 即Fe3C+4[H]→CH4+3Fe。 影响高温氢腐蚀的主要因素温度、压力和暴露时间的影响、合金元素和杂质元素的影响、热处理的影响、应力的影响。 2.2 氢脆 氢脆是由于氢残留在钢中所引起的脆化现象。产生了氢脆的钢材,其延伸率和断面收缩率显著下降。 2.3 高温H2S腐蚀 硫化氢和氢气共存条件下,比硫化氢单独存在时对钢材产生的腐蚀还要更为剧烈和严重。其腐蚀速度一般随着温度的升高而增加。 2.4 连多硫酸应力腐蚀开裂

连多硫酸(H2SXO6,x=3-6)与作用对象中存在的拉应力共同作用发生的开裂现象。 2.5 铬钼(Cr-Mo)钢的回火脆性 铬钼钢在325~575℃温度范围内长时间保持或从此温度范围缓慢地冷却时,其材料的破坏韧性就引起劣化的现象,这是由于钢中的微量杂质元素和合金元素向原奥氏体晶界偏析,使晶界凝集力下降所至。 2.6 奥氏体不锈钢堆焊层的剥离 反应器本体材料的Cr-Mo钢和堆焊层用的奥氏体不锈钢具有不同的氢溶解度和扩散速度,使堆焊层过渡区的堆焊层侧出现了很高的氢浓度;在高温高压操作状态下氢向反应器器壁侵入,在停工时氢会从器壁中逸出。从而导致奥氏体不锈钢堆焊层的剥离。 2.加氢反应器的设计方法 设计方法主要有常规设计和分析设计两种计算方法。 2.1 常规设计法 常规设计基于弹性失效准则,可供使用的规范有美国ASME《锅炉及压力容器规范》第Ⅷ卷第一册以及我国GB150-2011《压力容器》等。 常规设计主要计算机辅助软件有: 针对ASME规范的PVElite-2017 针对GB150的SW6-2011 2.2 分析设计法 分析设计基于塑性失效准则,可供使用的规范有美国ASME 锅炉及压力容器规范》第Ⅷ卷第二册以及我国JB4732《钢制压力容器——分析设计标准》等。 “分析设计”要求对反应器的有关部位的应力进行详细计算及按应力的性质进行分类,并对各类应力及其组合进行评价,同时对材料、制造、检验提出了比“常规设计”更高的要求,从而提高了设计的准确性与使用可靠性,但相对设计费用大大增加。

反应器内件安装方案

XQL 施工技术方案加氢裂化装置 齐鲁炼油改扩建工程 140万吨/年加氢裂化装置 反应器R-401/R-402内件施工方案 编制:丁洪波 施工技术审核:孙功先 质量保证审核:焦光胜 安全技术审核:薛力 审定:杜振东 中国石化集团第十建设公司 齐鲁炼油改扩建工程项目部 二000年三月

齐鲁炼油改扩建工程 140万吨/年加氢裂化装置 反应器R-401/R-402内件施工方案 建设单位: 审批: 中国石化集团第十建设公司 齐鲁炼油改扩建工程项目部 二000年三月

目次 1.概述 (3) 2.编制依据 (4) 3.施工程序 (4) 4.施工准备 (4) 5.开箱检验 (4) 6.施工技术要求 (5) 7.设备清洗封闭 (6) 8.应遵循的主要质量程序文件 (6) 9.质量保证措施 (7) 10.安全技术措施 (7) 11.工程交工技术文件 (8) 12. 劳动力组织及施工计划 (8) 13.主要施工机具 (9) 14.主要施工手段用料 (9) 附图:反应器内件布置示意图 (10)

1.概述 140万吨/年加氢裂化装置,为齐鲁炼油改扩建工程的一个新建装置,本装置由北京设计院设计,中国石化第十建设公司承建;本装置共有反应器两台,分别为:精制反应器R-401(Φ3800×32441)和裂化反应器R-402(Φ3800×36955),反应器本体及其附件均由中国第一重型机械集团供货,本设备为整体热处理设备,设备内壁堆焊复合层材质为E347L,外壳壁温测点堆焊层材质为INCO182,内件材质主要以0C r18N i10T i为主,内件安装以螺栓连接为主,少量焊接为辅;主要安装工作量见表1; 1.1安装工作量 所有角接与搭接焊缝脚高等于两相焊件较薄件厚度。 1.3工程特点

