当前位置:文档之家› Decomposition of energy-related CO2 emission over 1991–2006 in China

Decomposition of energy-related CO2 emission over 1991–2006 in China

Decomposition of energy-related CO2 emission over 1991–2006 in China
Decomposition of energy-related CO2 emission over 1991–2006 in China

Analysis

Decomposition of energy-related CO 2emission over 1991–2006in China

Ming Zhang ?,Hailin Mu,Yadong Ning,Yongchen Song

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education,Dalian University of Technology,Dalian,116024,PR China

a b s t r a c t

a r t i c l e i n f o Article history:

Received 3November 2008

Received in revised form 13January 2009Accepted 13February 2009

Available online 25March 2009Keywords:

Decomposition analysis CO 2emission Energy China

This paper presents a decomposition analysis of energy-related CO 2emission in China for the period 1991–2006divided into three equal time intervals.The complete decomposition method developed by Sun is used to analyze the nature of the four factors:CO 2intensity,energy intensity,structural changes and economic activity.The results show that economic activity has the largest positive effect in CO 2emission changes in all the major economic sectors and China has achieved a considerable decrease in CO 2emission mainly due to the improved energy intensity.However,the impact of CO 2intensity and structural changes is relatively small.Structural changes only exhibit positive effect to the CO 2mitigation in agricultural sector,and CO 2intensity also contributes to the decrease of CO 2emission in transportation sector.Moreover,a formula about CO 2mitigation is presented in this paper,which shows that China has made a signi ?cant contribution to reducing global CO 2emission.

?2009Elsevier B.V.All rights reserved.

1.Introduction

The global warming has become a serious issue in the world since the late 1980s.Among six kinds of GHG,the largest contribution to the greenhouse effect is carbon dioxide (CO 2),and its share of greenhouse effect is about 56%(IPCC,1995).Anthropogenic activities,primarily the combustion of fossil fuels and the resultant carbon emission cause a signi ?cant warming of the global climate.The reduction of emitted GHG and atmospheric pollutants constitutes a foremost objective of contemporary energy and environmental policy in the world.In particular,the ?ndings of the scienti ?c community with respect to the rising of energy-related CO 2emission raised the international awareness.

Next to the United States,China is the second source of GHG in the world.As a signatory to the United Nations Framework Convention on Climate Change (UNFCCC),the Chinese government announced its approval of the Kyoto Protocol in August 2002.As a non-Annex party,China would not be bound in the initial commitment period (2008–2012)to any quantitative restrictions on its GHG emission.Conse-quently,it would obligate to monitor and report to the Conference of Parties on the status of GHG emission sources and sinks,and identify measures to dampen growth of net emission in the future (Liu et al.,2007).Moreover,many scientists and environmental groups are attempting to identify targets for CO 2reductions so as to supply the base information for making the international policies to address

global climate change.In future agreements to reduce GHG,the Chinese commitment will be essential.Whether developing the report on GHG emission or formulating future commitment,it is necessary to know fully changes in China's CO 2emission.Now that,many factors in ?uence CO 2emission,such as economic and demographic develop-ments,technological change,institutional frameworks,lifestyle,and international trade.Thus it is very necessary for China's energy and environmental policy makers to investigate the driving forces governing CO 2emission levels and their evolution.

China's CO 2emission and CO 2emission intensity have been investigated by a number of decomposition studies (Wang et al.,2005;Wu et al.,2005;Liu et al.,2007;Fan et al.,2007;Guan et al.,2008).However,with respect to the total CO 2emission in China,those studies do not take the importance of sectoral dimension into account.Sun (1998)proposed a complete decomposition analysis where the residual term is distributed among the considered effects.Zhang and Ang (2001)refer to this as the re ?ned Laspeyres method,which has been widely adopted due to ease of both calculation and under-standing.In this study,we attempt to use the complete decomposition technique to identify the factors in ?uencing the sectoral changes in CO 2emission,i.e.to determine the contribution of the factors which in ?uence energy-related CO 2emission by sector.This analysis is also based on a timescale and factors different from those considered by Nag and Parikh (2000).To better investigate changing trends of the factors'relative contribution with time,the time period of statistical data from 1991to 2006used in this paper is divided into three equal time intervals (sub-periods),namely 1991–1996,1996–2001,and 2001–2006.

This paper is organized as follows.Section 2brie ?y reviews the literature.In Section 3,we describe the IPCC method to calculate the

Ecological Economics 68(2009)2122–2128

?Corresponding author.Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education,Dalian University of Technology,Dalian,116024,PR China.Tel.:+8641184074231;fax:+8641184708460.

E-mail address:zhangmingdlut@https://www.doczj.com/doc/6916356049.html, (M.

Zhang).

Contents lists available at ScienceDirect

Ecological Economics

j o u r n a l h om e p a g e :w w w.e l sev i e r.c o m /l oc a t e /e c ol e c o n

CO2emission,and use the proposed complete decomposition approach to decompose the change of aggregate CO2emission,and then give a formula about CO2mitigation.Section4discusses the disaggregating method of sectoral data.The present analysis on energy consumption and CO2emission are carried out in Section5. And in Section6,the main results are reported.Finally,we conclude this study.

2.Literature review

In the literature two well-known decomposition techniques, namely the structural decomposition analysis(SDA)and the index

decomposition analysis(IDA),have been widely applied to analyze the driving forces.SDA is based on the input–output model in quantitative economics.Rose and Casler(1996)provided a review on its theoretical foundation and major features.Casler and Rose(1998), Chang and Lin(1998),and Chang et al.(2008)use SDA to analyze CO2 emission.IDA uses index number concept in decomposition.Ang and Zhang(2000)and Sun(1998)give,respectively,details on two kinds of IDA methodologies:Laspeyres IDA and the Divisia IDA.A large number of studies on CO2emission decomposition using IDA have been reported,such as Ang and Zhang(1999),Sun(1998),Paul and Bhattacharya(2004),Wang et al.(2005),Wu et al.(2005),Lee and Oh (2006),Wietze(2006),and Diakoulaki and Mandaraka(2007).A comparison between SDA and IDA can be found in Hoekstra and van den Bergh(2003).

The Laspeyres IDA include basic Laspeyres index,Paasche index, Fisher ideal index,Shapley index and Marshall–Edgeworth index etc. They are all based on the basic Laspeyres and Paasche indices.For instance,the Fisher ideal index is actually a geometric average of the Laspeyres and the Paasche indices,while the Marshall Edgeworth index is an arithmetic average of the two.The Divisia IDA includes the arithmetic mean Divisia index(AMDI)and the logarithmic mean Divisia index(LMDI).

The advantage of the IDA is that it can readily be applied to any available data at any level of aggregation(Ma and Stern,2008).In their survey papers,Ang and Zhang(2000)report on109IDA articles and only on15based on SDA.Each IDA can be applied in a period-wise or time-series manner.A period-wise analysis compares indices between the?rst and the last year of a time period for a given country (or region,industry,etc.).A time-series analysis involves yearly decomposition using time-series data,and its results show how the impacts of prede?ned explanatory factors have evolved over time.

Initially,the Laspeyres decomposition approach always led to a residual,which could be of a considerable size.To illustrate this,the Laspeyres decomposition approach is presented.We suppose that in n dimensional space a subject A can be decomposed into the product of n factors,i.e.A=∏i=1

n X

i

.In the period[0,t],A is changed from A0to A t,i.e.

ΔA=A t?A0=

Y n

i=1

X t i?

Y n

i=1

X0i=

X n

i=1

X iàeffect;e1T

where X i t=X i0+ΔX i,andΔX i is the change of the factor i in the period [0,t].According to the de?nition of the Laspeyres decomposition,the contribution from factor X i to the total change of A is

X iàeffect=

Q n

k=1

X k

X i

ΔX i;e2T

The Laspeyres decomposition approach only yields an approximate decomposition.Because there are2n?1terms on the left hand of Eq.(1), there are only n terms on the right hand of Eq.(1),in which the remaining2n?1?n terms with two or more ordersΔare omitted.

According to the principle“jointly created and equally distributed”,the Laspeyres decomposition is re?ned to complete decomposition analysis by Sun(1998).The contribution from factor X i to the total change of A is

X iàeffect=

Q n

k=1

X k

i

ΔX i+1

X

i≠p

Q n

k=1

X k

i p

ΔX iΔX p

+

1

3

X

i≠p≠q

Q n

k=1

X k

X i X p X q

ΔX iΔX pΔX q+:::+

Q n

k=1

ΔX k

n

:

e3T

Zhang and Ang(2001)refer to this as the re?ned Laspeyres method,which has been widely adopted due to ease of both calculation and understanding.

Now several studies are devoted to the investigations of decomposi-tion analysis of energy consumption and energy-related CO2emission in China.Wang et al.(2005)applied the LMDI approach to the energy-related CO2emission.Wu et al.(2005)investigated the evolution of energy-related CO2emission from1985to1999and the underlying driving forces,using the index decomposition method and provincially

Table1

Carbon emission factors and fractions of carbon oxidized.

Fuel EF(t-C/TJ)O a

Coal25.80.90 Coke29.20.90 Coke oven gas12.10.99 Crude oil20.00.98 Gasoline19.10.98 Kerosene19.60.98 Diesel oil20.20.98 Fuel oil21.10.98 LPG(lique?ed petroleum gas)17.20.98 Re?nery gas15.70.98 Other petroleum products20.00.98 Natural gas15.30.99

Fig.1.Development of GDP in1978prices in China(1991–

2006).

2123

M.Zhang et al./Ecological Economics68(2009)2122–2128

aggregated data.Based on time-series decomposition of the LMDI,Liu et al.(2007)analyzed the change of industrial carbon emission from 36industrial sectors over the period 1998–2005.So far only one paper by Fan et al.(2007)has analyzed changes in carbon intensity in China based on AMDI.SDA is utilized to analyze the drivers of China's CO 2emission from 1980to 2030(Guan et al.,2008).Those papers show that energy intensity effect is con ?rmed as the dominant contributor to the decline in CO 2emission and CO 2emission intensity,and economic activity effect is the most important contributor to increased CO 2emission.However,with respect to the total CO 2emission in China,those studies do not take the importance of sectoral dimension into account.In this study,we attempt to use the complete decomposition technique to identify the factors in ?uencing the sectoral changes in CO 2emission,i.e.to determine the contribution of the factors which in ?uence energy-related CO 2emission by sector.3.Methodology

The symbol de ?nitions are as follows.

