当前位置:文档之家› 高速光通信系统用低偏振模色散

高速光通信系统用低偏振模色散

高速光通信系统用低偏振模色散
高速光通信系统用低偏振模色散

高速光通信系统用低偏振模色散(PMD)无热AWG

近年来,随着丰富的图像和语音业务的增加,光通信网络已经迅速向高速WDM系统升级,部分运营商已经在骨干网中部署了40Gbit/s WDM光传输系统,而且未来几年可能会逐步升级至100Gbit/s WDM系统。

在40/100G WDM系统的发展过程中,出现了很多新的障碍。那些在低速短距离传输系统中可以忽略的因素开始显现,例如PMD(Polarization Mode Dispersion,偏振模色散)、OSNR( Optical Signal to Noise Ratio,光信噪比)容限、CD(Chromatic Dispersion,色度色散)等都成为40/100G系统发展的非常重要的技术难题。

OSNR容限问题可以通过引入新的编码及调制格式解决;CD问题也可以通过二级补偿方式解决;而PMD问题一直未能得到很好的解决。

PMD一直被认为是限制通信系统发展的重要因素,特别是对高速WDM系统而言,问题显得很是突出。理论上讲,为了保障传输系统,PMD容限为脉冲周期的十分之一。对于40G WDM系统,当采用NRZ编码时,其平均PMD容限大约为2.5ps。如此小的PMD容限很难满足长距离传输的要求。

从目前来看,可以通过三种方法解决PMD容限问题:第一是从源头上解决问题,尽可能减小系统中可能引入的PMD,包括光纤光缆和光器件本身的PMD。一般来说2005年以后铺设的光纤光缆具有低PMD的特性,能够满足40G WDM系统对PMD指标的要求,特别是G.652D和G.655D光缆。此外,在光器件的选择上应考虑其PMD值越小越好;二是采用新的技术来提升系统的PMD容限,包括特殊的编码与调制技术,如DPSK、RZ-DQPSK等来改善系统对于PMD的适应能力;三是采用PMD补偿技术,目前PMD补偿技术多停留在实验阶段,还未得到大规模的工程应用。

AAWG(Athermal AWG,无热AWG)是WDM系统中的关键光器件。在WDM系统中,往往会将许多AAWG级联起来使用,由于制作工艺等原因,AAWG本身对PMD有贡献,如果能够降低AAWG的PMD值,则会降低系统的PMD补偿要求,从而节省整个光系统的成本。

通常系统中对AAWG的PMD值定义为ITU 通带内DGD(Differential Group Delay,差分群时延)的最大值。对WDM器件而言,系统商对其PMD值的要求一般小于0.5ps。常规AAWG器件的PMD值在0.5ps附近,如图(1)所示。

图(1)常规AAWG器件DGD曲线图

Accelink推出的AAWG具有低PMD的特性,和常规AAWG相比,其PMD值有明显改善,在ITU通带内<0.3ps。图(2)是Accelink AAWG和常规AAWG的DGD曲线对比图。

图(2)Accelink AAWG和常规AAWG的DGD曲线对比图

同时,Accelink推出的AAWG具有尺寸小(120mm×70mm×11 mm)、性能稳定、可靠性高等特点。图(3)为Accelink AAWG模块的外观图,表(1)为其光学指标。

图(3) Accelink AAWG模块外观图表(1)光学指标

参考文献:

张宾,胡庚强. 高速40Gbit/s DWDM的发展. 2008中国光电产业高层论坛洪进. 40G和100G光通信模块的发展和应用

韦乐平. 高速光系统的设计及关键问题考虑.《通信技术与标准》

光的衍射、偏振、色散、激光(提高篇)-word

光的衍射、偏振、色散、激光 一、选择题 1.如图所示,a 、b 两束光以不同的入射角由介质射向空气,结果有相同的折射角,下列说法正确的是( ). A .b 在介质中的折射率比a 大 B .若用b 光做单缝衍射实验,要比用a 时中央条纹更宽 C .用a 更易观察到泊松亮斑 D .做双缝干涉实验时,用a 光比用b 光条纹间距更大 2.如图所示的四个图形中哪个是著名的泊松亮斑的衍射图样( ). 3.如图所示的四种明暗相间的条纹,分别是红光、蓝光各自通过同一个双缝干涉仪器形成的干涉图样以及黄光、紫光各自通过同一个单缝形成的衍射图样(黑色部分表示亮纹).则在下面的四个图中从左往右排列,亮条纹的颜 色依次是( ). A .红黄蓝紫 B .红紫蓝黄 C .蓝紫红黄 D .蓝黄红紫 4.关于自然光和偏振光以下说法正确的是( ). A .自然光包含着在垂直于传播方向上沿一切方向振动的光,但是沿各个方向振动的光波的强度可以不相同 B .偏振光是在垂直于传播方向上,只沿着某一特定方向振动的光 C .自然光透过一块偏振片后就成为偏振光,偏振光透过一块偏振片后又还原为自然光 D .太阳、电灯等普通光源发出的光都是自然光 5.如图所示,让自然光照射到P 、Q 两偏振片上,当P 、Q 两偏振片的透振方向夹角为以下哪些度数时,透射光的强度最弱?( ). A .0° B .30° C .60° D .90° 6.水中同一深度排列着四个不同颜色的球.如果从水面上方垂直俯视各球,感觉最浅的是( ). A .红球 B .黄球 C .绿球 D .紫球 7.如图所示,一束红光和一束蓝光平行入射到三棱镜上,经三棱镜折射后会聚于光屏M 上的一点N ,这两束单色光分别用a 、b 表示.对于这两束光的颜色以及在玻璃中的传播速度,下列说法中正确的是( ). A .a 为红光,在玻璃中的传播速度小于b 光 B .a 为蓝光,在玻璃中的传播速度小于b 光 C .b 为红光,在玻璃中的传播速度小于a 光 D .b 为蓝光,在玻璃中的传播整小于于a 光 8.如图所示,在水中有一厚度不计的薄玻璃片制成的中空三棱镜,里面是空气,一束白光A 从棱镜的左边射入,从棱镜的右边射出了发生了色散,射出的可见光分布在a 点和b 点之间,则( ). A .从a 点射出的是红光,从b 点射出的是紫光 B .从a 点射出的是紫光,从b 点射出的是红光 C .从a 点和b 点射出的都是红光,从ab 中点射出的是紫光 D .从a 点和b 点射出的都是紫光,从ab 中点射出的是红光 9.如图所示,一细束复色光从空气中射到半球形玻璃体球心O 点,经折射分为a 、b 两束光,分别由P 、Q 两点射出玻璃体.PP′、QQ′均与过O 点的界面法线垂直.设光线a 、b 在玻璃体内穿行所用的时间分别为a t 、b t ,则:a b t t 等于( ). A .QQ′: PP′ B .PP′: QQ′ C .OP′: OQ′ D .OQ′: OP′ 16.如图所示,a 和b 都是厚度均匀的平玻璃板,它们之间的夹角为 ,一细光束以入射角α从