加氢反应器

加氢反应器 中国石化集团洛阳石油化工工程公司黎国磊@2004 加氢反应器是加氢装置的核心设备。其操作条件相当苛刻。技术难度大,制造技术要求高,造价昂贵。所以人们对它备无论在设计上还是使用上都给予极大的重视。反应器的设计和制造成功,在某种意义上说是体现一个国家总体技术水平的重要标志之一。 对于这样重要、使用条件又很苛刻的设备,应该至少要满足以下几点要求: 应满足工艺过程各种运作方案的需要。 使用可靠性高。具体应体现在: 1.满足力学强度要求 2.具有可靠的密封性能 3.有较好的环境强度适应性 应便于维护和检修,所需时间短。 投资费用较低。 一、反应器技术发展梗概 随着加氢工艺技术的广泛应用,加氢工艺设备特别是反应器技术相应得到很快的发展与显著的进步。主要表现: 1安全使用性能越来越高。这也是整个技术发展过程所围绕的核心问题。 a)设计方法的更新 由“常规设计”即“规则设计”→以“应力分析为基础的设计”,即“分析设计” b)设计结构的改进 本体结构:单层→多层→更高级的单层 使用状态:冷壁结构→热壁结构 细部结构的改进 c)材料制造技术的发展,质量明显提高 体现在冶炼技术、热处理技术、分析技术等等方面。最终反映在材料的内质特性(纯洁性、致密性、均质性)非常优越 d)制造技术的进步 如制造装备、制造工艺、焊接技术(含堆焊技术)、热处理技术、检测技术等等都有很大进步。 2 为了获得较佳的经济效益,装置日趋大型化带来了反应设备的大型化。 具体见表格:

二、反应器本体结构特征 单层结构 钢板卷焊结构 锻焊结构 多层结构 绕带式 热套式 我国华南工大针对国外80年代初所开发的一种多层结构存在的某些缺点开发出了多层夹紧式结构。结构形式的选择一般是依据使用条件、反应器尺寸、经济性和制造周期等诸因素来确定。单层结构中的钢板卷焊结构和锻焊结构的选择,主要取决于制造厂的加工能力与条件以及经济上的合理性和用户的需要。但锻焊结构优点更多。 ?锻件的内质特性(纯洁性、致密性、均质性)好; ?焊缝少,特别是没有纵焊缝,从而提高了反应器耐周向应力的可靠性; ?制造装配易保证,制造周期短; ?可设计和制造成对于防止某些脆性损伤很有好处的结构; ?使用过程中对焊缝检查维护的工作量少,无损检测容易。 锻造结构的材料利用率比板焊结构低,当壁厚较薄时,其制造费用相对较高。一般,厚度大于~150mm时采用较合适,壁厚越厚,锻造结构的经济性更显优越。 三、反应器内件型式及作用 反应器内件设计性能的优劣将与催化剂性能一道体现出所采用加氢工艺的先进性。对于气液并流下流式反应器的内件,通常都设有入口扩散器、气液分配器、积垢篮、冷氢箱、热电偶和出口收集器等。 主要内件的作用、典型结构及注意要点

加氢反应器内件安装

加氢反应器内件安装 摘要:加氢反应器的设计、制造、安装在整个加氢装置的建设过程中占据了举足轻重的地位。本文仅结合自己在施工过程中的切身经历阐述在加氢反应器的检修安装过程中如何实现内件的“安全、优质、高效”安装,确保装置按预定开停工期进行交接。 关键词:加氢反应器;设备内件;安装; 由于加氢反应器在加氢装置的工艺流程中起着核心作用, 2009年9月乌石化公司炼油厂加氢装置停工检修时对加氢反应器进行了整体更换,加氢装置日产1920吨柴油,加氢油比不加氢油价格差按 3000元/吨计算,检修时间提前一天可实现增加利润576万元。在整个检修过程中,由于加氢反应器内件安装的技术要求十分严格,所以加氢反应器的更换最大难点就是新反应器的内件安装。加氢反应器的内件一般由分配盘、冷氢盘、催化剂支持盘等部件组成,这几部分的安装质量直接关系到能否实现工艺流程和达到设计产量的要求,安装质量还对产品的成本(能耗)有很大的关系。由于是在装置停工检修期间进行加氢反应器的更换,内件安装的效率高低也是决定本次施工成败的关键。为实现内件的“安全、优质、高效”安装,确保装置按预定开停工期进行交接,在装置的检修安装过程中我们主要进行了以下工作,提供一些经验介绍,以此能对以后的类似反应器的更换检修施工提供一些参考。 1安装准备(技术准备、机具材料准备、水平度测量仪制作) 施工单位一般在正式施工前很长一段时间就会拿到设计院的设备施工图纸,在拿到图纸之后施工单位应进行一系列的施工前的准备工作;技术人员应仔细阅读设备图纸,弄清设备的构造,特别是关键部件的结构,为内件的现场安装做好技术准备,编制内件的安装施工方案,与经验丰富的钳工师傅一道研究最具操作性的施工方法,做好施工前的技术交底。技术人员在弄清图纸和初步确定好施工方法后,还应积极与设计人员联系,了解设计人员对安装是否有特殊的技术要求和一些关键尺寸的要求。如有特殊要求,应与设计人员一道商讨在安装过程中采取何种措施来实现这些要求。技术人员在全面熟悉图纸和设计意图之后还应对以前编制的施工方案和技术交底进行细化和修改,使方案和交底对安装更具指导性和实用性。在方案确定之后,技术员应及时申报安装所需的施工机具和辅助用材,如根据图纸确定安装螺栓用的各种规格的扳手,用于塔盘找平的各种规格的与塔盘材质相同的垫片。由于塔盘水平度要求较高,我们专门制作了一个如图所示的专用水平度测量仪, 有了这个仪器对后续的安装精确度的保证起了至关重要的作用,因为有了储水罐就减少了水在不同的测点的流动性而实现测量的准确性,使用较硬的塑料管就保证了在不同的测点水不会因管子的变形而导致测量不准,使用蓝色液体便于在设备内部由于光线不足而不致发生读数不准确。