CE t total CO 2emission in year t (in tons,t);

CE i t total CO 2emission of the i th sector in year t ;

CE ij

t total CO 2emission of the i th sector based on fuel type j in year t ;

E i t total energy consumption of the i th sector in year t (TJ);E ij t total energy consumption of the i th sector based on fuel

type j in year t (TJ);

EF j carbon emission factor of the j th fuel (t-C/TJ);CS j t the fraction of the j th fuel is not oxidized as raw materials in

year t ;

O j the fraction of carbon oxidized based on fuel type j ;M the molecular weight ratio of carbon dioxide to carbon (44/12);

GDP t the value added in year t ;

GDP i t the value added of the i th sector in year t ;CI i t =CE i t

/E i t the CO 2intensity of the i th sector in year t ;EI i t =E i t

/GDP i t is the energy intensity of the i th sector in year t ;ES i t =GDP i t

/GDP t is the economic share of the i th sector in year t ; 3.1.Estimation of CO 2emission

Following the method given by the IPCC (1995),total CO 2

emission in the i th sector is estimated based energy consumption,carbon emission factors and the fraction of oxidized carbon by fuel as follows.

CE t

i =

X

j

CE t

ij =

X

j

E t ij ×E

F j ×1?CS t

j

×O j ×M

e4T

So,total emission of CO 2of all economy sectors at time t is CE t =∑i CE i t .

The carbon emission factors (EF s)and the fraction of carbon oxidized (O )are given in Table 1.Because the fuel used as a raw material for manufacture of products is excluded from the total energy consumption in this paper,CS is zero.These values are assumed to be constant over the time period of the study.3.2.Decomposition of aggregated CO 2

The CO 2emission can be expressed as an extended Kaya identity,which is a useful tool to decompose total national carbon emission.It is shown as Eq.(5).

CE t

=

X i

CE t

i

E t

i ×

E t i GDP t i ×GDP t i

GDP t ×GDP t =X i

CI t i ×EI t i ×ES t i ×G t e5TThe change of CO 2emission between a base year 0and a target year

t ,denoted by ΔCE ,can be decomposed to four effects:(i)the changes in the CO 2intensity effect (denoted by CI effect );(ii)the changes in the energy intensity effect (denoted by EI effect );(iii)the changes in the structural changes effect (denoted by ES effect );and (iv)the growth in the economic activity effect (denoted by G effect )in additive form,as shown in Eq.(6).

ΔCE =CE t

?CE 0

=CI effect +EI effect +ES effect +G effect

e6T

where superscripts 0and t denote a base year and a target year,respectively.According to the complete decomposition model

given

Fig.3.Energy consumption by sector in China (1991–

2006).

Fig.5.Sectoral energy intensity in China (1991–2006).

Table 2

Energy intensity and percent changes in energy intensity.

Total

Agriculture Industry Transportation Others 1991(Mtce/BY)0.670.14 1.010.590.622124M.Zhang et al./Ecological Economics 68(2009)2122–2128

by Sun (1998),each effect in the right hand side of Eq.(6)can be computed as follows

CI effect =

P

i

ΔCI i ×EI 0i ×ES 0i ×G 0

+

1X

i

ΔCI i ×ΔEI i ×ΔES i ×ΔG +12X i

ΔCI i ΔEI i ×ES 0i ×G 0+EI 0i ×ΔES i

×G 0+EI 0i ×ES 0i ×ΔG +1X i ΔCI i ΔEI i ×ΔES i ×G 0+ΔEI i ×ES 0i ×ΔG +EI 0

i ×ΔES i ×ΔG EI effect =

X

i

CI 0i ×ΔEI i ×ES 0i ×G 0

+

1X

i

ΔCI i ×ΔEI i ×ΔES i ×ΔG +

12X i

ΔEI i ΔCI i ×ES 0i ×G 0+CI 0i ×ΔES i ×G 0+CI 0i ×ES 0

i ×ΔG +1X i ΔEI i ΔCI i ×ΔES i ×G 0+ΔCI i ×ES 0i ×ΔG +CI 0

i ×ΔES i ×ΔG ES effect =

X

i

CI 0i ×EI 0i ×ΔES i ×G 0

+

14X

i

ΔCI i ×ΔEI i ×ΔES i ×ΔG +

12X i

ΔES i ΔCI i ×EI 0i ×G 0+CI 0i ×ΔEI i ×G 0+CI 0i ×EI 0

i ×ΔG +

13X i ΔES i ΔCI i ×ΔEI i ×G 0+ΔCI i ×EI 0i ×ΔG +CI 0

i ×ΔEI i ×ΔG G effect =

X i

CI 0i ×EI 0i ×ES 0

i ×ΔG +14X i ΔCI i ×ΔEI i ×ΔES i ×ΔG +12X i

ΔG ΔCI i ×ES 0i ×ES 0i +CI 0i ×ΔEI i ×ES 0i +CI 0i ×EI 0

i ×ΔES i

+13X i

ΔG ΔCI i ×ΔEI i ×ES 0i +ΔCI i ×EI 0i ×ΔES i +CI 0

i ×ΔEI i ×ΔES i :It is necessary to make clear the different factors caused the

changes in CO 2emission.The CO 2intensity effect is used to evaluate fuels quality,fuels substitution and the installation of abatement technologies.Energy consumption is mainly related to some variables,such as economic structures,the ef ?ciency of the energy systems,energy utilization technologies,energy prices,energy conservation and energy-saving investments,which are composed of energy intensity effect.The structural changes effect is used for analyzing the shifting of industrial structures.And the economic activity effect re ?ects the economic development.3.3.CO 2mitigation model

In order to estimate the CO 2mitigation,a new model is established in this section.In details,it is shown as the above Eq.(6).Each term on the right of Eq.(6)represents the effect of CO 2intensity,energy intensity,the structural changes,economic activity respectively.CI effect ,EI effect and ES effect relate to the changes of CO 2emission.G effect is the main contributor

to CO 2emission,and CO 2emission changing caused by G effect is named as the theoretical changes of CO 2emission.Here,we give a de ?nition on the theoretical decrease (ΔEM )as follow,

ΔEM =G effect ?ΔCE =?CI effect +EI effect +ES effect eT:

Thus,according to Eq.(6),the calculating formula of ΔEM can be obtained in Eq.(7).

ΔEM =G effect ?ΔCE =?CI effect +EI effect +ES effect eT;

e7T

where Δis the difference in the time interval [0,t ].The rate of theoretical decrease of CO 2emission (ER )in the t th year is ER =

?CI effect +EI effect +ES effect eT

CE +G effect

×100k :

e8T

According to Eq.(7),if the condition G effect ?ΔCE N 0,CO 2emission is mitigated,and the real change in CO 2emission is smaller than its theoretical change,which is caused by economic activity based on the technological and economic level in the previous year.4.Data management

The GDP and energy consumption used in this study is statistical data from 1991to 2006from CSY (1992–2007)and CESY (1991–1996,1997–1999,2000–2002,2003,2004.2005,2006,2007)respectively.GDP is 1978price.CO 2emission is estimated based on energy consumption and CO 2emission factor by fuel.

To prepare the data for undertaking the complete decomposition analysis by sector,the economy of China has been divided into four distinct sectors:the primary agricultural sector;the secondary industrial sector;the transportation sector and the others.The primary agricultural sector includes agriculture and its related activities:farming,forestry,husbandry,secondary production and ?shing.The secondary industrial sector is comprised of mining,manufacturing,water supply,electricity generation and supply,steam,the hot-water and gas sectors,and construction.The tertiary sector is subdivided into transportation sector (including postal and telecommunications services)and the other sectors.

The value added has been derived from CSY (1992–2007).Here,the values added for agriculture and industry are separately speci ?ed and can be used straightaway.However,the value added for transportation sector is only available of combination with communication.For lack of better information,the value added of transportation

and

Fig.7.Sectoral development of CO 2intensity in China (1991–2006).

Table 3

CO 2intensity and percent changes.

Total

Agriculture Industry Transportation Others 1991(Mt/Mtce) 2.84 2.94 2.95 2.37 2.642125

M.Zhang et al./Ecological Economics 68(2009)2122–2128

communication is used as a proxy for the transportation sector in this paper.The remaining value added is assigned to the other sector.

This study mainly takes four energy types into account,including primary energy,secondary energy,electricity and heat.The primary energy is composed of coal,oil,natural gas,hydro and nuclear energy. Secondary energy includes coke,coke oven gas,gasoline,kerosene, diesel oil,fuel oil,lique?ed petroleum gas(LPG),re?nery gas,other petroleum products.According to the study presented by Paul and Bhattacharya(2004),CO2emission from power and heat generation are assigned to four sectors in the economy proportional to their consumption of electricity.

5.Analysis of statistical data

5.1.Economic growth

Fig.1shows the development of GDP in the period1991–2006, which gives an insight into China economy.GDP has increased from 1121billion yuan(BY)in1991to4863BY in2006in1978prices, representing an overall annual growth of10.28%.Fig.2shows the shares of four sectors'GDP.The share of transportation sector(from 6.52%in1991to5.71%in2006)decreases slightly in the period1991–2006.There is a substitution between the increasing shares of the industrial sector(from41.79%in1980to48.92%in2006)and other sector(from27.16%in1980to33.65%in2006)and a decreasing share of the agricultural sector(from24.53%in1980to11.73%in2006).It is illustrated from more than40%share of the industrial sector that China has entered a rapid industrial developing period.

5.2.Energy consumption and energy intensity

Because of the rapid economic growth of China,total energy consumption increased from747.6million tons of coal equivalent (Mtce)in1991to1625.7Mtce in2006,an annual growth rate reaches 5.32%(Fig.3).The primary energy consumption increased about64.8% from the year2002to2006.Over the period1991–2006,the industrial sector is the biggest contributor to energy consumption,which accounts for about63.8–70.3%of total energy consumption.Mean-while,the growth rate of energy consumption of transportation sector is higher than other sectors.

Fig.4illustrates the shares by fuel in primary energy supply over 1991–2006.Although the coal share decreased steadily,it still is the leading energy supply,which has accounted for about70%of the total energy demand.The demands of natural gas and hydropower increased rapidly,their shares are still small and less than5%.Therefore,the fast increasing energy demand lies on the increase of coal and oil in China.

The development of the sectoral energy intensity showed in Fig.5. Here,the level in the base-year1991is assigned to100.Table2 presents the changing of energy intensities from1991to2006.

Table2shows that energy intensity decreased by49.9%from1991 to2006.It is clear that the decrease of other sector energy intensity was biggest and reached73.5%,as shown in Fig.5.The largest decrease in other sector took place in1997and1998,and it has come back to steady state since1999.At the same time there has been a change in energy intensity in the agricultural sector of?21.1%.The energy intensity of the industrial sector decreased continually over the period of1991–2002,and it is a bit increasing from2002.The energy intensity in the transportation sector increased approximately by2.6% from1991to2006.