偏振激光雷达

偏振激光雷达 Kenneth Sassen 2.1 引言 光的基本性质是电磁波的电场E矢量任意时间在空间上所表现的方向取向。这个方向取向可以是固定、易于改变的线偏光或者是随时间旋转的圆偏光或椭圆偏振光。偏振的随机取向是一种非常重要的状态:光束和单一光线所表现的状态是不同的,当然使用光学分析仪是不能观察到这种单一状态的。重要的是,偏振的任意状态在光学设备的帮助下可以转换成其它状态。光子的运动是易于被改变的。 历史上,对光的偏振本质的发现是通过一种光敏材料的实验发现的,这种材料就是冰晶石,它是方解石类的双折射晶体的一种,光通过这类晶体能够产生两个像。双像现象代表光通过晶体传输在两个垂直偏振平面时产生的偏离光传输方向的偏转。惠更斯和牛顿都证明了这种双折射现象是光的本质特性,并不是由于晶体的引入而造成的改变。因为牛顿忠诚于光的粒子学说(光被看作一个一个粒子),所以他当时并不能解释这种现象。但是,正是因为他对Opticks的质疑的论文,暗示了双折射现象象征了一种类似于电磁作用。因此,“偏振”这个词诞生了。进一步的研究导致了罗歇、尼科耳、渥拉斯顿偏振棱镜的发展,以及我所欣赏的格兰偏振激光雷达的应用。对偏振光科学发展的回顾参见文献[1]。 幸运的是,正如我们所看到的那样,在激光雷达中广泛采用的脉冲激光本质上产生线形偏振光,这是因为激光介质(举例说,参杂玻璃棒)的晶体本质决定的,另外这种方法也被应用到巨脉冲,这种巨脉冲依赖偏振旋转设备(举例说,泡可耳斯盒)把发射激光阻挡在激光腔中直到最大的瞬间输出能量。因此,基本偏振激光雷达应用包括线性偏振激光脉冲的发射和探测,是通过后向散射光的垂直和平行的偏振平面的光束分束器。两个通道的光学和电子增益的不同调节之后,这两种信号的比值被称为线性退偏比或δ值。然而,通过采用不同光学部件对激光后向散射退偏特性的其它种类的测量也是可能,依赖于输出激光脉冲的整形和偏振通道的数目。 在更进一步详述之前,应该强调偏振激光雷达技术起初是借鉴与之相类似20世纪50年代(在激光器发明之前)发展的微波雷达方法。正因为这,我将参照地基微波雷达退偏特性的研究结果。截至到上世纪60年代,然而,人们已经普遍接受:与由于非球形颗粒(典型的是颗粒物小于入射波长)造成的微波退偏现象相比,激光的退偏(颗粒物的直径大于激光波长)是相当强的。因此可以预见,偏振激光雷达在研究气溶胶和云以及沉淀物(换句话说,水汽的凝结体)方面具有很好的前景。 在这章后面部分,将讨论目前在使用的对退偏测量的种类,结合近似理论和实验解释大气中激光退偏的原因,提供基本大气研究实例,所采用技术主要源自我们激光雷达研究计划。激光雷达偏振技术大大拓展了不同激光方法探测大气能力,并且是一种特别经济的方法。另外,在最后部分将要讨论,对偏振激光雷达的更进一步发展仍然存在巨大的潜能,毫无疑问,将在不遥远的将来充分利用这些潜能。 2.2 退偏的测量和不确定性 正如上面所述,偏振激光雷达领域广为使用的变量是距离分辨的线形退偏比δ,根据文献[2]中定义: δ(R) = [β⊥(R)/β||(R)] exp(τ|| ?τ⊥), (2.1)

光纤通信系统中偏振模色散效应的补偿设计

光纤通信系统中偏振模色散效应的补偿设计 一、引言 随着社会的信息化,用户对通信容量的需求日益增加,未来全业务服务中每一用户的容量需求可能超过100 Mb/s。在这种需求的推动下,作为现代长途干线通信主体的光纤通信一直在朝着高速率、大容量和长距离的方向发展。在单信道速率不断提升(现已发展到10 Gb/s,正向40 Gb/s甚至160Gb/s发展)的同时,密集波分复用技术(DWDM)也已日趋成熟并商用化。 从技术的角度来看,限制高速率信号长距离传输的因素主要包括光纤衰减、非线性和色散。掺铒光纤放大器(EDFA)的研制成功,使光纤衰减对系统的传输距离不再起主要限制作用。而非线性效应和色散对系统传输的影响随着非零色散位移光纤(NZDSF)的引入也逐渐减小和消除。随着单信道传输速率的提高和模拟信号传输带宽的增加,原来在光纤通信系统中不太被关注的偏振模色散(PMD)问题近来变得十分突出。与光纤非线性和色散一样,PMD能损害系统的传输性能,限制系统的传输速率和距离,并被认为是限制高速光纤通信系统传输容量和距离的最终因素。正是由于PMD对高速大容量光纤通信系统有着不可忽视的影响,所以自20世纪90年代以来,已引起业界的广泛关注,并正成为目前国际上光纤通信领域研究的热点。 二、光纤中偏振模色散的定义 单模光纤中,基模是由两个相互垂直的偏振模组成的。两偏振模的群速度由于受到外界一些不稳定因素的影响而产生差异,在传播中两偏振模的迭加使得信号脉冲展宽,从而形成偏振模色散。 PMD是由以下几个方面的因素造成的:光纤所固有的双折射,即光纤在生产过程中产生的几何尺寸不规则和在光纤中残留应力导致折射率分布的各向异性;光缆在铺设使用过程中,由于受到外界的挤压、弯曲、扭转和环境温度变化的影响而产生偏振模耦合效应,从而改变两偏振模各自的传播常数和幅度,导致PMD;另外当光信号通过一些光通信器件如隔离器、耦合器、滤波器时,由于器件结构和材料本身的不完整性,也能导致双折射,产生PMD。 单模光纤中的偏振模耦合和双折射效应在数学上可以用琼斯矩阵(Jones matrix)、Stokes 参量和邦加球(Poincare sphere)来描述,并成为分析PMD的有力数学工具。自从1986年Poole 提出了单模光纤中基本偏振态(Principal states of polarization)的概念后,对理解实际光纤中的双折射和偏振模耦合等概念带来了很大的方便。在理想的双折射光纤中存在两个相互正交、与光波频率和传输距离无关的本征偏振态(Polarized eigenstates)。但在实际长距离的光纤中一般并不存在这种完全与频率和传输距离无关的本征态,而是存在由输入光脉冲分解成的沿两正交方向偏振、并与输出偏振态有最小频率相关性的光脉冲,这两个偏振的光脉冲即为基本偏振态(PSP)。在输出端,两个脉冲的到达时间是不同的,其时间差就称之为偏振模色散的群时延差(DGD)。在一阶近似下,PSP与频率无关;而在二阶近似下,PSP与DGD的值都与频率相关。 一般采用两偏振模的群时延差Δτ来表示PMD的大小,由于两偏振模之间的模式耦合是随波长和时间随机变化的,所以PMD是一个统计量,并随时间而变化。因此实际测量光纤中由偏振模色散引起的DGD时必须考虑其统计特性并采取相应的措施。通常采用以下几种定义来表征PMD的数值:群时延差的平均值、群时延差平均值系数和传输时间的均方差(RMS DGD)。某一次实际测量的群时延差值可能比群时延差的平均值大或小许多。 PMD是一统计量,随时间和温度而变化,并与测量的状态密切相关。对同一光纤在不同时间进行测量,无论应用什么测试仪器或采用何种测量方法,测试结果都可能相差10%或更多。经过多年讨论,目前,国际上一些标准组织(IEC/TIA/ITU)推荐了四种测量PMD的方法。在这