固定床加氢反应器内构件的开发与应用

机械设备 固定床加氢反应器内构件的开发与应用 王兴敏 洛阳石油化工工程公司(河南省洛阳市471003) 摘要:介绍了国内外固定床加氢反应器内构件的主要类型及其特点,详细叙述了洛阳石油化工工程公司(LPEC)开发的内构件及其在目前国内规模最大的加氢精制(反应器内径为3800mm)和渣油加氢脱硫(反应器内径为4200mm)装置上的应用情况。内径为3800mm的加氢精制反应器床层径向温差基本小于3 ,效果良好;内径为4200mm的渣油固定床加氢脱硫反应器床层径向温差为1~7 ,优于国内引进同类装置水平。 主题词:加氢反应器 固定床反应器 内构件 开发 应用 加氢工艺技术水平的高低,主要取决于催化剂性能的先进性,而催化剂性能的充分发挥,则在很大程度上取决于反应器内部结构的先进性和合理性。设计合理的加氢反应器内构件应具有如下功能和特点:反应物流混合充分,催化剂床层温度分布均匀;压力降小,占用反应器空间小,装卸催化剂方便,检修检测方便,操作安全和投资低。随着加氢装置的大型化及加氢设备制造能力的提高,反应器直径的不断增大,对反应器内构件的反应物流分配效果要求越来越高。如果反应器内构件设计不合理,分配效果差,会造成催化剂床层径向温差大,催化剂利用率降低,甚至造成反应产物质量达不到要求。因此国内外对加氢反应器内构件的研究和工程开发一直非常重视,许多工程公司都开发了自己的成套技术。洛阳石油化工工程公司(LPEC)多年来一直致力于加氢工程技术的开发,并将开发出的多项先进技术成功地应用于工业生产。 1 内构件类型及其特点 典型加氢反应器内构件包括:入口扩散器、气液分配盘、积垢篮筐、冷氢箱、出口收集器、催化剂支撑和液体再分配盘等。 1.1 入口扩散器 入口扩散器置于反应器入口处,起到气液预分配的作用,并能减缓气液介质对分配盘或催化剂床层的冲击。国内外入口扩散器的几种主要型式见表1。 表1 国内外入口扩散器的几种主要型式 扩散器型式说明 螺旋喷头型 流体线速高,易使 催化剂粉碎,已少用 盘式适用于直径较小的反应器 拉杆式适用于硫化氢腐蚀较小场合 双层多孔板与多锥体组合可兼作分配盘 中心板与多孔板组合多用于轻质油品加氢反应器 带过滤的多管式对进料有一定过滤作用 锥体与双层多孔板组合分配效果良好 LPEC设计的入口扩散器为锥体与双层多孔板组合扩散器,图1 为结构示意图。 图1 入口扩散器结构示意 该扩散器上设定位槽以固定位置,锥形体上开槽孔,锥体下设两层带孔的水平挡板。反应进料流向必须与锥体上槽孔垂直。反应油气通过槽孔进入锥体,起到缓冲作用,再通过水平挡板的碰撞、节流,扩散到下面的分配盘上。 收稿日期:2001-06-29;修改稿收到日期:2001-07-16。 作者简介:高级工程师,1982年毕业于石油大学(华东)石油炼制系,长期从事炼油工程设计和管理工作,现为该公司副经理。 炼 油 设 计 2001年8月 PE TROLE UM REFINERY ENGINEERING 第31卷第8期