5.3.CO2emission and CO2intensity

Parallel to the energy consumption,Fig.6shows that CO2emission in China increased rapidly from2119.6million tons(Mt)in1991about to4490.9Mt in2006,an annual increase of5.13%,and increased about 66.2%from the year2002to2006.It is known that CO2emission mainly come from the industrial sector and coal consumption.In the period of1991–2006,the industrial CO2emission accounts for about 66.3–72.0%of total https://www.doczj.com/doc/6916356049.html,pared with the other sectors, the CO2emission of transportation sector is increasing with a high rate,just as shown in Fig.6.

The development of the sectoral CO2intensity is presented in Fig.7. Following the presentation in Fig.5,the CO2intensity is shown with respect to the level in1991(100).Table3gives the changing of CO2 intensities from1991to2006.It is shown that there has been a gradual increase in CO2intensity in the period of1991–2006,and total CO2intensity increased by8.28%.CO2intensities of agricultural and transportation sectors decrease by0.01%and0.7%respectively,and CO2intensity of other sector increases by20.01%and is the biggest among4sectors from1991to2006.The changing tendency of CO2 intensity in the industrial sector is similar to the change of total CO2 intensity.

6.Results and discussion

In this section,the contribution of each factor to the energy-related CO2emission change for per time interval(1991–1996,1996–2001, 2001–2006)and the entire period from1991to2006are discussed based on the proposed model.

Table4

Decomposition of CO2emission in agricultural sector.

Index CI effect EI effect ES effect G effect Real change

1991–1996 3.20(25.9)?35.43(?286.9)?27.02(?218.8)71.60(579.8)12.34(100) 1996–2001 2.19(18.7)?1.53(?13.1)?41.77(?357.5)52.79(451.8)11.68(100) 2001–2006?8.08(?17.5)10.11(21.9)?33.21(?72.1)77.18(167.7)46.01(100) 1991–2006?1.32(?1.8)?42.96(?61.3)249.85(356.7)249.85(356.7)70.04(100)

Unit:Million tons.

Note:Figure in the parentheses denotes percentage of the total change.

Table5

Decomposition of CO2emission in industrial sector.

Index CI effect EI effect ES effect G effect Real change

1991–1996?0.6(0.1)?621.6(?100.1)226.8(36.4)1016.8(163.6)621.4(100) 1996–2001144.9(?173.9)?935.2(1122.6)?109.9(131.9)816.9(?980.6)?83.3(100) 2001–200617.8(1.1)101.6(6.2)224.1(13.7)1287.5(78.9)1631(100) 1991–2006221.7(10.2)?2328.2(?107.3)451.8(20.8)3823.9(176.2)2169.2(100) 2126M.Zhang et al./Ecological Economics68(2009)2122–2128

6.1.Agricultural sector

Table 4indicates that the economic activity is the biggest factor to in ?uence CO 2emission in the agricultural sector.The share of agriculture in GDP has been declining since 1991.This led to a decline in CO 2emission (negative structural changes effect).During the ?rst two sub-periods (1991–1996,1996–2001),CO 2intensities are posi-tive.However in the third sub-period and the entire period,CO 2intensities are negative,which lead to CO 2emission reduction.This adequately re ?ects that the advancement of fuel quality is effective for reducing CO 2emission in the agricultural sector.The negative energy intensity can be found in the ?rst two sub-periods and the entire period.A decline in energy intensity is due to the increase of integrated energy ef ?ciency.In the sub-period of 2001–2006,the positive energy intensity indicates that there has been a mechaniza-tion transition in agricultural sector.During the ?rst sub-period (1991–1996),the advancement of energy utilization ef ?ciency decrease 286.9%of total changes in CO 2emission.In this sub-period,more than 400%of CO 2emission are reduced by the integrated effects of CO 2intensity and energy intensity.In the period of 1991–2006,the effects of energy intensity and CO 2intensity lead to reduce 254%of total changes in CO 2emission.

6.2.Industrial sector

Table 5indicates that economic activity is still the most important factor to effect CO 2emission in the industrial sector.The GDP shares of the industrial sector in the sub-periods of 1991–1996and 2001–2006lead to increasing of CO 2emission of these two sub-periods and the entire https://www.doczj.com/doc/6916356049.html,pared with the sub-periods of 1991–1996and 2001–2006,the structural changes effect has negative in ?uence on CO 2emission in the sub-period of 1996–2001.Except the sub-period of 2001–2006,the energy intensities are negative in the ?rst two sub-periods and the entire period.The negative energy intensity is due to the industrial structure change and energy conservation.During the ?rst sub-period,CO 2intensity is negative.In the second and third sub-periods as well as the entire period,CO 2intensities are positive and lead to the increase of CO 2emission,which re ?ects that it is necessary to adjust energy supply structure to strengthen clean energy utilization in the industrial sector.The change of total CO 2emission in the sub-period of 1996–2001is negative and the main reasons are improvement of energy use ef ?ciency.The energy intensity effect leads to reducing 107%of total changes in CO 2emission from 1991to 2006.

6.3.Transportation sector

Table 6illustrates that economic activity is the most important factor to effect CO 2emission in the transportation sector.Although the GDP shares of the transportation sector remain constant at about 5%in the period of 1991–2006,it led to a decrease in CO 2emission except the sub-period of 1996–2001.The energy intensities of transportation sector gradually increase in three sub-periods,which is because people pursue comfortable transportation mode.The CO 2intensities are negative in all sub-periods and the entire period,which indicates that the qualities of fuels are advanced extremely in the transportation sector.And this effect is relatively stronger in the sub-period 1991–1996than the other two sub-periods of 1996–2001and 2001–2006.In the entire period,more than 17%of total changes in CO 2emission are reduced by the integrated effects of CO 2intensity and structure share effect.

6.4.Other sector

The results of the other sectors are given in Table 7.For other sector,economic activity is a very important factor to effect CO 2emission.The negative structural changes effect is found in the third sub-period,which is due to the decreased GDP share of other sector since 2003.Energy intensity is an important factor for reducing CO 2emission in every sub-period and the entire period.The high electri ?cation and larger residential energy consumption share are main reasons of energy intensity reduction.The CO 2intensities are positive in all sub-periods and the entire period,which re ?ects that the advancement of fuel quality is necessary in the other https://www.doczj.com/doc/6916356049.html,pared with the former two sub-periods and entire period,the effect of CO 2intensity is relatively low in the sub-period of 2001–2006.In the entire period,the energy intensity effect reduces 354%of total changes in CO 2emission.

6.5.Integrated analysis

The changes of CO 2emission in China are shown in Table 8.Economic activity effect is the main in ?uence factor for CO 2emission reduction in China.We can see that the economic activity effect accounts for +196%of CO 2emission change over the entire period.Except the sub-period of 2001–2006,the energy intensity effect plays an important role in mitigation of CO 2emission because they are negative.The result shows that the energy intensity effect reduces 126%of total changes in CO 2emission from 1991to 2006.The structural changes effects and CO 2intensity are positive in all sub-periods and the entire period,which indicate that the present industrial and energy structures are unreasonable for reducing CO 2emission.

6.6.CO 2mitigation

Table 9lists the data results of CO 2emission mitigation in four time intervals:1991–1996,1996–2001,2001–2006and 1991–2006.The negative rate of theoretical decrease of CO 2emission is found in the time interval of 2001–2006.It can be seen that the theoretical decrease

Table 7

Decomposition of CO 2emission in the other sectors.Index CI effect

EI effect

ES effect

G effect

Real change 1991–199622.6(29.6)?279.4(?367.1) 6.1(8.0)

326.8(429.4)76.1(100)1996–200161(?208.9)?459.9(1575)131.2(?449.3)238.5(?816.7)?29.2(100)2001–200628.2(9.1)?41.9(?13.6)?11.2(?3.6)332.4(108.0)307.5(100)1991–2006

165.8(46.7)

?1254.9(?354.1)

194.4(54.8)

1249(352.5)

354.3(100)

Table 6

Decomposition of CO 2emission in Transportation sector.Index

CI effect

EI effect

ES effect

G effect

Real change

1991–1996?1.3(?7.0)?23.5(?123.1)?24.1(?125.7)68.1(355.9)19.1(100)1996–2001?3.2(?3.6)0.04(0.04)27.1(30.5)64.9(73.0)88.8(100)2001–2006?8.1(?4.8)66.2(39.0)?27.6(?16.2)139.4(82.0)169.8(100)1991–2006?14.7(?5.3) 6.6(2.3)?33.9(?12.1)319.9(115.1)277.8(100)Unit:Million tons.

Note:Figure in the parentheses denotes percentage of the total change.

2127

M.Zhang et al./Ecological Economics 68(2009)2122–2128

of CO2emission from1991to2006amounted to2771.3Mt and the rate of theoretical decrease is35.7%.

7.Conclusions

In this paper,the complete decomposition method is used to analyze the nature of the factors that in?uence the changes in energy-related CO2emission during the period1991–2006.To better investigate likely changes with time in the relative contribution of the examined factors, this period is divided into three equal time intervals.The factors, including CO2intensity effect,energy intensity effect,structural changes effect and economic activity effect,lead to changes of CO2emission.The decomposition analysis follows a bottom-up approach leading from sectoral to country's?gures.This procedure gives a better insight into the origin of the various factors in?uencing CO2emission and provides richer information that can be exploited for setting-up effective CO2 abatement policies in each separate sector.The decomposition analysis indicates that the largest increase in CO2emission is caused by economic activity effect in all the sub-periods as well as in the entire period.The energy intensity effect contributes negatively to CO2emission growth in all sectors except the transportation sector.Those results are consistent with the conclusions of previous empirical studies.However,the impact of CO2intensity and structural changes was relatively small.Structural changes only exhibits positive effect to the CO2mitigation in agricultural sector,and CO2intensity just contributes to the decrease in CO2emission in transportation sector.

In addition,this paper reveals that China is still the main source of CO2emission in the world and hasn't made concrete commitments to the Kyoto Protocol,but it has made a signi?cant contribution to reducing global CO2emission.For example,it can be observed that the CO2emission increased2871.4Mt from2119.6Mt in1991to4990.9Mt in2006,while the theoretical increase in CO2emission is5642.7Mt in Table9.

As a responsible country,China has been making great efforts to reduce its CO2emission intensity.Based on the above research results,the following strategies should be undertaken to reduce CO2emission:(1) Despite energy intensity in three industries declined rapidly,there is still much potential for energy intensity to decline,especially in some energy-intensive sectors(compared to the international advanced level)due to the gap in production process,technology,and management level.The energy-intensive sectors have played an important role in China's infrastructure;therefore strategic policies for these sectors are to upgrade the production process,enhance energy ef?ciency,and improve the substitution of clean fuels for fossil fuel aiming to drive the real energy intensity to decline further.(2)Enhancing technologies for electricity generating,and introducing wind,biomass,and land?ll for generation to decrease the carbon coef?cients of electricity generation,and reducing the electricity transmissions and distribution line loss.(3)Changing economic structure,especially products'production in the secondary industry,will further mitigate CO2emission.(4)Integrating economic growth to harmonize industrial development and CO2emission reduction.