概念解释07、偏振模色散(PMD)

2偏振模色散的影响 与其它色散一样,偏振模色散也要使脉冲展宽,从而提高数字通信系统的误码率,限制系统的传输带宽。长距离数字通信系统通常工作于1550nm附近的第三窗口,因为在此窗口光纤衰减最小。对标准单模光纤来说,在这一窗口,由于色散较大,偏振模色散的影响可以忽略不计。但是,如果应用了高质量的DFB激光器或色散补偿技术,则要考虑偏振模色散的影响。 DFB激光器的线性带宽很窄,相应地降低色散的影响。在通信系统中接入一色散补偿器 (DCM)可以得到实际的色散补偿。通过专门设计色散补偿光纤的折射率分布可以使光纤在第3窗口具有较大的负色散系数,这一负色散系数可以补偿标准单模光纤的色散。总之,在

长距离、高比特率数字通信系统中,如果应用了色散补偿技术降低了色散值,则偏振模色散的影响相应突出了。此外,由于偏振模色散的统计特性,迄今为止,还没有任何方法可以补偿它。如果激光器的线性带宽不是很窄,色散的影响将较大,偏振模色散的影响可以忽略不计。但是,如果降低激光器的线性带宽,则偏振模色散的影响就增大了。在图8中,取偏振模色散值为0.5ps/km,因为这一值可能被接受为国际标准规范值(至少对陆地网络是如此)。按照某些国际标准技术规范小组的观点,当时延差达到1比特周期的0.3倍时,将引起1dB的功率损失。偏振模色散的瞬时值有可能达到平均值的3倍,这样,为了保证功率损失在1dB以下,偏振模色散的平均值必须要小于1比特周期的十分之一。偏振模色散与通信系统比特率及传输距离的关系,当偏振模色散值为0.5ps/km时,在1dB的功率损失时,比特率为10Gb/s 系统的传输距离可达400km。 与对长距离、高比特率数字通信系统的影响不同,偏振模色散对短距离模拟通信系统的影响要复杂得多。这种影响是多种因素的综合,在这里,我们仅仅作一简单介绍,更详细的讨论可见参考文献。模拟通信系统性能的下降可能是由于偏振模色散、激光器啁啾(chirp)和元器件的与偏振相关的衰耗(PDL)之间的相互作用。PDL的含意是不言而喻的。激光器啁啾是在调幅(AM)系统中出现的激光频率调制,啁啾参量描述了由于强度调制产生的最大频率漂移。即使是设计相似的激光器,这一量也可能完全不同。对在有线电视(CATV)系统第2窗口应用的DFB激光器来说,其典型值在100至400MHz之间,偏振模色散、PDL和激光啁啾之间的相互作用将引起复合的第二阶失(CSO),在信号中产生高阶谐波,在传输通道之间出现边频带,从而严重影响传输的质量。我们将在第二阶谐波中的能量大小,即在基频的2倍频率处接收到的能量大小,作为信号质量的度量。很明显,可接受的CSO值取决于传输通道的密度。目前,认为当CSO功率电平为-65dB左右或更小时,对60通道的CATV系统是足够了。当不存在PDL时,偏振模色散必须要小于9ps,当PDL为0.1dB左右时,偏振模色散必须要小于8ps。当偏振模色散值为0.5ps/km时,最大允许的传输距离为324km 或256km,取决于PDL大小。

光的衍射、偏振、色散、激光

光的衍射、偏振、色散、激光 【学习目标】 1.了解光的衍射现象及观察方法. 2.理解光产生衍射的条件. 3.知道几种不同衍射现象的图样. 5.知道振动中的偏振现象,偏振是横波特有的性质. 6.明显偏振光和自然光的区别. 7.知道光的偏振现象及偏振光的应用. 8.知道光的色散、光的颜色及光谱的概念. 9.理解薄膜干涉的原理并能解释一些现象. 10.知道激光和自然光的区别. 11.了解激光的特点和应用. 【要点梳理】 要点一、光的衍射 1.三种衍射现象和图样特征 (1)单缝衍射. ①单缝衍射现象. 如图所示,点光源S 发出的光经过单缝后照射到光屏上,若缝较宽,则光沿着直线传播,传播到光屏上的AB 区域;若缝足够窄,则光的传播不再沿直线传播,而是传到几何阴影区,在AA BB ''、区还出现亮暗相间的条纹,即发生衍射现象. 要点诠释:衍射是波特有的一种现象,只是有的明显,有的不明显而已. ②图样特征. 单缝衍射条纹分布是不均匀的,中央亮条纹与邻边的亮条纹相比有明显的不同:用单色光照射单缝时,光屏上出现亮、暗相间的衍射条纹,中央条纹宽度大,亮度也大,如图所示,与干涉条纹有区别.用白光照射单缝时,中间是白色亮条纹,两边是彩色条纹,其中最靠近中央的色光是紫光,最远离中央的是红光. (2)圆孔衍射. ①圆孔衍射的现象. 如图甲所示,当挡板AB 上的圆孔较大时,光屏上出现图乙中所示的情形,无衍射现象发生;当