加氢反应器发展史

《文献综述》结课作业题目:鼓泡床加氢反应器的研究进展 学生姓名: 学号: 专业班级 指导教师: 2014年 9月1日

鼓泡床加氢反应器的研究进展 摘要 综述了我国炼油加氢反应器研制建造,发展历程和取得的成就,指出国内加氢反应器制造技术在以下几方面所面临的挑战: 压力容器新标准的颁布实施,需亟待完善加氢设备用材料的基础性能数据; 超大厚度和超大型筒节锻件及设备制造技术有待进一步完善; 尽早开展加氢反应器服役后的材料性能研究,为即将到来的设备延寿做好技术准备关键词:加氢反应器;材料;技术;进展 Research progress of bubbling bed hydrotreating reactor Abstract Review our refinery hydrogenationreactor designconstruction, development and achievements, pointed out that the manufacturing technology of domestichydrogenation reactor in the following aspects: thechallenge of new pressure vessel standards promulgated and implemented, needs to be perfected with theperformance data based hydrogen equipment; large thickness and super large cylinder forgings andequipment manufacturing technology to be further improved; as soon as possible to carry out and Study on material properties of the hydrogenation reactor after service, to prepare for the upcoming equipment life. Keywords:Hydrogenation reactor; Material; technology; Progress

加氢反应器设计计算书

加氢反应器盖板、吊耳设计计算书 1.吊盖盖板厚度 1.1材料选用16MnD-Z25 δ>100时、δS=255N/mm2 [δ]= δS/1.6=255/1.6=159.375 N/mm2 1.2设计计算重力W (1)设备净重W0=270t W=K×W0 K-计算系数、吊耳设计计算系数1.2-1.65 取K=1.4 W=1.4×270t=378t (2)吊盖受力模型 按圆板中心受一个局部均布荷载且螺栓不产生弯矩,计算公式见“建筑结构计算手册”中国建筑工业出版社1975版。 (3)局部均布载荷 均布荷载范围取800×160、即耳板形成的范围。成圆形时,当量半

径为r。 r=a+b1/4×0.875=800+160/4×0.875=274.3mm 均布荷载q=W/πr2=378×104/π×274.32=16.0N/mm2 1.3盖板应力计 (1)盖板计算半径为螺栓圆半径R=635mm (2)β=r/R=274.3/635=0.432 (3)б=(6 /h2)×(qr2/16)[4-(1-μ)β2-4(1+μ)Inβ] 式中μ-泊桑比μ=0.3 h盖板厚度取h=160mm б=(6/2002) ×(16×274.32/16)[4-(1-0.3)×0.4322-4(1+0.3)In0.432] =11.286×(3.869+4.365)=92.929N/mm2<159.375N/mm2 2耳板尺寸 2.1采用单耳板形式尺寸见图2

2.2危险断面应力计标(设备直立状态时) (1)A-A断面、按曲梁计算 M=pl/8 式中p-每个耳板受力p=k1×W 式中k1-双吊耳受力不均匀系数k1=1.1 单吊耳k1=1.0 P=W=378t l-耳板环梁中径 l=(700-188)/2+188=444mm M=378×104×444/8=20979×104N·mm W=b1h12/6=160×2562/6=5747627mm3 б=M/W=120.04N/mm2<[б]=159.375N/mm2 (2)焊缝处拉应力 б=p/a×b1×k2 式中a耳板长a=800 b1-耳板厚b1=160 k2-焊缝系数k2=0.7 б=378×104/800×160×0.7=42.19N/mm2<[б]安全3设备起吊时耳板抗弯计标 3.1起吊时耳板根部骤变.见图2 B-B截面 设起吊时起吊力为1/2设备吊装计算应力 μ=(p/2)×l1=378×104×400/2=75600×104 N·mm W=b1a2/6=160×8002/6=1707×104mm3 б=M/W=44.29N/mm2<[б] 4设备起吊时设备管口骤变