Acknowledgments

The authors gratefully acknowledge the?nancial support from the National Natural Science Foundation of China(NSFC)under the grant 70873013and the Doctoral Fund of Ministry of Education of China(RFDP) under the contract No.200801410024.We would also like to thank the anonymous referees for their helpful suggestions and corrections on the earlier draft of our paper,on which we have improved the content. References

Ang,B.W.,Zhang,F.Q.,1999.Inter-regional comparisons of energy-related CO2emission using the decomposition technique.Energy24,297–305.

Ang,B.W.,Zhang,F.Q.,2000.A survey of index decomposition analysis in energy and environmental analysis.Energy25,1149–1176.

Casler,S.,Rose,A.,1998.Carbon dioxide emission in the US economy:a structural decomposition analysis.Environmental and Resource Economics11,349–363. CESY1991–1996,1997–1999,2000–2002,2003,2004.2005,2006,2007.China Energy Statistical Yearbook,National Bureau of Statistics of China,National Development and Reform Commission.

Chang,Y.F.,Lin,S.J.,1998.Structural decomposition of industrial CO2emission in Taiwan:an input–output approach.Energy Policy26,5–12.

Chang,Y.F.,Lewis, C.,Lin,S.J.,https://www.doczj.com/doc/6916356049.html,prehensive evaluation of industrial CO2 emission(1989–2004)in Taiwan by input–output structural decomposition.

Energy Policy36,2471–2480.

CSY,1992–2007.China Statistical Yearbook,National Bureau of Statistics of China. Diakoulaki,D.,Mandaraka,M.,2007.Decomposition analysis for assessing the progress in decoupling industrial growth from CO2emission in the EU manufacturing sector.

Energy Economics29,636–664.

Fan,Y.,Liu,L.C.,Wu,G.,Tsai,H.T.,Wei,Y.M.,2007.Changes in carbon intensity in China: empirical?ndings from1980–2003.Ecological Economics62,683–691.

Guan,D.B.,Hubacek,K.,Weber,C.L.,Peters,G.P.,Reiner,D.M.,2008.The drivers of Chinese CO2emission from1980to2030.Global Environmental Change18,626–634. Hoekstra,R.,van den Bergh,J.C.J.M.,https://www.doczj.com/doc/6916356049.html,paring structural and index decom-position analysis.Energy Economics25,39–64.

IPCC,1995.Greenhouse Gas Inventory:IPCC Guidelines for National Greenhouse Gas Inventories.United Kingdom Meteorological Of?ce,Bracknell,England.

Lee,K.,Oh,W.K.,2006.Analysis of CO2emission in APEC countries:a time-series and a cross sectional decomposition using the log mean Divisia method.Energy Policy34, 2779–2787.

Liu,L.C.,Fan,Y.,Wu,G.,Wei,Y.M.,https://www.doczj.com/doc/6916356049.html,ing LMDI method to analyze the change of China's industrial CO2emission from?nal fuel use:an empirical analysis.Energy Policy35,5892–5900.

Ma,C.B.,Stern,D.I.,2008.China's changing energy intensity trend:a decomposition analysis.Energy Economics30,1037–1053.

Nag,B.,Parikh,J.,2000.Indicators of carbon emission intensity from commercial energy use in India.Energy Economics22,441–461.

Paul,S.,Bhattacharya,R.N.,2004.CO2emission from energy use in India:a decomposition analysis.Energy Policy32,585–593.

Rose,A.,Casler,S.,1996.Input–output structural decomposition analysis:a critical appraisal.Economic Systems Research8,33–62.

Sun,J.W.,1998.Accounting for energy use in China,1980–94.Energy23,835–849. Wang,C.,Chen,J.N.,Zou,J.,2005.Decomposition of energy-related CO2emission in China:1957–2000.Energy30,73–83.

Wietze,L.,2006.Decomposition of CO2emission over1980–2003in Turkey.Energy Policy34,1841–1852.

Wu,L.b.,Kaneko,S.,Matsuoka,S.,2005.Driving forces behind the stagnancy of China's energy-related CO2emission from1996to1999:the relative importance of structural change,intensity change and scale change.Energy Policy33,319–335. Zhang,F.Q.,Ang,B.W.,2001.Methodological issues in cross-country/region decom-

Table8

Decomposition of CO2emission for all sectors.

Index CI effect EI effect ES effect G effect Real change

1991–199623.8(3.2)?960(?131.7)181.8(24.9)1483.3(203.4)728.9(100) 1996–2001204.9(?1721)?1396.6(11736) 6.7(?56.3)1173.1(?9857)?11.9(100) 2001–200629.7(1.3)136.1(6.3)152(7.1)1836.5(85.2)2154.3(100) 1991–2006371.4(12.9)?3619.4(?126.1)476.7(16.6)5642.7(196.5)2871.4(100)

Unit:Million tons.

Note:Figure in the parentheses denotes percentage of the total change.

Table9

CO2mitigation in all periods.

Real change Theoretical

increase

Theoretical

decrease

Rate of theoretical

decrease(%)

1991–1996728.91483.3754.420.9

1996–2001?11.91173.1118529.4

2001–20062154.31836.5?317.8?6.8

2128M.Zhang et al./Ecological Economics68(2009)2122–2128

二氧化碳气体保护焊安全操作规程

二氧化碳气体保护焊安全操作规程 1、作业前,二氧化碳气体应预热15min。开气时,操作人员必须站在瓶嘴的侧面。 2、作业前,应检查并确认焊丝的进给机构、电线的连接部分、二氧化碳气体的供应系统及冷却水循环系统合乎要求,焊枪冷却水系统不得漏水。 3、二氧化碳气体瓶宜放阴凉处,其最高温度不得超过30℃,并应放置牢靠,不得靠近热源。 4、二氧化碳气体预热器端的电压,不得大于36V,作业后,应切断电源。 5、焊接操作及配合人员必须按规定穿戴劳动防护用品。并必须采取防止触电、高空坠落、瓦斯中毒和火灾等事故的安全措施。 6、现场使用的电焊机,应设有防雨、防潮、防晒的机棚,并应装设相应的消防器材。 7、高空焊接或切割时,必须系好安全带,焊接周围和下方应采取防火措施,并应有专人监护。 8、当需施焊受压容器、密封容器、油桶、管道、沾有可燃气体和溶液的工作时,应先消除容器及管道内压力,消除可燃气体和溶液,然后冲洗有毒、有害、易燃物质;对存有残余油脂的容器,应先有蒸汽、碱水冲洗,并打开盖口,确认容器清洗干净后,再灌满清水方可进行焊接。在容器内焊接应采取防止触电、中毒和窒息的措施。焊、割密封容器应留出气孔,必要时在进、出气口处装设通风设备;容器内照明电压不得超过12V,焊工与焊件间应绝缘;容器处应设专人监护。严禁在已喷涂过油漆和塑料的容器内焊接。 9、对承压状态的压力容器及管道、带电设备、承载结构的受力部位和装有易燃、易爆物品的容器严禁进行焊接和切割。 10、焊接铜、铝、锌、锡等有色金属时,应通风良好,焊接人员应戴防毒面罩、呼吸滤清器或采取其他防毒措施。 11、当消除焊缝焊渣时,应戴防护眼镜,头部应避开敲击焊渣飞溅方向。

二氧化碳点阵激光对瘢痕的防治作用

二氧化碳点阵激光对瘢痕的防治作用 1.参数:波长为10600nm,功率一般为10-50W. 2.原理:二氧化碳激光波长位于中红外区,主要作用靶为水分子,可导致皮肤组织温度显 著升高,产生凝固,炭化,气化等生物学效应,在临床上起到烧灼,切割等作用。在瘢痕的防治作用中用到的主要是气化和凝固作用。 3.模式: a)SP模式:skin pulse DP模式:vaginal mucosa pulse b)SP:轻度萎缩性瘢痕,毛孔粗大,细纹等浅部应用。 c)DP:皮肤松弛,面部年轻化,各类中度瘢痕。 d)HP:肥厚性瘢痕,祛除皮肤赘生物 e)UP:外科切割 f)CW:传统换肤术 4.

5.禁忌症 i.治疗前(至少1个月)、治疗时、治疗后应避免阳光和紫外(UV)灯照射。 ii.治疗前(至少1周)停用下列药物: iii.抗凝剂(如阿司匹林、肝素等) iv.类维生素A—这些药物在愈合过程中会带来伤疤等问题(如异维A酸等) v.光敏剂(如四环素[抗生素]、萘普生[非甾体类抗炎药]、金诺芬[抗风湿药]、雌激素和孕激素[口服避孕药]、氯喹[抗疟药]等) vi.近期有表皮脱落性治疗(脱皮、磨皮、维生素A酸、之前的激光换肤或皮肤磨削术)或外科治疗(如除皱术等)。 vii.有皮肤病或瘢痕瘤。 viii.有孢疹病毒感染。 6.注意事项: i.激光治疗前应当注意是否有怀孕,是否糖尿病,是否局部有金属物。 ii.在只使用二氧化碳激光辐射治疗时,不能皮肤和电极是不能接触水的。 iii.在使用射频时,应当使电极接触部分充分湿润,放置局部电流不稳,灼伤皮肤。 iv.在射频使用过程中,在不能保证电极充分接触皮肤的情况下,不能应用。 v.激光治疗后应用防晒霜SPF50左右。 vi.为了减轻炎症反应,激光治疗后可以冰敷,每天生理盐水清洗脸部(3次/天,共三天)清洗完成后可以用红霉素软膏涂抹,3天后恢复正常保湿及防晒。 vii.激光之后后3天避免接触热水。 知情同意书 点阵激光需多次治疗,影响治疗次数和疗效的因素有:病种、部位、时间、病变深 浅、年龄、性别、对点阵激光治疗的反应、个体差异、生活习惯等,局部治疗每次 间隔3-4周,全面部治疗每次间隔4-6周。 多数患者在治疗过程中有轻微的疼痛感,但有些人对疼痛敏感。刚接受治疗的皮肤 会有些发红和肿胀,皮肤有灼热感,治疗后24小时红肿逐渐消退。 根据治疗深度的不同,2-3天治疗部位开始出现细小黑痂并逐渐脱落,5-7天皮肤 基本愈合,恢复正常。少数病人治疗后红肿不消退或出现水疱,不要自行处理,尽 快到本院复诊。 个别病人治疗后出现暂时性色素沉着或色素脱失,一般会逐渐恢复正常,时间因人 而异。如果由于某种需要而加大治疗能量则治疗反应也会加大,可能出现点状出血 或水疱,需要按医嘱适当护理,一周左右可能消退,一般不会留下瘢痕。 个别人对疼痛敏感,可在术前适量涂抹利多卡因乳膏进行表面麻醉30分钟后再行 治疗。 术后当天可进行适度冷敷,7天内创面禁止接触水,注意防晒,避免搓、抓。 创面可适量涂抹湿润烧伤膏或敷胶原蛋白面膜,以减轻余热损伤,促进创面修复。 创面愈合后,新生皮肤注意保湿和防晒。 患者们请谨慎遵以下医嘱: 1.治疗后即刻外涂妥布霉素地塞米松眼膏(典必殊),每3-4个小时外涂一 次,每次换药之前请用干净的棉签将创面轻轻沾干,再外涂一层。术后3天请 换用外涂美宝湿润烧伤膏,每3-4个小时外涂一次,每次换药之前请用干净 的棉签将创面轻轻沾干,再外涂一层,以更好地促进药物的吸收和祛除液化的