挡板AB上的圆孔很小时,光屏上出现图丙中所示的衍射图样,出现亮、暗相间的圆环. ②图样特征. 衍射图样中,中央亮圆的亮度大,外面是亮、暗相间的圆环,但外围亮环的亮度小,用不同的光照射时所得图样也有所不同,如果用单色光照射时,中央为亮圆,外面是亮度越来越暗的亮环.如果用白光照射时,中央亮圆为白色,周围是彩色圆环. (3)圆板衍射. 在1818年,法国物理学家菲涅耳提出波动理论时,著名的数学家泊松根据菲涅耳的波动理论推算出圆板后面的中央应出现一个亮斑,这看起来是一个荒谬的结论,于是在同年,泊松在巴黎科学院宣称他推翻了菲涅耳的波动理论,并把这一结果当作菲涅耳的谬误提了出来但有人做了相应的实验,发现在圆板阴影的中央确实出现了一个亮斑,这充分证明了菲涅耳理论的正确性,后人把这个亮斑就叫泊松亮斑. 小圆板衍射图样的中央有个亮斑——泊松亮斑,图样中的亮环或暗环间的距离随着半径的增大而减小. 2.衍射光栅 (1)构成:由许多等宽的狭缝等距离排列起来形成的光学仪器. (2)特点:它产生的条纹分辨程度高,便于测量. (3)种类:? ? ? 透射光栅反射光栅 . 4.三种衍射图样的比较 如图所示是光经狭缝、小孔、小圆屏产生的衍射图样的照片.由图可见:

3 第3节 光的偏振 第4节 激光与全息照相

第3节光的偏振 第4节激光与全息照相 1.了解振动中的偏振现象,知道只有横波才有偏振现象,知道光是一种横波. 2.知道偏振光和自然光的区别,知道光的偏振说明光是横波.(重点+难点) 3.知道激光的产生原理和主要特点,了解激光的特性和应用.(重点) 4.知道激光在全息照相中的应用原理和特点. 一、光的偏振 1.偏振现象 (1)如果横波只沿某一个特定的方向振动,在物理学上就叫做波的偏振.只有横波才有这种特性.因为纵波的振动方向和传播方向始终在同一直线上,所以纵波不存在偏振. (2)光波属于电磁波,是横波,具有偏振性.太阳、电灯、蜡烛等普通光源发出的光不显示偏振性. 2.偏振片:只让某一方向振动的光通过,而不让其他方向振动的光通过的一种光学元件. 3.光的分类 (1)自然光:太阳、电灯等普通光源发出的光,在垂直于传播方向的平面内,光波可沿任何方向振动,光的振动在平面内是均匀分布的. (2)偏振光 ①自然光通过偏振片(起偏器)之后,只有振动方向与“狭缝”方向相同的光波才能完全通过.自然光通过偏振片后,就能获得偏振光. ②起偏器和检偏器:用于获得偏振光的偏振片叫起偏器,用于检查通过起偏器的光是不是偏振光的偏振片叫检偏器. ③偏振器的偏振化方向:偏振光能完全通过的方向. 4.偏振现象的应用 (1)立体电影. (2)在照相机镜头前装一偏振片,并适当旋转偏振镜片,能够阻挡偏振光,消除或减弱光滑物体表面的反光或亮斑.

(3)利用偏振光通过受力的塑料或玻璃时,偏振化方向会发生变化这一现象,检查应力的分布情况以及用于地震预报. 1.(1)只有横波才能发生偏振,纵波不能发生偏振.() (2)光的偏振现象证明光是横波.() (3)自然界不存在偏振光,自然光只有通过偏振片才能变为偏振光.() 提示:(1)√(2)√(3)× 二、激光与全息照相 1.激光及其特性 (1)激光是原子受激辐射产生的光.发光的方向、频率、偏振方向均相同,两列相同的激光相遇可以发生干涉.激光是人工产生的光. (2)激光具有相干性好、单色性好、亮度高、方向性强等特点. (3)激光用途很广,在农业领域可以用来育种,在医疗领域可以用激光作为手术刀来切割组织,在军事领域可以制作各种激光武器,在工业领域可以利用激光进行切割金属等难熔物质. 2.激光与全息照相 (1)全息照相是利用光的干涉来实现的. (2)作为光源的激光被分成两部分:一部分通过凹透镜发散后射到照相胶片上,另一部分射向一个平面镜,经反射后通过另一个凹透镜发散后射向被拍照的物体,该物体把光线反射到照相胶片上并与第一束光发生干涉,两束光干涉的结果就在照相胶片上记录下被拍摄物体的三维图像信息,这就是全息照相. 2.(1)激光用于光纤通信是利用了它亮度高的特点.() (2)激光可用做“光刀”来切开皮肤,是利用了激光的相干性好.() (3)全息照相技术只能记录光波的强弱信息.() 提示:(1)×(2)×(3)×

偏振模色散

DCF补偿的缺点是插损较大,会影响系统的传输距离。其解决方法是把DCF放在光发送机与功率放大器之间,或放在予放大器和光接收机之间,用光放大器的增益来补偿DCF的插损。 ②.光纤光栅补偿 利用光纤光栅的干涉与衍射效应进行色散补偿。 总之,系统的色度色散受限主要表现在高传输速率即2.5Gb/s以上的系统,采取的措施一是采用外调制方式,它可以降低光源的啁啾声与增加系统的色散容限(如2.5Gb/s系统的色散容限可达12800ps/nm以上),二是可以采取色散补偿手段如DCF 等。 3.偏振模色散受限(PMD) 偏振模色散受限仅对传输速率10Gb/s以上的系统有效。 (1).偏振模色散受限机理 所谓偏振模色散PMD(Polar Mode Dispersion),是指由于光纤的随机性双折射所引起的、对不同相位状态的光呈现不同群速度的特性。 如果单模光纤结构是理想的圆柱形而且材料是各向同性的,则二个正交方向偏振态的模式不会发生相互耦合,单模光纤可以保证单模传输,即能维持二个偏振态正交的简并模(LP01)传输。 但实际上在制造光纤过程中,由于工艺方面原因会使光纤的实际结构偏离理想的圆柱形,光纤的芯径与包层的几何尺寸也存在着差异;而且光纤的折射率分布也难以保证理想化(沿径向分布完全对称),从而使光纤存在着各向异性。 此外,在实际应用中,光缆中的光纤也不可避免地要受侧压力、扭曲力、弯曲力等外部应力的作用,它的随机性非常大。 所有这一切都破坏了模式的简并,导致了两偏振态模的耦合;也导致两个偏振方向光的传播常数不相同,这就是所谓双折射现象。 双折射使不同偏振态的光信号不能同时到达接收端,即出现延时。如图2.8.4所示。 图2.8.4:PMD引起的光信号差分群延时DGD 偏振模色散是客观存在的,但对不同的传输速率有着不同的影响。