(完整)反应器初步设计说明书.docx

福建联合石化联产25 万吨丙烯项目 目录 第 1 章反应器设计 . (1) 1.1反应器设计概述 (1) 1.2反应器的选型 (1) 第 2 章催化剂 (3) 2.1催化剂的选择 (3) 2.2催化剂失活的原因 (3) 2.3催化剂再生的方法 (3) 第 3 章丙烷脱氢反应器 . (4) 3.1主反应及副反应方程式 (4) 3.2反应机理 (4) 3.3动力学方程 (4) 3.3.1催化反应动力学模型 (4) 3.3.2失活动力学 (5) 3.4反应器设计思路说明 (6) 3.4.1反应条件 (6) 3.4.2反应器类型的选择 (7) 3.4.3反应器数学模拟 (7) 3.4.4反应器体积的计算 (7) 3.5催化剂设计 (11) 3.5.1催化剂用量 (11) 3.5.2催化剂来源 (11) 3.5.3催化剂的装填 (11) 3.6反应器内部结构设计 (11) 3.6.1催化剂床层开孔 (11) 3.6.2催化剂分布器 (12) 3.6.3气体分布器 (12) 2

福建联合石化联产25 万吨丙烯项目 3.7反应器管口计算 (12) 3.7.1进料管 ( 以第一台反应器为例 ) (12) 3.7.2出料管 (13) 3.7.3吹扫空气入口 (13) 3.7.4催化剂进料口 (13) 3.7.5催化剂出口 (13) 3.7.6排净口 (13) 3.7.7人孔 (14) 3.7.8催化剂床层固定钢 (14) 3.8加热炉 (14) 3.9机械强度的计算和校核 (14) 3.9.1反应器材料的选择 (14) 3.9.2反应器筒体厚度的选择 (14) 3.9.3反应器封头厚度的计算 (15) 3.9.4液压试验校核 (16) 3.9.5反应器强度校核 (16) 3.9.6反应器封头的选择 (25) 3.10 设计结果总结 ( 以第一台反应器为例 ) (26) 第 4 章乙炔选择性加氢反应器 (26) 4.1概述 (26) 4.2反应方程式 (27) 4.3催化剂的选用 (27) 4.4设计简述 (27) 4.5在 Polymath 中的模拟与优化 (29) 4.6选择性加氢反应器总结 (30) 第 5 章参考文献 (30) 3

加氢反应器的工作原理是什么

加氢反应器的工作原理 是什么 Revised as of 23 November 2020

加氢反应器的工作原理是什么 .工艺原理 1、加氢精制的反应原理 加氢精制的主要反应有以下几种: 一、烯烃饱和:是不饱的单烯、双烯通过加氢后,变成饱和的烷烃。 如:1、R-C=C-R+H2→R-C-C-R....+Q 2、R-C=C-C=C-R'+H2→R-C=C-C-C-R'+H2→R-C-C-C-C-R' 二、脱硫反应 在反应条件下,原料中含硫化合物进行氢解,转化成相应的烃和硫化氢,从而 硫原子被脱除。 如:硫醇:R-S-H+H2→R-H2+SH2 硫醚:R-S-R'+H2→R-S-H+R'-H+H2→R-H+R'-H+SH2 二硫化物:R-S-S-R'+H2→R-S-H+R'-S-H+2H2→R-H+R'-H+2SH2 二硫化物加氢转化为烃和硫化氢需经过生成硫醇的中间阶段,即首先在s-s键上断裂,生成硫醇,再进一步加氢生成烃和硫化氢,中间生成的硫醇也转化成 硫醚。 而噻吩环状含硫物,在加氢脱硫时首先定环中双键,发生饱和,然后再发生断环脱硫,脱硫反应速度因分子结构按以下顺序递减:RSH>RSSR>RSR'>噻吩 三、加氢脱氮反应 石油馏分中的含氮化合物可分为三类: 1、脂肪胺及芳香胺类;

2、吡啶、喹啉类型的碱性杂环化合物; 3、吡咯、茚入咔唑型的非碱性氮化物,氮化物加氢发生氢解反应生成NH3和 烃 如:胺类:R-NH2+H2→RH+NH3 (1)吡啶 (2)喹啉 由此可见:所有的含氮化合物氢解时都要向胺转化,再进一步氢解生成烃和氨。反应速度:脂肪胺〉芳香胺〉吡啶类型碱性杂环化合物〉吡咯类型的非碱 性氮化物。 由于氮化物的分子结构都比较复杂,且都很稳定,故而氢解反应需要的条件比较苛刻,要求氢分压在15Mpa,温度在400℃,能脱除96%左右的氮,故此加氢裂化设计压力为16Mpa,而且精制的空速不能过高。 四、脱氧反应 原油中含氧化合物有环烷酸、脂肪酸酯和醚、酚等,含氧化合物发生氢解反应 后生成烃和水。 这些含氧化合物在加氢精制的条件下很快发生分解。从反应速度上来看,硫化 物>氧化物>氮化物 五、加氢脱金属反应 原料中含有少量的金属杂质,如:砷、铝、磷、铜、铁、镍、矾等,他们有的来自原油,有的来源于贮存或上游装置的加工过程的腐蚀。这些金属化合物在