Acupulse CO2点阵激光治疗面部痤疮凹陷性瘢痕疗效观察

Acupulse CO2点阵激光治疗面部痤疮凹陷性瘢痕疗效观察 [摘要]目的:观察Acupulse CO,点阵激光治疗面部痤疮凹陷性瘢痕的临床疗效。方法:86例面部痤疮凹陷性瘢痕患者,采用Acupul se CO2点阵激光超脉冲模式及点阵深浅治疗模式等复合治疗,每隔2个月治疗一次,3次为1疗程,1个疗程治疗结束后2个月复诊,按照显效、有效、好转和无效四级标准评价疗效和观察不良反应。结果:面部痤疮瘢痕的大小、凹陷深度、皮肤色泽都有不同程度改善,显效率64.15%、有效率为31.13%,总有效率95.28%;治疗次数越多,效果越好;无明显不良反应。结论:Acupul se CO2点阵激光治疗面部痤疮凹陷性瘢痕效果好、副作用少,是面部痤疮凹陷性瘢痕较好的治疗方法之一。 [关键词]痤疮;面部;凹陷性瘢痕;二氧化碳激光;点阵激光 [中图分类号]R619.6 [文献标志码]A [文章编 号]1008-6455(2016)06-0022-03 痤疮是一种常见的毛囊皮脂腺的慢性炎症性疾病,是一种多因素疾病,也是一种常见的面部毁容性皮肤病。其发病主要与雄性激素及皮脂腺分泌增加、毛囊皮脂腺导管角化异常、痤疮丙酸杆菌增殖及继发炎症四大因素相关。中重度痤疮患者一般愈合后常常伴随面部凹陷性瘢痕的产生,严重的

凹陷性瘢痕可以给患者社交活动及心理健康带来负面影响。目前临床上对痤疮凹陷性瘢痕的治疗方法很多,但是点阵激光治疗方法具有划时代的意义,为了进一步探讨此方法的临床治疗效果,本文选取在我院应用Acupulse CO2点阵激光治疗的86例面部痤疮凹陷性瘢痕患者的临床资料进行回顾分析,报道如下。 1.资料和方法 1.1一般资料:选取2015年1月2016年3月我院门诊收治的面部痤疮凹陷性瘢痕86例患者,男47例,女39例;年龄17~50岁,平均年龄(27±8)岁。病史0.5~20年,平均病史(7±5)年。皮肤类型为FitzpatrickⅢ~Ⅳ型。瘢痕位于面部,呈程度不一的凹陷性外观,色泽为正常肤色,质地较软,其中全面部者51例,双面颊部明显者22例,额部明显者5例,鼻部明显者4例,下颌部明显者4例。 这些患者均排除了以下禁忌证:①瘢痕体质者;②精神病患者或对治疗期望过高、沟通困难者;③妊娠或哺乳期患者;④近3个月内使用过维A酸类药物治疗者;⑤有心脏病,哮喘病,糖尿病的患者。 每个患者治疗前均签署了治疗知情同意书,治疗前、后均要拍照存档、书写激光治疗病历。 1.2治疗方法 1.2.1设备及参数选择:我院使用的仪器是美国科医人公

交流电焊机接线

交流电焊机接线

————————————————————————————————作者:————————————————————————————————日期:

电焊机是焊接钢铁的主要设备。在焊接时,可根据焊接要求,调节电抗器的间隙来改变焊接电流的大小。 在起弧时,由于焊条与工件直接接触,电焊变压器次级处于短路状态,使次级电压快速下降至零,从而不会因电焊变压器电流过大而烧毁。其工作原理及外形如图5.2所示。 图5.2电焊机工作原理图及外形 常用交流电焊机的一般接法用刀闸或空气断路器控制,如图5.3所示,当合上闸刀开关QS时,电焊机得电工作;当拉下闸刀开关QS时,电焊机停止工作。该线路是电焊机常用的,且最简单的一种接线线路。 另外为了更安全方便控制电焊机则采用按钮开关控制交流接触器线圈,实现远距离操作,其接线方法如图5.4所示,工作时,合上刀闸开关QS,按下起动按钮SB1,交流接触器KM线圈得电吸合且自锁,KM主触点闭合,电焊机通电工作;欲停止则按下停止按钮SB2,交流接触器KM线圈断电释放,主触点断开,电焊机断电停止工作。 图5.3常用交流电焊机采用闸刀开关的具体接线方法

图5.4采用交流接触器控制电焊机的具体接线方法BX1型电焊机接成如图5.5所示。 图5.5BX1型电焊机接线 BX3型电焊机接线如图5.6所示。

图5.6BX3型电焊机接线BX6型电焊机接线如图5.7所示。 图5.7BX6型电焊机接线BX1型电焊机技术数据如表5.2所示。 表5.2BX1型电焊机技术数据

动铁式:输入电压为220V时,一次电流为每kVA×4.5A,若为380V时,每kVA×2.5A BX3型电焊机技术数据如表5.3所示。 表5.3BX3型电焊机技术数据 BX6型电焊机技术数据如表5.4所示。 表5.4BX6型电焊机技术数据

二氧化碳保护焊机安全操作规程

二氧化碳保护焊机安全操作规程 1. 此类设备属特种作业设备,必须持证上岗,上岗证由市劳动部门统一颁发。 2. 本机必须由受过专业培训的人员操作; 3. 在移动焊机时,应取出机内易损电子器材单独搬动。 4. 焊机内的接触器、断电器的工作元件,焊枪夹头的夹紧力以及喷嘴的以及喷嘴的绝缘性能等,应定期检查。 5. 咼频引弧焊机或装有咼频引弧装置时,焊接电缆都应有铜网编织屏蔽套,并可靠接地。 6. 焊机使用前应检查供气、供水系统,不得在漏水、漏气的情况下运行。 7. 气体保护焊机作业结束后,禁止立即用手触摸焊枪导电嘴,以免烫伤。 8. 盛装保护气体的高压气瓶就小心轻放竖立固定,防止倾倒。气瓶与热源距离应大于3m 9. 采用电热器使二氧化碳气瓶内液态二氧化碳充分氧化时,焊机必须使用规范的输入电压,应低于 36V;外壳接地可靠。工作结束立即切断电源和气源。 10. 在无严重影响焊机绝缘性能和引起腐蚀的环境中使用; 11. 焊机必须有符合规范的接地装置,必要时安装漏电保护器;

12. 工人操作时要要穿戴焊帽、眼镜及必要的绝缘防护用具; 13. 焊把、焊枪要轻拿轻放; 14. 严禁用力拉焊把线、焊机二次线,包括送丝机构线; 15. 操作工要按照工艺要求选择焊接电流、电压; 16. 对于抽头式焊机,严禁焊接时调节电压; 17. 焊机要定期(一个月)进行除尘保养,包括送丝软管; 18. 焊机不使用时,要切断电源,妥善保管; 19. 在连续施焊过程中,随时清理喷嘴内焊渣。 20. 焊丝上有油污必须清理,否则影响焊接质量。 21. 如果发现电机火花过大应及时修理。 22. 随时注意导电嘴的磨损情况,注意焊丝的存放,防止生锈。

二氧化碳气体保护焊机操作与安全规程

氧化碳气体保护焊机操作与安全规程 一、工作前 1.焊机及加热器接地必须可靠,焊枪绝缘必须良好。 2 ?二氧化碳气瓶阀门应完好无损,搬运气瓶时瓶盖要盖好。 3.电源电压波动范围不得超出额定输入电压值的土10%时方可使用。电焊机上的各种仪器仪表应齐全、完好。 4.工具附件齐全、完好。工作环境符合要求。 二、工作中 1.班前检查合格后,先接通总电源开关,动作要迅速,再接通控制电源开关。绿灯亮表示焊机正常。检查冷却风机运行是否正常,风路是否畅通无阻。严禁在没有冷却的情况下使用设备。 3.接通检气开关,打开钢瓶气阀,检查气阀是否完好;调整二氧化碳气体流量在10—20升/ 分。接通预热器,检查二氧化碳气体是否加热正常。接通送丝机构部分,检查送丝速度是否均匀,并调整到适当值。接通主焊电路进行试焊。根据焊接工艺要求及设备说明书的《焊接条件表》调整好电流、电压,送丝轮压力及焊嘴与母材间的距离,并随时观察焊缝质量。对其修正,调节到较佳位置。 4.一切正常后方能进行焊接。 5.当焊接敏感金属或对焊接质量要求较高的工件时,在二氧化碳气路系统中应设置干燥器和低压干燥器(根据需要低压干燥器可增至2—3个) ,可采用硅胶或脱水硫酸铜作干燥剂。气瓶使用前应先排放瓶内空气1-2分钟,二氧化碳气瓶内气压不能W1 — 1.5兆帕。 6.焊枪使用应注意下列事项: (1.)在连续使用中,焊枪的焊接电流和负载持续率应控制在所有焊枪的额定表所规定的范围内。(2.)为延长喷嘴及导电嘴的使用寿命,在使用前应先涂一层防堵剂,防止其粘上焊接飞溅物。(3.)须经常清理喷嘴,以免出气孔被飞溅颗粒堵塞,保证气路畅通及防止焊接电源短路,损坏机内电气元件。使用时应经常检查导电嘴,如有磨损或堵塞应立即更换。(4.)焊枪用完后应放在可靠的地方,禁止放在焊件上。 7.工作中需随时注意焊丝输送情况,紧轮不得过松、过紧,焊丝轮管不得有急 弯,最小曲率半径应> 3 0 0毫米。 8.焊接现场严禁使用风扇,以确保气体的保护作用。 9.离岗时,应关闭气路与电路,切断电源后方可离开。 三、工作后关闭气路与电路,切断电源,清理工作现场,检查并扑灭现场火星,把 工具 附件放在规定的地方。做好日常维护保养工作。 批准:审核:制定:林燕 设备动能部 2013年05月10日