最新光的干涉-衍射和偏振(含答案)

第4课时光的干涉衍射和偏振 导学目标 1.掌握光的干涉现象产生的条件,特别是双缝干涉中出现明暗条纹的条件及判断方法.2.掌握光产生明显衍射的条件,以及衍射与干涉现象的区别.3.掌握光的偏振现象,了解偏振在日常生活中的应用. 一、光的干涉 [基础导引] 1.在双缝干涉实验中,光屏上某点P到双缝S1、S2的路程差为7.5×10-7m,如果用频率 6.0×1014 Hz的黄光照射双缝,试通过计算分析P点出现的是亮条纹还是暗条纹.2.描绘地势高低可以用等高线,描绘静电场可以用等势线,薄膜干涉条纹实际上是等厚线,同一干涉条纹上各个地方薄膜的厚度是相等的.利用光的干涉检查平整度时,观察到了干涉条纹的形状,就等于知道了等厚线的走向,因而不难判断被检测平面的凹下或凸出的位置.为什么薄膜干涉条纹是等厚线? [知识梳理] 1.双缝干涉:由同一光源发出的光经双缝后形成两束振动情况总是________的相干光波.屏上某点到双缝的路程差是________________时出现亮条纹;路程差是半波长的________时出现暗条纹.相邻的明条纹(或暗条纹)之间的距离Δx与波长λ、双缝间距d及屏到双缝的距离l之间的关系为____________. 2.薄膜干涉:利用薄膜(如肥皂液薄膜)____________反射的光相遇而形成的.图样中同一条亮(或暗)条纹上所对应的薄膜厚度________. 特别提醒 1.只有相干光才能形成稳定的干涉图样. 2.单色光形成明暗相间的干涉条纹,白光形成彩色条纹. 二、光的衍射 [基础导引] 太阳光照着一块遮光板,遮光板上有一个较大的三角形孔.太阳光透过这个孔,在光屏上形成一个三角形光斑.请说明:遮光板上三角形孔的尺寸不断减小时,光屏上的图形将怎样变化?说出其中的道理. [知识梳理] 1.光________________________________的现象叫光的衍射. 2.发生明显衍射的条件:只有在障碍物的尺寸比光的波长小或者跟波长相差不多的条件下,才能发生明显的衍射现象. 3.泊松亮斑:当光照到不透光的小圆板上时,在圆板的阴影中心出现的亮斑(在阴影外还有不等间距的明暗相间的圆环). 特别提醒 1.光的干涉、衍射和光的色散都可出现彩色条纹,但光学本质不同. 2.区分干涉和衍射,关键是理解其本质,实际应用中可从条纹宽度、条纹间距、亮度等方面加以区分. 三、光的偏振 [基础导引]

最新偏振模色散测试仪是用来测试偏振模色散的

单模光纤偏振模色散 PMD 测试技术 4.1、托克斯参数测定法 斯托克斯参数测定法是测量单模光纤 PMD 值的基准试验方法,它的测试原理是在一波 长范围内以一定的波长间隔测量出输出偏振态随波长的变化, 通过琼斯矩阵本征分析和计算, 得到PMD 的系数值。 斯托克斯参数测定法多用于实验室测试,其测量试验设备及装置如图 2所示。 学网 V.W .xUbSxur-i 4.2、偏振态法 偏振态法是测量单模光纤 PMD 的第1替代试验方法,其测量原理是: 对于固定的输入 偏振态,当注入光波长(频率)变化时,在斯托克斯参数空间里邦加球上被测光纤输出偏振 态(SOP )也会发生演变,它们环绕与主偏振态( PSP )方向重合的轴旋转,旋转速度取 决于PMD 时延:时延越大,旋转越快。通过测量相应角频率变化" 3和邦加球上代表偏振 态(SOP )点的旋转角度" 0,就可以计算出 PMD 时延3舌"9 0 3。 偏振态法直接给出了被测试样 PSP 间差分群时延(DGD )与波长或时间的函数关系, 通过在时间或波长范围内取平均值得到 PMD 。 可调光阳 I 00 存谄序斂 嵌护卜涉[.倚竺 LI CD 丨

学网wAM/https://www.doczj.com/doc/6a16339414.html, 图s as扳状态法分析测重P?D试验设备简图清冈 httpy/ifvwwvipc n co m 4.3、干涉法 由于干涉法测量速度快,目前市面上很多仪器生产厂家都以干涉法为测试原理生产测试设备,它们共同点就是设备体积小,动态范围宽,重复性较好,很适合在现场使用。由于干涉法与偏振模耦合无关,适用于单盘短光纤和长光纤。 干涉法就是介绍一种测量单模光纤和光缆的平均偏振模色散的方法。其测试原理为:当光纤一端用宽带光源照明时,在输出端测量电磁场的自相关函数或互相关函数,从而确定PMD。在自相关型干涉仪表中,干涉图具有一个相应于光源自相关的中心相干峰。测量值代表了在测量波长范围内的平均值。在1310nm或1550nm窗口不同仪器都有一定的波长范围。 下面介绍的是光纤参考通道Michelsom干涉仪,也是大多仪器厂家使用的一种方法, 实验装置如图4所示:

光的偏振激光

光的偏振激光 出题人:左发明()1.列哪些波能发生偏振现象A.声波B.电磁波C?横波D ?纵波 ()2.如图所示,让太阳光通过M中的小孔 S,在M的右方放一偏振片P, P的右方再放 一光屏Q,现以光的传播方向为轴逐渐旋转 偏振片P,关于光屏Q上光的亮度变化情 况,下列说法中正确的为 A ?先变暗后变亮B.先变亮后变暗 C?亮度不变D.先变暗后变亮,再变暗,再变亮 ()3 .某些特定环境下照像时,常在照相机镜头前装一片偏振滤光片使景象清晰,关于其原理,下列说法中正确的是 A ?增强透射光的强度B.减弱所拍摄景物周围反射光的强度 C.减弱透射光的强度 D.增强所拍摄景物周围反射光的强度 ( )4.让太阳光通过两块平行放置的偏振片,关于最后透射光的强度,下列说法正确的是 A .当两个偏振片透振方向垂直时,透射光强度最强 B. 当两个偏振片透振方向垂直时,透射光强度最弱 C. 当两个偏振片透振方向平行时,透射光强度最弱 D. 当两个偏振片透振方向平行时,透射光强度最强 ()5.下列关于电磁波叙述中,正确的是 A .麦克斯韦预言了电磁波的存在,安培用实验首先证实了电磁波的存在 B .电磁波在任何介质中的传播速度均为3. 0X 108 m/s C.电磁波由真空进入介质传播时,波长将变短 D .电磁波不能产生干涉,只能产生衍射现象 ()6.下列关于声波和电磁波的叙述中,正确的是 A .由于它们都能产生干涉、衍射现象,所以都是横波 B .它们都能在真空中传播 C.声波能产生反射但不能产生折射现象,而电磁波能产生反射和折射现象 D .如果它们分别由空气进入介质,声波传播速度变大而电磁波速度变小 ()7.气象卫星向地面发送的云图,是由卫星上的红外线感应器接收云层发出的红外线而形成的图象,云图上的黑白程度由云层的温度高低决定,这是利用了红外线的 A .不可见性 B .穿透性C.热效应D.化学效应 ()8.在应用电磁波的特性时,下列叙述符合实际的是 A.医院里常用X射线对病房和手术室进行消毒 B .“远红外烤箱”加热食品时主要是靠烤箱中人能观察到的红光来实现的 C.人造卫星对地球拍摄,是利用紫外线照相有较好的分辨能力 D .在医学上常用伦琴射线穿透能力强,来检查人体内的病变及骨骼情况 ()9.关于红外线、紫外线、X射线和丫射线,下列说法正确的是 A . X射线的频率一定比紫外线的频率咼 B .红外线是原子的内层电子受到激发后产生的 C.高速电子流轰击固体可以产生X射线 D . 丫射线是原子的外层电子受到激发后产生的 ()10.—种电磁波入射到一个直径为1 m的圆孔上,衍射现象明显,这种波属于电磁波谱中的哪个区域 A .可见光B.无线电波C.紫外线D.红外线()11 .关于光的偏振现象,以下说法中正确的是 A、光具有偏振现象,所以光是一种横波 B、光具有偏振现象,所以光都是偏振光 C、自然光射到两种介质的界面上,如果反射光与折射光线相互垂直,则反射光和折射光的偏振方向相互垂直 D、自然光射到两种介质的界面上,如果反射光与折射光线相互垂直,则反射光和折射光的偏振方向相互平行 ()12.关于激光的应用问题,以下说法正确的是 A .光纤通信是应用激光平行度非常好的特点对信号来进行调制,使其在光导纤维中进行传递信息 B .计算机内的“磁头”读出光盘上记录的信息是应用了激光是相干光的特点来进行的C.医 学上用激光作“光刀”来切除肿瘤是应用了激光亮度高的特点 D . “激光测距雷达”利用激光测量很远目标的距离是应用了激光亮度高的特点 ()13.可以利用激光来切割各种物质,这是应用了激光的 A .相干性好的特性B.平行性好的特性 C.亮度高的特性 D.单色性好的特性 ()14.在做双缝干涉实验时,常用激光做光源,这主要是应用激光的 A .单色性好的特性 B .平行性好的特性 C.波动性好的特性 D .亮度高的特性 ()15.将激光束的宽度聚集到纳米级(10-9 m)范围内,可以修复人体已损坏的器官,对DNA分子进行超微型基因修复,把至今尚令人无奈的癌症,遗传疾病等彻底根除,这是应用了激光的 A .平行性好的特性B.单色性好的特性 C.亮度高的特性 D.粒子性好的特性 16. 有些动物夜间几乎什么都看不到,而猫头鹰在夜间却有很好的视力. ()(1)其原因是 A .不需要光线,也能看到目标B.自身眼睛发光,照亮搜索目标 C.可对红外线产生视觉 D.可对紫外线产生视觉 (2)根据热辐射理论,物体发出光的最大波长入m与物 体的绝对温度的关系满足:T ?入m=2. 90X 10-3( K ? m),若猫头鹰的猎物——蛇在夜间的体温为 27 C,则它发出光的最大波长为_____________ m,属于_ 17. 如图所示,一束自然光自空气射到玻璃的界面 上,入射角a =60 °,已知玻璃的折射率为n =.3,贝阪射光线 为__________ 光,折射光线为 ____ 光. 波段.

偏振模色散原理和测试方法分析

偏振模色散的原理和测试方法分析 摘要:偏振模色散将引起高速光脉冲畸变,制约传输距离,是40Gb/s高速光纤通信的主要技术难点之一。本文研究了偏振模色散的产生原理、对传输光脉冲的影响等问题;分析了偏振模色散的三种主要测试方法的测量配置和各自优缺点;讨论了每种方法的最佳应用场合。 一、 引言 光纤的色散引起传输信号的畸变,使通信质量下降,从而限制了通信容量和通信距离。在光纤的损耗已大为降低的今天,色散对高速光纤通信的影响就显得更为突出。40Gb/s系统和10Gb/s系统相比,在光纤传输上的色散效应对系统性能的影响有新的差异。特别是偏振模色散(Polarization Mode Dispersion,简称PMD)的影响难以克服。所以,在40Gb/s系统技术中,必须考虑和研究光纤的色散,PMD和非线性的影响等。同时,由于偏振模色散的测试是比较复杂的问题,如何根据其特点,比较迅速和准确地测出偏振模色散值,从而进行色散补偿,将是本文讨论的重点。 本文作者主要从事高速光传输收发模块的研究开发,于2002年11月参加了在上海举行的Tektronix 2002亚太区大型巡回讲座和研讨会,针对偏振模色散的最新测试技术这一问题,作者与Tektronix公司的偏振模色散测试技术人员、工程师作了沟通和交流,并在本文中作了比较详细的分析和探讨。 二、 色散的原理和分类 色散是光纤的一个重要参数。降低光纤的色散,对增加通信容量,延长通信距离,发展高速40Gb/s光纤通信和其它新型光纤通信技术都是至关重要的。 光纤的色散主要由两方面引起:一是光源发出的并不是单色光;二是调制信号有一定的带宽。实际光源发出的光不是单色的,而是有一定的波长范围。这个范围就是光源的线宽。在对光源进行调制时,可以认为信号是按照同样的方式对光源谱线中的每一分量进行调制的。一般调制带宽比光源窄得多,因而可以认为光源的线宽就是已调信号带宽,但对高速和线宽极窄的光源,情况不一样。进入光纤中去的是一个调制了的光谱,如果是单模光纤,它将激发出基模;如果是多模光纤,则激发出大量模式。由此可以看出,光纤中的信号能量是由不同的频率成分和模式成分构成的,它们有不同的传播速度,从而引起比较复杂的色散现象。 光纤的色散可以分为下列三类: 模间色散:在多模光纤中,即使是同一波长,不同模式的光由于传播速度的不同而引起的色散称为模式色散。 色度色散:是指光源光谱中不同波长在光纤中的群延时差所引起的光脉冲展宽现象。 偏振模色散:单模光纤中实际存在偏振方向相互正交的两个基模。当光纤存在双折射时,这两个模式的传输速度不同而引起的色散称为偏振模色散。 图1是这三种色散的示意图:

光栅衍射和偏振光

光栅衍射和偏振光

12.7 衍射光栅和光栅光谱 一.光栅( grating ) 1. 光栅:由大量等宽、等间距的平行狭缝 (或反射面)构成的光学元件。 广义讲,任何具有空间周期性的衍射屏 都可叫作光栅。 2.光栅分类:透射光栅 反射光栅 我们只讨论透射光栅。 3.光栅常量(grating constant) a :相邻两刻痕边缘间距(透光宽度) b :刻痕宽度(不透光宽度) 光栅常量 d = a + b (相邻两狭缝中心之间距) 是光栅的重要参数。 反射光栅 d d 透射光栅 光栅 (a) (b)

·实用光栅:刻痕数 几十条/mm ~ 几千条/mm ·用电子束刻制刻痕数可达几万条/mm ?d ~ 数万?。 ·光栅是现代科技中常用的重要光学元件。 二.实验装置 1.光栅衍射装置 衍射角:θ o P f 缝平面透镜L λ θ d sinθ d θ

光栅常量:d,缝数为N,单色光垂直入射 2.光栅衍射(多缝衍射) (1)每条缝发的光都是单缝衍射光。 各条缝的衍射光在屏上的光强分布位置相同。 (2)多缝衍射是N束单缝衍射光的干涉。或N个单缝衍射图样的相干叠加 (3)光栅衍射是单缝衍射和多光束干涉的综合 三.条纹特点 1.主极大 (1)明纹条件: 光栅方程 d sinθ = ±kλ (k = 0,1,2,…) ·是主极大的必要条件,不是充分条件 (还有缺级问题,见后)。 (2)位置: x=f(tgθ)=f(sinθ)=±f(kλ/d) (k = 0,1,2,…)

和缝数N 无关 (3)亮度:各条缝的光在主极大处引起的分振动同相。 主极大处的合振幅是同一方向(同 θ 角)单缝衍射光振幅A 单 的 N 倍。 主极大处的亮度是同一方向(同 θ 角)单缝衍射光强I 单 的N 2 倍。 (4)主极大的最高级次: 1sin 2 0

人教版选修3-4 光的偏振、色散、激光 知识点总结 题型总结 同步巩固练习

高中物理选修3-4 光的偏振、色散、激光 题型1(光的偏振) 1、自然光 太阳、点灯等普通光源直接发出的光,包含垂直于传播方向上沿一切方向振动的光,而且沿各个方向振动的光波的强度都相同,这种光叫自然光。 2、偏振光:自然光通过偏振片后,在垂直于传播方向的平面上,只沿一个特定的方向振动,叫偏振光。图(b)中P 为起偏器,Q为检偏器自然光射到两种介质的界面上,如果光的入射方向合适,使反射光和折射光之间的夹角恰好是90°,这时,反射光和折射光就都是偏振光,且它们的偏振方向互相垂直。如图(a)。我们通常看到的绝大多数光都是偏振光。 3、光的偏振也证明了光是一种波,而且是横波。各种电磁波中电场E的方向、磁场B的方向和电磁波的传播方向之间,两两相互垂直。 4、光波的感光作用和生理作用主要是由电场强度E引起的,将E的振动称为光振动 5、应用:利用偏振滤光片摄影、观看立体电影等。 1、如图,P是偏振片,P的透振方向(用带的箭头的实线表示)为竖直方向。下列四种入射光束中,哪几种照射P时能在P的另一侧观察到透射光?(ABD) A. 太阳光 B. 沿竖直方向振动的光 C. 沿水平方向振动的光 D. 沿与竖直方向成45°角振动的光 2、如图所示,白炽灯的右侧依次平行放置偏振片P和Q,A点位于P、Q之间,B点位于Q右侧。偏转偏振片P,A、B两点光的强度变化情况是(C) A. A、B均不变 B. A、B均有变化 C. A不变,B有变化 D. A有变化,B不变 3、如图所示,人眼隔着片着片B、A去看一只电灯泡S,一束透射光看不到,那么,以下说法中哪些是正确的(C) A. 使A和B同时转过90°,能够看到透射光 B. 单使B转过90°过程中,看到光先变亮再变暗

激光的偏振讲解

激光的偏振 “偏振”是各种激光器的普遍性质,这是由激光形成的原理决定的。激光束是由激光器内发光介质粒子的受激辐射形成的。受激辐射有鲜明的特点:外来光子照射激光上能级粒子时,粒子辐射出一个光子并跃迁到下能级,受激辐射所产生的光子与外来光子具有相同的相位、相同的传播方向和相同的偏振状态。当激光器内受激辐射形成光子流时,一个模式光子流中的全部光子都具有相同的相位、相同的传播方向和相同的偏振状态。这意味着一个激光纵模(频率)一定是偏振的。同时,激光相邻纵模的偏振态或为平行或为垂直。布儒斯特窗或Q 调制电光晶体的使用是利用激光偏振的很好例证。 激光器“正交偏振”是指激光器两个相邻的频率具有互相垂直的偏振状态。一对左右旋圆偏振的光也应看做正交偏振光。一般说到“激光两正交偏振频率”时,其频差不是任意的,而是完全由激光腔长决定的。本书研究的则是如何使激光器产生任意频差的两个正交偏振频率,以及这类激光器的结构、特性和应用。 第1章简洁而全面地介绍了激光器的一般原理。第2章介绍历史上与正交偏振激光相关的成就,主要是塞曼双频激光器和环形激光器,而环形激光器又包括三镜激光陀螺、环形激光流量计和四频(四镜)环形激光器。这些激光器并不都输出本书所专指的“正交偏振激光”,但它们和本书的“正交偏振激光”有一个共同的物理概念,即“激光频率分裂”现象——由一种物理效应把激光器的一个频率“分裂”成两个。历史上这些激光器使用塞曼效应、旋光效应、磁光法拉第效应、Sagnac 效应形成激光频率分裂。 从第3章起到第6章,介绍由双折射效应在驻波激光器(管)中进行激光频率分裂,形成正交偏振振荡和输出。激光频率分裂所使用的双折射效应包括自然双折射效应、应力双折射效应、电光双折射效应等。从1988年在Optics Communications 发表第一篇文章开始,至今已发展成一个原理、器件、现象和应用系统完整的学术体系。