加氢反应器操作注意事项

加氢反应器操作注意事项 加氢反应器是平推流反应器,溶于水中的4-CBA和氢气扩散到Pt-C催化剂的微孔中,在钯的催化作用下,发生反应。反应的前提是溶解,TA、4-CBA在预热器中加热,随着温度升高慢慢溶解在水中。加氢反应器的操作温度就是由TA在水中的溶解温度决定的,TA 浓度越高,需要的溶解温度越高,具体关系见下表。 INVISTA(原ICI、杜邦)工艺,反应器操作温度比溶解温度高

5度,留这个5度的余量是为了当仪表(E-516出口温度计或V-501密度计)出现小波动时,保证浆料还能够溶解。BP-AMOCO放了4度余量。 氢气也要溶解在水中才能参与反应,氢气溶于水中受几个因素影响,1、温度,温度越高溶解度越小;2、压力,压力越高溶解度越大;3、流量,水量约大,可溶解的氢气越多。当负荷确定后,流量就确定了,温度已经由TA溶解度决定了,提高溶解度的办法只有增加压力,通常情况下,加氢反应器在过量氢气的状态下操作,参与反应的氢气只占总加入量的约1/3,2/3的氢气随物料从V-521→E-514→V-514→V-530放空,氢气分压对PTA的光学品质影响很大,降低b 值最直接的手段就是增加氢气分压,通常情况下,加氢反应器内的氢气分压约11~12Bar,所以加氢反应器压力=操作温度下的水的饱和蒸汽压+11 Bar。 加氢反应器操作最需要关注的是催化剂床层的保护,催化剂损坏的几种常见原因:1、PCV-5403开度过大,压差落在催化剂床层上,将床层压坏;2、TA未完全溶解,堵塞床层,造成床层压差加大,压坏床层;3、加氢反应器内出现沸腾,正常情况下,水以液态的形式存在于催化剂骨架内部,如果压力突然降低,水汽化,将催化剂“炸碎”。所以保持反应器内压力非常重要,任何情况下,都不要突然开大PCV5403,事故情况下,宁愿关小PCV5403,憋高速泵。高速泵出口的所有设备(预热器、V-503、R-520等)的最大操作压力必须大于高速泵的死压头,加氢反应器的防爆膜和压力表的启跳压力也要大于

加氢反应器的工作原理是什么

加氢反应器的工作原理是什么? .1.2工艺原理 1、加氢精制的反应原理 加氢精制的主要反应有以下几种: 一、烯烃饱和:是不饱的单烯、双烯通过加氢后,变成饱和的烷烃。 如:1、R-C=C-R+H2 →R-C-C-R....+Q 2、R-C=C-C=C-R'+H2 →R-C=C-C-C-R'+H2 →R-C-C-C-C-R' 二、脱硫反应 在反应条件下,原料中含硫化合物进行氢解,转化成相应的烃和硫化氢,从而硫原子被 脱除。 如:硫醇: R-S-H + H2 →R-H2 + SH2 硫醚: R-S-R' + H2 →R-S-H + R'-H + H2 → R-H + R'-H + SH2 二硫化物:R-S-S-R' + H2 →R-S-H + R'-S-H + 2H2 →R-H + R'-H +2SH2 二硫化物加氢转化为烃和硫化氢需经过生成硫醇的中间阶段,即首先在s-s键上断裂,生成硫醇,再进一步加氢生成烃和硫化氢,中间生成的硫醇也转化成硫醚。 而噻吩环状含硫物,在加氢脱硫时首先定环中双键,发生饱和,然后再发生断环脱硫,脱硫反应速度因分子结构按以下顺序递减:RSH>RSSR>RSR'>噻吩 三、加氢脱氮反应 石油馏分中的含氮化合物可分为三类: 1、脂肪胺及芳香胺类; 2、吡啶、喹啉类型的碱性杂环化合物; 3、吡咯、茚入咔唑型的非碱性氮化物,氮化物加氢发生氢解反应生成NH3和烃 如:胺类:R-NH2 + H2 →RH + NH3 (1)吡啶 (2)喹啉 由此可见:所有的含氮化合物氢解时都要向胺转化,再进一步氢解生成烃和氨。反应速度:脂肪胺〉芳香胺〉吡啶类型碱性杂环化合物〉吡咯类型的非碱性氮化物。 由于氮化物的分子结构都比较复杂,且都很稳定,故而氢解反应需要的条件比较苛刻,要求氢分压在15Mpa,温度在400℃,能脱除96%左右的氮,故此加氢裂化设计压力为16Mpa, 而且精制的空速不能过高。