光子嫩肤联合超脉冲二氧化碳点阵激光治疗光老化皮肤的临床效果

光子嫩肤联合超脉冲二氧化碳点阵激光治疗光老化皮肤的临床效果 发表时间:2019-09-09T15:31:48.610Z 来源:《航空军医》2019年7期作者:王丹1 俞舜2 王玉英3 [导读] 随着人们生活水平的提高,人们开始关注自身的皮肤保养问题。 (无锡市第三人民医院整形美容中心214000) 摘要:目的探讨分析光子嫩肤联合超脉冲二氧化碳点阵激光治疗光老化皮肤的临床效果。方法选取我院于2018年2月至2019年2月期间收治的60例光老化皮肤患者作为研究的对象,按照随机分配的方法将患者分为观察组(30例)和对照组(30例),对照组患者单纯采用光子嫩肤进行治疗,观察组患者在对照组的基础上,采用超脉冲二氧化碳点阵激光进行治疗。观察两组患者的皮肤老化情况以及不良反应发生情况,并进行对比。结果治疗前,两组患者的皮肤老化评分情况差异不大,无统计学意义(P>0.05);治疗后,观察组的数值较对照组的低,具有统计学意义(P<0.05)。观察组患者的不良反应总发生率为13.33%,低于对照组的36.67%,两组数据差异明显,具有统计学意义(P<0.05),结论采用光子嫩肤联合超脉冲二氧化碳点阵激光的方式治疗光老化皮肤,能够改善患者皮肤光老化的症状,其不良反应的发生情况较少,安全性高,有非常高的应用价值,值得在临床上推广使用。 关键词:光子嫩肤;超脉冲二氧化碳点阵激光;光老化皮肤;临床效果 随着人们生活水平的提高,人们开始关注自身的皮肤保养问题。当人的皮肤长时间暴露在紫外线下时,会造成皮肤慢性损伤[1]。光老化属于一种由日光照射所引起的皮肤老化形式。其中,皮肤松弛、毛细血管扩张、肤色不均匀以及皮肤粗糙等为光老化皮肤患者的主要临床表现。光老化皮肤在影响人外貌的同时,患者的皮肤功能也会受到影响。为了恢复患者的皮肤健康,临床上常见的治疗方式为光子嫩肤术,为了提高光老化皮肤的治疗效果,寻找更有效的治疗方法,本文将对光子嫩肤联合超脉冲二氧化碳点阵激光治疗光老化皮肤的临床效果进行探讨和分析。 1.资料与方法 1.1一般资料 选取我院于2018年2月至2019年2月期间收治的60例光老化皮肤患者作为研究的对象,将其分为观察组和对照组各30例。其中,观察组男性患者4例,女性患者26例,年龄范围为23-55岁,平均年龄为(36.82±11.41)岁;对照组男性患者3例,女性患者27例,年龄范围为25-52岁,平均年龄为(37.71±12.19)岁。两组患者在性别以及年龄方面,无统计学意义(P>0.05)。本次研究的所有患者或其家属均签署知情同意书,排除精神障碍患者、排除皮肤肿瘤患者。 1.2治疗方法 1.2.1对照组采用光子嫩肤进行治疗 (1)患者取仰卧位,若患者的临床症状为痤疮、色斑、皮肤颜色不均匀以及炎症色素等,给患者实施Ⅰ型光子嫩肤治疗,波长为560-590nm。若患者的临床症照为毛孔粗大、出现细纹、皮肤衰老以及痤疮陈旧等,给患者实施Ⅱ型光子嫩肤治疗,波长为590-640nm[2]。每4周给患者治疗1次,5次一个疗程,共治疗4个月。 (2)在进行光子嫩肤治疗手术过后,24小时内禁止患者洗脸,24小时后要选择均衡温和的洗面奶洗脸,48小时内禁止使用化妆品,按时涂抹药物。3个月内严格护理,注意做好防晒工作,避免紫外线照射,可以选择防晒强度高的防晒霜进行防晒。 1.2.2观察组采用超脉冲二氧化碳点阵激光进行治疗 (1)给患者佩戴防护眼罩,为减轻患者治疗过程的疼痛感,可以选择利多卡因乳膏对面部治疗区域进行外敷。 (2)在进行光子嫩肤治疗后,告知患者术后注意事项,4周过后给患者实施超脉冲二氧化碳点阵激光治疗。使用1到2个手具对患者的面部进行扫描,扫描次数根据患者具体情况而定,一般不超过2次。每4周给患者治疗1次,5次一个疗程,共治疗4个月[3]。 (3)在进行光子嫩肤治疗手术过后,24小时内禁止患者洗脸,24小时后要选择均衡温和的洗面奶洗脸,48小时内禁止使用化妆品,按时涂抹药物。3个月内严格护理,注意做好防晒工作,避免紫外线照射,可以选择防晒强度高的防晒霜进行防晒。 1.3观察指标 (1)观察两组患者治疗前后的皮肤老化情况,其中,皮肤轻度老化为0-3分,中度老化为4-6分,中度老化为4-9分。 (2)观察两组患者治疗后不良反应的发生情况,其中包括色素沉着、色素减退以及瘢痕形成等。 1.4统计学分析 利用统计学软件SPSS20.0对数据进行统计并加强分析,用(x±s)表示计量资料,组间差异用t进行检验,用(%)表示计数资料,组间比较用X2检验,P<0.05具有统计学意义。 2.结果 2.1两组患者治疗前后的皮肤老化情况对比 治疗前,两组患者的皮肤老化评分情况差异不大,无统计学意义(P>0.05);治疗后,观察组的数值较对照组的低,具有统计学意义

二氧化碳保护焊机安全操作规程通用版

操作规程编号:YTO-FS-PD217 二氧化碳保护焊机安全操作规程通用 版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

二氧化碳保护焊机安全操作规程通 用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1.此类设备属特种作业设备,必须持证上岗,上岗证由市劳动部门统一颁发。 2.本机必须由受过专业培训的人员操作; 3.在移动焊机时,应取出机内易损电子器材单独搬动。 4.焊机内的接触器、断电器的工作元件,焊枪夹头的夹紧力以及喷嘴的以及喷嘴的绝缘性能等,应定期检查。 5.高频引弧焊机或装有高频引弧装置时,焊接电缆都应有铜网编织屏蔽套,并可靠接地。 6.焊机使用前应检查供气、供水系统,不得在漏水、漏气的情况下运行。 7.气体保护焊机作业结束后,禁止立即用手触摸焊枪导电嘴,以免烫伤。 8.盛装保护气体的高压气瓶就小心轻放竖立固定,防止倾倒。气瓶与热源距离应大于3 m 。 9.采用电热器使二氧化碳气瓶内液态二氧化碳充分氧化时,焊机必须使用规范的输入电压,应低于36V;外壳接

超脉冲二氧化碳点阵激光项目总汇

超脉冲二氧化碳点阵激光治疗仪 二氧化碳点阵激光治疗仪是超脉冲CO2激光的一种。超脉冲CO2点阵激光皮肤重建系统,发射波长为10600nm激光,靶目标为皮肤组织中的水,但不同于传统的CO2激光,点阵激光技术是当今最新的微创皮肤美容技术,也称“局灶性表皮重建技术”。热凝固和热剥脱形成直径约0.12mm的微创小孔,深度约达到2-4mm(这一深度与日光性弹力纤维变性的最大深度相关);此时创伤后的小孔与小孔间正常组织产生热桥接,启动皮肤创伤修复机制(炎症阶段、增值阶段、重塑阶段)新生大量胶原蛋白,达到真皮框架结构重建,面部轮廓雕塑、皱纹消失、皮肤质地细腻、痤疮瘢痕抚平。 治疗原理: 点阵激光采用的是超脉冲CO2点阵激光系统,利用该激光对组织的消融作用,可以在皮肤上打出直径120-1200微米微孔,孔间距为500微米,在治疗过程中随机扫描释放能量,每个光斑间留有正常的皮肤组织—“微桥”,从而启动机体自然愈合机制,并促进新胶原蛋白再生。这些微孔能在治疗后一天内闭合,用肉眼也难以看见,也很少出现渗液、出血和感染。 适应症: 1、嫩肤:肤色不均,毛孔粗大,皮肤粗糙等。 2、皮肤松弛、皱纹:紧肤除皱: 3、改善瘢痕:痤疮后凹陷瘢痕、萎缩性疤痕 4、光老化皮肤:去除浅表色斑,增加皮肤弹性及光泽度。 禁忌症: 1.感染活动期; 2.糖尿病、严重的器质性病变; 3.瘢痕体质; 4.色素异常; 5.某些皮肤病的活动期; 6.近期晒黑的; 7.妊娠与哺乳; 8.单纯疱疹;

特点: 1.损伤小、 2.恢复快、一周 3.可大面积治疗 4.需多次治 术后护理: 1.术后一周不能沾水,前三天使用医用无菌修复面膜 2.掉痂后外用修复产品,连用一周修复面膜。 3.术后注意补水、保湿及防晒。 超脉冲二氧化碳激光治疗仪 治疗范围:疣,扁平疣,色素痣,汗管瘤,汗孔角化斑,脂肪粒,脂溢性角化,睑黄瘤,等身体赘生物。 禁忌症: 1心脏病,高血压 2.孕妇 3.疤痕性体质者 大面积、有风险的痣不建议激光治疗,如:经常会痒红等,大于3mm的痣不建议治疗。 二氧化碳激光针对色素痣的去除不是所有的都能一次去除,有些特别深的需要分次去除,如果一次性治疗深度太深会留下坑。所以在治疗前我们会跟顾客沟通这一情况,一些第一次无法去除的痣会嘱咐他3个月后来院再进行治疗,免费去除。 痣刚祛完的小凹坑自己会慢慢长起来,痂皮脱落会有些发红,此时一定要注意修复防晒。术后护理: 1、治疗后一周不能沾水,前三天用金霉素眼膏 2、三天后用修复喷雾(有创治疗根据病人情况而定) 3、掉痂后面膜连用一周(针对去除色素痣较多的患者) 4、术后注意补水、保湿及防晒。

工贸企业二氧化碳气体保护焊安全操作规程通用范本

内部编号:AN-QP-HT642 版本/ 修改状态:01 / 00 The Procedures Or Steps Formulated T o Ensure The Safe And Effective Operation Of Daily Production, Which Must Be Followed By Relevant Personnel When Operating Equipment Or Handling Business, Are Usually Systematic Documents, Which Are The Operation Specifications Of Operators. 编辑:__________________ 审核:__________________ 单位:__________________ 工贸企业二氧化碳气体保护焊安全操 作规程通用范本