知识讲解光的衍射偏振色散激光提高

光的衍射、偏振、色散、编稿:张金虎审稿:吴嘉峰 【学习目标】 1.了解光的衍射现象及观察方法. 2.理解光产生衍射的条件. 3.知道几种不同衍射现象的图样. 5.知道振动中的偏振现象,偏振是横波特有的性质. 6.明显偏振光和自然光的区别. 7.知道光的偏振现象及偏振光的应用. 8.知道光的色散、光的颜色及光谱的概念. 9.理解薄膜干涉的原理并能解释一些现象. 10.知道激光和自然光的区别. 11.了解激光的特点和应用. 【要点梳理】 要点一、光的衍射 1.三种衍射现象和图样特征 (1)单缝衍射. ①单缝衍射现象. 如图所示,点光源S发出的光经过单缝后照射到光屏上,若缝较宽,则光沿着直线传播,传播到光屏上的AB区域;若缝足够窄,则光的传播不再沿直线传播,而是传到几何阴影区,在AABB 、区还出现亮暗相间的条纹,即发生衍射现 象. 要点诠释:衍射是波特有的一种现象,只是有的明显,有的不明显而已. ②图样特征. 单缝衍射条纹分布是不均匀的,中央亮条纹与邻边的亮条纹相比有明显的不同:用单色光照射单缝时,光屏上出现亮、暗相间的衍射条纹,中央条纹宽度大,亮度也大,如图所示,与干涉条纹有区别.用白光照射单缝时,中间是白色亮条纹,两边是彩色条纹,

其中最靠近中央的色光是紫光,最远离中央的是红光. (2)圆孔衍射. ①圆孔衍射的现象. 如图甲所示,当挡板AB上的圆孔较大时,光屏上出现图乙中所示的情形,无衍射现象发生;当挡板AB上的圆孔很小时,光屏上出现图丙中所示的衍射图样,出现亮、暗相间的圆环. ②图样特征. 衍射图样中,中央亮圆的亮度大,外面是亮、暗相间的圆环,但外围亮环的亮度小,用不同的光照射时所得图样也有所不同,如果用单色光照射时,中央为亮圆,外面是亮度越来越暗的亮环.如果用白光照射时,中央亮圆为白色,周围是彩色圆环. (3)圆板衍射. 在1818年,法国物理学家菲涅耳提出波动理论时,著名的数学家泊松根据菲涅耳的波动理论推算出圆板后面的中央应出现一个亮斑,这看起来是一个荒谬的结论,于是在同年,泊松在巴黎科学院宣称他推翻了菲涅耳的波动理论,并把这一结果当作菲涅耳的谬误提了出来但有人做了相应的实验,发现在圆板阴影的中央确实出现了一个亮斑,这充分证明了菲涅耳理论的正确性,后人把这个亮斑就叫泊松亮斑. 小圆板衍射图样的中央有个亮斑——泊松亮斑,图样中的亮环或暗环间的距离随着半径的增大而减小.

偏振模色散及其补偿技术

光 通 信 技 术V ol.26 OPTICAL COM M U NICAT ION T ECHNOLOGY N o.2 中国无线电电子学、电信技术类核心期刊 偏振模色散及其补偿技术 蒙红云 冯德军 赵春柳 杨石泉 武志刚 董新永 李杰 董孝义 (南开大学现代光学研究所,天津 300071) 摘要 随着光通信传输码率的提高,偏振模色散(PM D)的影响越来越大,它限制了信号的传输距离,降低了信号的质量,所以必须对PM D进行补偿。简要介绍了PM D的产生机制及目前高速光通信中常用的几种PM D补偿技术。 关键词 光纤通信 偏振模色散 补偿技术 中图分类号 TN818 文献标识码 A 1 引言 目前,光纤通信已成为世界各国发展通信产业的最主要方向之一,传输距离和系统比特率的升级也十分迅速。由于近年来色散补偿技术的发展,波长色散已不再是通信系统的限制因素。随着长距离、高比特率系统的发展,PM D(Polarization M ode Dispersio n)的影响已日益凸现,它已成为限制高速光通信发展的主要因素之一。在10Gb/s及以上速率的高速光通信系统的长距离传输中,由于PMD可能在数字系统中造成脉冲展宽失真变形,使误码率增高,限制传输带宽;在模拟通信系统中产生高阶畸变效应和偏振依赖损耗,导致非线性效应,所以必须对高速光纤通信系统中的PM D进行补偿。然而PM D的补偿十分困难,因为它是一个与多种因素有关的随机过程。由于设备、资金等条件限制,国内在这方面的研究工作较少,主要做些理论上的研究[1],国外也主要只有一些大公司[2]和研究机构[3]在从事这方面的工作。文章综述了近年来比较常用的几种PMD补偿技术方案。 2 偏振模色散及其产生机制 在常规单模光纤中实际上传播的是两个互相正交的偏振模,即LP0,1基模。这两个模式在光纤中相互对立地传播。当光纤材料有双折射时,二者有不同的传播速度,从而导致模式之间的差分群时延(Differ-ential Gr oup Delay,DGD),即偏振模色散(PM D)。 导致PM D产生的原因很多,概括起来主要有以下几方面的因素: 理想光纤的模截面是标准圆形,LP0,1模的两个正交偏振模是完全二度简并的。但是在生产过程中产生的几何尺寸不规则和在光纤中残留应力会使折射率分布呈现出各向异性而导致PM D的产生。 在光纤的生产、成缆、光缆敷设和环境影响等过程中,有很多因素诸如挤压、弯曲、扭转和环境温度等可能使光纤沿不同的方向有不同的折射率分布(即双折射),从而形成PM D。 光纤是由芯、包层、涂敷层等数层结构组成的,各种材料的热涨系数是不一样的,因此很小的热应力分布不对称都可能导致纤芯材料的各向异性,从而通过光弹效应产生应力双折射,导致PM D。另外,当光信号通过一些光通信器件诸如隔离器、耦合器和滤波器等时,也会由于器件结构和材料本身的不完整性导致双折射,产生PM D。 蒙红云 男,1973年生,在读博士生2001-03-12收稿

相关主题
文本预览
相关文档 最新文档