加氢反应器配管设计的几个要点

加氢反应器配管设计的几个要点 摘要:加氢反应器的配管设计是整个加氢装置配管设计的关键部分。本文针对加氢反应器配管设计中容易忽视的几个要点进行了阐述,旨在提醒配管工程师在设计中提高重视,并尽可能进行设计优化,以满足装置设计的多方面要求。 关键词:加氢装置;反应器;配管 前言:加氢反应器是加氢装置的核心设备。加氢反应器的配管设计不但要满足工艺要求,还要达到节省投资,方便操作、检修,满足消防和长周期安全运行的目的,是整个装置配管设计的重中之重。本文结合柴油加氢精制装置的管道设计进行了一些探讨。本套装置是以直馏柴油、焦化汽油和焦化柴油的混合油为原料,经过催化加氢反应进行脱硫、脱氮、烯烃饱和,用以生产精制石脑油和精制柴油。加氢装置火灾危险性分类属甲类,主要工艺特点是高温、高压、临氢。为了确保设计产品质量,我们应该在以下几个方面加强认识: 一、反应器平面布置 (1)反应器布置应满足建设地区的自然条件和地理位置的要求。反应器和反应进料加热炉是装置中潜伏火灾危险性比较大的设备,一般布置在装置区的边缘并靠近消防通道,且位于可燃气体、液化烃、甲B类液体介质设备的全年最小频率风向的下风侧,同时考虑将反应器布置于地质条件好的地段,确保其基础牢固可靠。(2)反应器的布置应满足工艺设计的要求。为控制反应系统的温降,压降,避免发生副反应,一般将反应器,换热器和反应进料加热炉等靠近布置,同时在反应器管嘴和其相关管道的应力不超过许用应力的前提下,反应器布置应使管道长度尽量短。(3)反应器布置应满足安全的要求。反应器与其进料加热炉之间或取走反应热的换热器,可视为一个系统,没有防火间距的要求[1],一般联合集中布置在装置的一端或一侧。反应器与其进料加热炉的间距应尽量缩短,考虑到反应器与其进料加热炉之间的安全通道,管道布置及检修需要的空间,其距离不应小于4.5m[3]。反应器与其无关设备和加热炉一般分开布置,其间距应满足防火和防爆规范的要求。(4)反应器布置应满足操作和检修要求。反应器一般按一条直线成组布置在构架内,构架顶部设置吊运机具,装催化剂和检修用的平台,构架下部有卸催化剂的空间,构架一侧有堆放和运输催化剂所需要的场地和道路。(5)反应器布置应满足施工安装要求。为方便可施工,应提供必要的反应器吊装、运输或在现场进行组装所需要的场地和通道[2]。 二、反应器框架及平台的设置 1.应充分考虑反应器的热膨胀 (1)给土建专业提反应器框架结构设计条件时,应充分考虑反应器的热胀量,仔细计算反应器顶部框架平台的高度及开洞大小,要特别注意避免因反应器受热向上膨胀时其封头(包括设备保温层)与框架平台梁相碰,以免土建框架梁