工贸企业二氧化碳气体保护焊安全操作 规程通用范本 使用指引:本操作规程文件可用于保证本部门的日常生产、工作能够安全、稳定、有效运转而制定的,相关人员在操作设备或办理业务时必须遵循的程序或步骤,通常为系统性的文件,是操作人员的操作规范。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 电焊工须经培训考试,并持有操作证者方能独立操作,未经专门培训和考试不得单独操作。遵守电焊作业通用安全操作规程。操作前认真熟悉焊接有关图样,弄清焊接位置和技术要求。 1准备工作 1.1焊前清理。CO2焊虽然没有钨极氩弧焊那样严格,但也应清理坡口及其两侧表面的油污、漆层、氧化皮以及铁金属等杂物。 1.2检查设备。检查电源线是否破损;地线接地是否可靠;导电嘴是否良好;送丝机构是

二氧化碳保护焊机安全操作规程

二氧化碳保护焊机安全操作 规程 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

二氧化碳保护焊机安全操作规程 1.此类设备属特种作业设备,必须持证上岗,上岗证由市劳动部门统一颁发。 2.本机必须由受过专业培训的人员操作; 3.在移动焊机时,应取出机内易损电子器材单独搬动。 4.焊机内的接触器、断电器的工作元件,焊枪夹头的夹紧力以及喷嘴的以及喷嘴的绝缘性能等,应定期检查。 5.高频引弧焊机或装有高频引弧装置时,焊接电缆都应有铜网编织屏蔽套,并可靠接地。 6.焊机使用前应检查供气、供水系统,不得在漏水、漏气的情况下运行。 7.气体保护焊机作业结束后,禁止立即用手触摸焊枪导电嘴,以免烫伤。 8.盛装保护气体的高压气瓶就小心轻放竖立固定,防止倾倒。气瓶与热源距离应大于3m。 9.采用电热器使二氧化碳气瓶内液态二氧化碳充分氧化时,焊机必须使用规范的输入电压,应低于36V;外壳接地可靠。工作结束立即切断电源和气源。 10.在无严重影响焊机绝缘性能和引起腐蚀的环境中使用; 11.焊机必须有符合规范的接地装置,必要时安装漏电保护器; 12.工人操作时要要穿戴焊帽、眼镜及必要的绝缘防护用具;

13.焊把、焊枪要轻拿轻放; 14.严禁用力拉焊把线、焊机二次线,包括送丝机构线; 15.操作工要按照工艺要求选择焊接电流、电压; 16.对于抽头式焊机,严禁焊接时调节电压; 17.焊机要定期(一个月)进行除尘保养,包括送丝软管; 18.焊机不使用时,要切断电源,妥善保管; 19.在连续施焊过程中,随时清理喷嘴内焊渣。 20.焊丝上有油污必须清理,否则影响焊接质量。 21.如果发现电机火花过大应及时修理。 22.随时注意导电嘴的磨损情况,注意焊丝的存放,防止生锈。

二氧化碳点阵激光招标技术参数及要求

二氧化碳点阵激光招标技术参数及要求 数量:一套;预算:160万 *功能要求:适用与各种中重度的烧伤疤痕、外科疤痕、手术疤痕,痤疮瘢痕等治疗,皮肤光老化,色素增加性皮肤疾病,日光性角化,脂溢性角化和皮脂溢性疣,祛除表皮赘生物;也可用于妊娠纹、膨胀纹及其他皮肤纹理紊乱的剥脱和凝固治疗;还具备除皱,紧肤,换肤,眼睑提升,点痣、点疣等其它皮肤美容外科的应用。提供国药械“进”字号注册证 技术参数要求: 1. 波长: 10600nm 2. 激光介质: 二氧化碳 3. 激光管材质: 固体激光管 4. 峰值功率≥ 200W *5. 35W≤终端平均输出功率≤45W 6. 激光能量≥ 120mJ *7.穿透深度≥ 1000um 8.具备635nm标准光 9.光斑大小:同时具备1.3mm和0.12mm两种光斑 10.光斑密度的治疗范围在5-25%和40-60%范围内可调 11.点阵模式下激光发射持续时间为0.01Sec~1.00Sec,且持续时间必须可调 12.激光发射时间间隔为0.01Sec~1.00Sec,且时间间隔必须可调 *13.点阵激光,非像素激光 14.能量输出模式: 超脉冲模式和连续模式 15.具备聚焦式准直切割功能手具 16.具备120微机程控扫描功能手具 *17.光斑扫描方式: 具备顺序螺旋式扫描方式,以降低热损伤 18.光斑大小: 光斑大小可选,正方形最大10mm×10mm 19.光斑形状:圆形、正方形、六边形、长方形、条形5种图形可选,图形大小可调 20.作用方式: 具有表皮气化的即刻紧肤作用和刺激真皮乳头层胶原新生的长

期作用效果 21.治疗手具为7节关节臂式 22.FDA许可的临床适应症>100项 23.FDA许可的美容适应症>34项 24.具备以下工作模式: 1) 超脉冲模式 2) 连续模式 3) 点阵模式 4) 切割模式 25.具备新型功能、软件的升级能力: 1) 具备全层模式:单次发射同时治疗表层和深层病变,且无需更换手具 2) 具备妊辰纹模式:可用于妊娠纹、膨胀纹的治疗 26.操作系统具备用户预设程序 27.提供同类产品安徽省内三级医院5家的用户名单及联系方式备查 28.质保一年,提供原厂技术服务、提供培训计划书。 上述带*的参数条款必须满足并提供厂家原厂技术白皮书(DATA SHEET)及相关资料(文字、图片)证明。

电焊机使用规范

不良等度触电问题,热电公司夏季发生一次焊机爆炸,为避免类似问题发生,组织部分电焊机安全常识,供参考同时对工作状态不良的焊机进行排查,有问题的不能使用,及时报修。 建议组织检修工、焊工学习。

预防电焊机空载电压触电 电焊机是一种特殊结构的降压变压器,某一次侧接入380V或220V的交流电源,二次侧输出供焊接用的较低电压的电源。电焊就是将该电源的电能转化成热能作为热源来加热金属实现焊接的方法。由于电焊作业中操作者每时每刻都要同电打交道,故危险因素较多,触电伤亡事故屡见不鲜。本文以普遍使用的手工电弧焊为例,谈谈电焊机在空载状态下,二次侧输出电压正常时,其焊接回路致人触电的主要原因,并提出相应的预防措施。 (1)空载电压致人触电的原因 我国目前生产的手弧电焊机的空载电压一般为55~99V,工作电压为25~40V。显而易见,空载电压值已远远超过了安全电压范围,对于人的安全而言存在比较大的威胁。一方面由于该电压不像相电压(220V)和线电压(3 8 0V)那样高,易使人忽视,另一方面,电焊工及有关操作人员与焊接回路中的焊钳、焊条、焊件、工作台、焊接电线等器材的接触比较频繁。当操作人员的个人防护用品保持齐全良好状态时,如果触及到焊条的焊芯、焊钳的焊口、破损的焊接线等焊接回路带电时,通过人体的事故电流大约在10mA左右,会使手臂产生酸、麻和疼痛感,但触电者一般都能够摆脱这种局面,不至于造成严重的后果。当操作人员的个人防护用品存在缺陷、环境湿度较大、身体出汗、皮肤上带有导电性粉尘、身处导电性地面(由砖、湿木板、钢筋混凝土、金属等材料制成的地面或金属贮罐、管道、锅炉等金属结构内)或碰触到其他接地的导电物体,如操作人员碰触到处于空载状态下的焊接回路的带电体时,通过人体的事故电流可达40mA以上,此时触电者的触电部位(如手部)将发生痉挛,甚至昏迷而不能摆脱,触电时间稍长就会有生命危险;若事故电流一旦超过50mA,在较短的时间内就可能造成死亡。 (2)预防空载电压触电的措施 加强个人防护。焊工个人防护用品包括完好的工作服、绝缘鞋、绝缘手套(长度不得短于0.3m)等,作业时必须按使用规定穿戴整齐。 焊接作业前,应先检查工作场所的焊件、工具等放置合理有序,检查各电气设备的摆放和连接应正确可靠,焊接工作点附近不得有易燃易爆物品。 在潮湿地方焊接时,操作台附近地面上应铺设绝缘物(如橡胶绝缘垫),或站在垫起的干燥木板上。 电焊机至焊钳、电焊机至焊件的二次回路连接电缆(统称焊接电缆)必须选用电焊专用电缆,如YHH型或YHHR型等。其截面要求根据电焊机额定输出电流选用,其长度一般以20~30m为宜。 焊钳必须具有良好的绝缘性能和隔热能力,各绝缘部位不得有残缺现象。 焊钳与焊接电缆之间的连接要求坚固可靠、接触良好,电缆的橡胶包皮应深入到焊钳手柄内部,以防电缆芯线外露。 无论是焊把线(电焊机至焊钳的电缆)还是地线(电焊机至焊件的电缆),最好使用整根的,如果确需中途接头时,每根的接头不宜超过两个,接头处必须连接牢固,保证极低的接触电阻,并做好绝缘处理。 保持一次电源线与焊把线清洁干燥,使用完毕后及时清理外皮粉尘污物检查有无破损,并晾晒干燥。 无论在高处、斜坡处或沟道等复杂环境还是在常规环境焊接时,均不得把焊接电缆缠在腰里或腿上、系在金属物体上,也不要把过长的电缆盘成卷。 在金属结构及金属容器(如气柜、锅炉气鼓、管道等)内及其他狭小工作场所焊接时,由于触电的危险性增加,故必须采取专门的防护措施,如在容器外面设有可看见和可听见焊工工作的监护人,以便随时注意焊工的安全动态,或两人的职能轮换工作。

二氧化碳气体保护焊安全操作规程

二氧化碳气体保护焊安全操作规程 二氧化碳气体保护焊安全操作规程提要:co2气瓶的搬运和储存应参照气瓶的搬运与保管的有关规定执行。若发现气体调节器外观损伤或怀疑漏气,应停止使用 二氧化碳气体保护焊安全操作规程 从事二氧化碳气体(co2)保护焊接的工作人员应遵守手工电弧焊的相关规定,并注意下面几点: 1、从事二氧化碳气体(co2)保护焊人员应,熟悉气瓶使用要求,学习焊机使用和气体调节器的说明书中的规定。 2、二氧化碳气体在高温电弧作用下,可分解产生一氧化碳有害气体,工作场所必须通风良好。 3、co2气体保护焊,焊接时飞溅大,弧光辐射强烈,工作人员必须穿白色工作服,戴皮手套和防护面罩。 4、装有co2的气瓶,不能在阳光下曝晒或接近高温,以免引起瓶内压力增加而发生爆炸。气瓶应稳固直立,开起气阀时不可站在气体调节器的前方(压力表前方)。要缓缓地将阀逐渐打开到全开位置。 5、安装气体调节器前应清除高压气瓶与气体调节器部分的油、油污、水分、灰尘、泥砂等附着物,防止油污、油脂等对气体调节器的污染。。 6、切记绝对不可将焊枪挂在气瓶上,注意电极不要与气瓶接触。 7、co2气瓶的搬运和储存应参照气瓶的搬运与保管的有关规定执行。若发现气体调节器外观损伤或怀疑漏气,应停止使用。 8、使用气体调节器应了解,气体调节器的适用范围。所配用的气体调节器不适合虹吸式co2容器。 9、气体调节器为非防水构造,若在户外使用,应采取防滴保护措施,以避免雨淋,并应避免阳光直接照射。 10、避免由于情况异常造成调节压力升高而导致气体调节器损坏,气体调节器上装有安全阀,切不可对安全阀的工作压力进行调整,安全阀在发生泄漏时,则其压力调节功能已丧失,应停止使用。 11、co2气体预热器的电源应采用36V电压,工作结束时将电源切断。气体调节器应接地。

二氧化碳保护焊安全操作规程正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.二氧化碳保护焊安全操作 规程正式版

二氧化碳保护焊安全操作规程正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事项。文档可以直接使用,也可根据实际需要修订后使用。 1、作业前,二氧化碳气体应预热 15min。开气时,操作人员必须站在瓶嘴的侧面。 2、作业前,应检查并确认焊丝的进给机构、电线的连接部分、二氧化碳气体的供应系统及冷却水循环系统合乎要求,焊枪冷却水系统不得漏水。 3、二氧化碳气体瓶宜放阴凉处,其最高温度不得超过30℃,并应放置牢靠,不得靠近热源。 4、二氧化碳气体预热器端的电压,不得大于36V,作业后,应切断电源。

5、焊接操作及配合人员必须按规定穿戴劳动防护用品。并必须采取防止触电、高空坠落、瓦斯中毒和火灾等事故的安全措施。 6、当消除焊缝焊渣时,应戴防护眼镜,头部应避开敲击焊渣飞溅方向。 7、雨天不得在露天电焊。在潮湿地带作业时,操作人员应站在铺有绝缘物品的地方,并应穿绝缘鞋。 8、接地线要牢靠安全,不准用脚手架,钢丝缆绳、机床等作接地线。 9、接拆电焊机电源线或电焊机发生故障,应会同电工一起进行修理,严防触电事故。 10、在靠近易燃地方焊接,要有严格

二氧化碳点阵激光使用管理制度(试行)

二氧化碳点阵激光使用管理 制度(试行) 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

二氧化碳点阵激光使用管理制度(试行) 激光治疗具有相当的风险性,因而有必要在各方面严格遵循质控要求和有关的规章制度。充分保障患者的健康及安全,最大限度地减少并避免医疗事故。 【对操作人员的要求】 (1)激光从业医技人员必须具备执业资格。 (2)从事皮肤激光治疗的医师均应经过正规培训,掌握激光的基本知识、激光的技术参数和操作方法。 (3)从业人员应定期接受培训和再教育。 (4)治疗现场人员必须配备防护眼镜!不可直视治疗头!不可携带反射激光物体! 【操作规程】 (1)与患者及家属进行术前谈话,告知激光手术可能的风险及术后注意事项,使患者的期望值达到合理水平,患者术前均应签署知情同意书。 (2)按常规进行术前准备,根据需要清洁手术区、常规消毒,必要时还应予以局部麻醉和表面麻醉。 (3)根据对患者的诊断,选择合适的激光器和激光参数进行治疗。 (4)治疗完毕后,根据需要在创面上外用保护剂,以预防感染。 (5)患者术后如有意外情况,应尽早与医师联系并复诊。

【激光室的管理】 (1)激光治疗室应定期清洁或消毒,手术器械也要定期消毒。 (2)激光治疗室要有充分的照明、通风条件,尽量减少能形成漫反射的物质。 (3)二氧化碳激光、铒激光等治疗时易产生烟尘,安放这些设备的手术室要安装吸烟尘装置。 (4)病史资料及各种物品应由专人负责管理。 【设备的日常管理】 (1)激光设备应有护士长负责管理。每周常规清洁机器。 (2)设备应定期维护、保养,定期检测功率等参数。温度保持10-25摄氏度,湿度保持50-60%,保证足够散热空间。 (3)机器出现错误信息提示时应及时上报护士长及科主任。 (4)每年应由科医人技术人员对设备进行全面检查。 医学美容科 2017-10-10

电焊机接地线安装规范

电焊机接地线安装规范 古汉山矿机电运输科 电焊机接地线安装规范 一、适用范围 本规范适用于古汉山矿所有使用的电焊机。 二、编制依据标准 《煤矿安全规程》,2010, 《电力设备接地设计技术规程》,1976, 《GB9448-88 焊接与切割安全》,1988, 三、总则 1、所有电焊机都必须使用合格的接地线。 22、电焊机接地线采用截面不低于25mm的绝缘铜线制作。 3、接地线的连接部位不能有锈蚀或污物~螺栓、螺母必须有足够的紧固~在有振动的工作场所应使用弹簧垫圈防止松动。 4、接地线不准接在易燃、易爆和带有热源的物体上~也不能接在管道、机械设备和建筑物的金属结构及轨道上。 四、接地线制作安装技术标准 1、固定地点使用的电焊机 (1)接地线一端连接在电焊机外壳的接地螺栓上~另一端连接在接地母线上~当安放电焊机的地点没有装设接地母线时~也可将接地线接到独立接地系统的接地端子上。 (2)必须经常检查接地装置各连接部位的紧固情况~并定期检测接地系统的电气性能~接地电阻值不得大于2Ω。

2 (3)当有多台电焊机在同一作业场所使用时~各台电焊机的接地线必须并联接在接地母线或独立接地端子上~严禁串接。 (4)接地线的装设必须与附近的防雷接地网有足够的安全距离~防止因雷电反击或雷电感应作用对电焊机或人员造成伤害。 2、非固定地点使用的电焊机 (1)非固定地点使用的电焊机必须采用独立接地系统的接地端子~接地端子连接在接地线上~连接紧固、无锈蚀。 (2)接地端子必须装设在导电性良好的地点~电焊机使用前必须检测接地系统的接地电阻。 (3)当电焊机在井下使用时~接地线应装设在水沟等潮湿地点~严禁接到轨道、管线上。 3 ---------------------------------------------------------------范文最新推荐------------------------------------------------------ 财务管理工作总结 [财务管理工作总结]2009年上半年,我们驻厂财会组在公司计财部的正确领导下,在厂各部门的大力配合下,全组人员尽“参与、监督、服务”职能,以实现企业生产经营目标为核心,以成本管理为重点,全面落实预算管理,加强会计基础工作,充分发挥财务管理在企业管理中的核心作用,较好地完成了各项工作任务,财务管理水平有了大幅度的提高,财务管理工作总结。现将二00九年上半年财务工作开 展情况汇报如下: 一、主要指标完成情况:

二氧化碳气体保护焊安全操作规程

二氧化碳气体保护焊操作规程 交底内容: 1. 作业前,二氧化碳气体应先预热15min。开气时,操作人员必须站在 瓶嘴的侧面。 2. 作业前,应检查并确认焊丝的进给机构、电线的连接部分、二氧化碳 气体的供应系统及冷却水循环系统合乎要求,焊枪冷却水系统不得漏水。 3. 二氧化碳气体瓶宜放在阴凉处,其最高温度不得超过30’C,并应放 置牢靠,不得靠近热源。 4. 二氧化碳气体预热器端的电压,不得大于36V,作业时,应切断热源。 5. 焊接操作及配合人员必须按规定穿戴劳动防护用品。并必须采取防止 触电、高空坠落、瓦斯中毒和火灾等事故的安全措施。 6. 现场使用的电焊机,应设有防雨、防潮、防晒的机棚,并应装设相应 的消防器材。 7. 高空焊接或切割时,必须系好安全带,焊接周围和下方应采取防火措施,并应有专人监护。 8. 当需施焊受压容器、密封容器、油桶、管道、沾有可燃气体和溶液的 工件时,应先消除容器及管道内压力,消除可燃气体和溶液,然后冲洗有毒、有害、易燃物质:对存有残余油脂的容器,应先用蒸汽、碱水冲洗,并打开 盖口,确认容器清洗干净后,再灌满清水方可进行焊接。在容器内焊接应采 取防止触电、中毒和窒息的措施。焊、割密封容器应留出气孔,必要时在进、出气口处装设通风设备:容器内照明电压不得超过12V,焊工与焊件间应绝缘;容器外应设专人监护。严禁在已喷涂过油漆或塑料的容器内焊接。 9. 对承压状态的压力容器及管道、带电设备、承载结构的受力部位和装 有易燃、易爆物品的容器严禁进行焊接和切割。 10. 焊接铜、铝、锌、锡等有色金属时,应通风良好,焊接人员应戴防 毒面罩、呼吸滤清器或采取其他防毒措施。 11. 当消除焊缝焊渣时,应戴防护眼镜,头部应避开敲击焊渣飞溅方向。

二氧化碳(CO2)激光器介绍

二氧化碳(CO2)激光器介绍 二氧化碳激光器是以CO2气体作为工作物质的气体激光器,其波长为10.6微米附近的中红外波段。其通过连续波、脉冲和高能量超脉冲技术以不同的能量和时间照射人体皮肤组织,组织吸收激光能量后主要发生光热反应,可使皮肤组织切割、汽化、碳化、凝固或适当变性,达到祛除病变,同时止血或结痂,改变皮肤肌理,达到治疗或理疗的目的。 二氧化碳(CO2)激光器原理 CO?分子为线性对称分子,两个氧原子分别在碳原子的两侧,所表示的是原子的平衡位置。分子里的各原子始终运动着,要绕其平衡位置不停地振动。根据分子振动理论,CO?有三种不同的振动方式:①二个氧原子沿分子轴,向相反方向振动,即两个氧在振动中同时达到振动的最大值和平衡值,而此时分子中的碳原子静止不动,因而其振动被叫做对称振动。②两个氧原子在垂直于分子轴的方向振动,且振动方向相同,而碳原子则向相反的方向垂直于分子轴振动。由于三个原子的振动是同步的,又称为变形振动。③三个原子沿对称轴振动,其中碳原子的振动方向与两个氧原子相反,又叫反对称振动能。在这三种不同的振动方式中,确定了有不同组别的能级。 二氧化碳(CO2)激光治疗仪器作用

(1)按输出方式分 1)连续输出; 2)脉冲输出——调制频率高达1MHz; 3)Q开关输出——电光调Q与声光调Q。 (2)按谐振腔的工作分 1)波导腔——孔径D=1~3mm; 2)自由空间腔——孔径D=4~6mm。 (3)按激励极性分 1)单相; 2)反相。 (4)按腔体结构分 1)单腔; 2)多腔; (a)折叠腔:V型——2折;Z型——3折;X型——4折。(b)列阵腔:短肩列阵;交错列阵。 (c)积木式:并联—2腔;三角组联—3腔。

相关主题
文本预览
相关文档 最新文档