加氢反应器的设计

加氢技术在炼油化工行业中早已广泛使用,近年来,随着社会经济的快速发展,我国能源消费量急速增长。伴随能源需求的增多及环保要求的提升,使加氢技术在我国工业生产当中已占据非常重要的地位。目前在我国炼油化工行业中广泛应用的加氢技术主要装置有预加氢装置、加氢裂化、加氢精制装置等,而加氢反应器则是此类加氢装置中的关键设备,基于加氢反应器在装置中需要实现的工艺目的,通常加氢反应器均有一个共同的特点就是需在高温、高压及临氢状态下运行,这就在设备材料的选用、设备结构设计及制造过程中的焊接、热处理、无损检测等方面的要求均与普通设备有很大的不同。本文针对加氢反应器在主体结构设计及关键要求方面进行一个简单的介绍。1?概况 加氢反应器是炼油装置中的核心设备,一般在压力10~20MPa,温度400~450℃、临氢及硫化氢等条件下工作。由于其苛刻的操作条件,在设计时除应考虑承受压力和温度的载荷采用合适的壁厚外,还需在防止发生氢脆、氢腐蚀、硫化氢应力腐蚀、Cr-Mo钢回火脆化、堆焊层剥离等方面提出材料、热处理、无损检测等方面的措施和要求。随着我国冶炼及锻造水平的提高,目前我国炼油行业中普遍使用的是热壁、单层卷焊或锻焊加氢反应器,所用材料也已基本国产化。设备结构一般由筒体、封头、裙座、油气出入口、催化剂卸料口、冷氢口、热电偶口、人孔及内件组成。一般内件由专业厂家设计并制造。 2?主体材料选用 加氢反应器设计时一般根据设备内部氢分压和使用温度按美国API RP941《钢在氢环境中的操作极限》即纳尔逊曲线选取相应的材料。 依据操作条件,加氢反应器一般选用Cr-Mo钢材料,较为常见的有14Cr1Mo、12Cr2Mo1、12Cr2Mo1V 等。14Cr1Mo、12Cr2Mo1材料的应用已较为成熟.但随着近年来加氢装置规模的不断扩大,加氢设备直径逐渐加大,使用12Cr2Mo1材料壳体壁过厚,在材料制造及设备的制造、运输和安装上困难加大。12Cr2Mo1V材料在原12Cr2Mo1的基础上添加了0.2%~0.3%的钒等元素使其有更高的强度及更好的抗高温回火脆性及抗堆焊层氢剥离性能,在减小产品重量上有一定的优势,所以近年来也广泛使用于加氢反应器上。但随着其强度的提高其裂纹敏感性极高,产品制造难度大幅增加,虽然目前国内部分制造厂已具备较为成熟的制造经验,但在设计选材时也需按实际情况进行最佳的材料选择。 虽然加氢反应器设计时选用了具有优异的抗氢腐蚀和耐高温性能的Cr-Mo钢材料,但仅凭壳体材料也是无法满足其内部苛刻的工作条件,为此会在其内壁堆焊不锈钢耐蚀层来增加其耐腐蚀性能,耐蚀层的堆焊一般有单层和双层两种。目前,一般采用的是E309L+E347双层堆焊结构,E309L作为过渡层保证了母材和堆焊层的结合强度,E347保证了其表面耐腐蚀性能。内壁堆焊能在一定程度上避免主体受压元件的氢腐蚀、高温高压硫化氢腐蚀、硫化物应力腐蚀等现象。但是奥氏体不锈钢堆焊层的氢脆现象、内表面硫化氢腐蚀现象及Cr-Mo钢本体的回火脆性破坏及堆焊层的剥离也是该类产品发生破坏的主要形式,为此在设计时对材料的化学成分、力学性能、热处理、回火脆化敏感性检验等方面均提出了较高的要求,此处不做详细介绍。 3?主要结构的设计 3.1 筒体设计 加氢反应器筒体一般采用单层板焊或锻焊结构。 锻焊容器虽然因无纵向焊接接头而有一定的优势,但其材料成本却比板焊容器高很多,所以一般仅在壳体壁厚超过材料制造上限时选用。 3.2 封头设计 由于球形封头具有均匀分布的两向应力,其受力状况最优,所以在加氢反应器中被优先选用。当设备直径较小时,多采用筒体与封头等厚的原则进行设计,而随着设备直径的加大封头及筒体的厚度也随之增大,等厚设计则会显得十分不经济、合理。对于制造厂来说封头的制作也会受到设备能力的限制,这时在设计上就会采用等强度的设计原则,即封头与筒体采用“球缺”连接的形式。球缺封 加氢反应器的设计 张银顺 兰州兰石重型装备股份有限公司 甘肃 兰州 730314 摘要:加氢反应器高温、高压、临氢等特点使其在材料选用、结构等方面较为特殊,与常见的中低压容器有所不同,设计时应选用合理的材料、采用合理的结构才能确保其既能便于制造和检验,又能满足设备的使用要求,文章对加氢反应器的设计进行了简单的概述。 关键词:高温 高压 筒体 封头 过渡段 Design?for?hydrogen?reactor? Zhang?Yinshun Heavy Equipment Co.,Ltd.,Lanzhou Petrochemical Co.,Lanzhou 730314,China Abstract:The severe operating environment in the hydrogen reactor such as high temperature,high pressure and hydrogen condition leads to the special material selection and structural design,which are different from common middle and low pressure vessels. Reasonable materials and structure ensure the manufacture and inspection and meet the operating requirement of the equipment. This paper describes the design for hydrogen reactor. Keywords:high temperature;high pressure;cylinderical shell;head;transition section 41

相关主题
文本预览
相关文档 最新文档