当前位置:文档之家› 计算流体力学入门 第九章 库特流代码 fortan90版

计算流体力学入门 第九章 库特流代码 fortan90版

计算流体力学入门 第九章 库特流代码 fortan90版
计算流体力学入门 第九章 库特流代码 fortan90版

计算流体力学入门第九章库特流代码 fortan90版

! -------------------------------------------------- ! Silverfrost FTN95 for Microsoft Visual Studio

! Free Format FTN95 Source File

! -------------------------------------------------- program piple

implicitnone

real,dimension(21)::u

real,dimension(21)::uu

real,dimension(21,3)::cf

integer::i

real::s=0.0

real::err=1 ! judgement of wheather stop or not

do i=1,21

u(i)=0

enddo

dowhile(err>1e-8)

u(1)=0.0

u(21)=1.0

uu(1)=0.0

uu(21)=1.0

cf(:,1)=-0.5

cf(:,2)=2.0

do i=2,20

cf(i,3)=0.5*(u(i+1)+u(i-1))

enddo

cf(20,3)=cf(20,3)+0.5

do i=3,20

cf(i,2)=cf(i,2)-(cf(i,1)*cf(i-1,1))/cf(i-1,2)

cf(i,3)=cf(i,3)-(cf(i-1,3)*cf(i,1))/cf(i-1,2)

enddo

uu(20)=cf(20,3)/cf(20,2)

do i=19,1,-1

uu(i)=(cf(i,3)+0.5*uu(i+1))/cf(i,2)

enddo

uu(1)=0

do i=1,21

s=s+abs(uu(i)-u(i))

enddo

u=uu

err=s

s=0.0

print*,err

enddo

print*,uu

read*,i

endprogram piple

! -------------------------------------------------- ! Silverfrost FTN95 for Microsoft Visual Studio

! Free Format FTN95 Source File

! -------------------------------------------------- program piple

implicitnone

real,dimension(21)::u

real,dimension(21)::uu

real,dimension(21,3)::cf

integer::i

real::s=0.0

real::err=1 ! judgement of wheather stop or not do i=1,21

u(i)=0

enddo

u(1)=0.0

u(21)=1.0

uu(1)=0.0

uu(21)=1.0

dowhile(err>1e-8)

cf(:,1)=-0.5

cf(:,2)=2.0

do i=2,20

cf(i,3)=0.5*(u(i+1)+u(i-1))

enddo

cf(20,3)=cf(20,3)+0.5

do i=3,20

cf(i,2)=cf(i,2)-(cf(i,1)*cf(i-1,1))/cf(i-1,2) cf(i,3)=cf(i,3)-(cf(i-1,3)*cf(i,1))/cf(i-1,2) enddo

uu(20)=cf(20,3)/cf(20,2)

do i=19,1,-1

uu(i)=(cf(i,3)+0.5*uu(i+1))/cf(i,2)

enddo

do i=1,21

s=s+abs(uu(i)-u(i))

enddo

u=uu

err=s

s=0.0

print*,err

enddo

print*,uu

read*,i

endprogram piple

高等流体力学重点

1.流体的连续介质模型:研究流体的宏观运动,在远远大于分子运动尺度的范围里考察流体运动,而不考虑个别分子的行为,因此我们可以把流体视为连续介质。 它有如下性质: (1)流体是连续分布的物质,它可以无限分割为具有均布质量的宏观微元体。 (2)不发生化学反应和离解等非平衡热力学过程的运动流体中,微元体内流体状态服 从热力学关系 (3)除了特殊面外,流体的力学和热力学状态参数在时空中是连续分布的,并且通常 认为是无限可微的 2.应力:有限体的微元面积上单位面积的表面力称为表面力的局部强度,又称为应力,定义如下:=n T A F A δδδlim 0→ 3.流体的界面性质:微元界面两侧的流体的速度和温度相等,应力向量的大小相等.方向相反或应力分量相等。 4.流体具有易流行和压缩性。 5.应力张量具有对称性。 6.欧拉描述法:在任意指定的时间逐点描绘当地的运动特征量(如速度、加速度)及其它的物理量的分布(如压力、密度等)。 7.拉格朗日描述法:从某个时刻开始跟踪质点的位置、速度、加速度和物理参数的变化,这种方法是离散质点的运动描述法称为拉格朗日描述法。 8.流线:速度场的向量线,该曲线上的任意一点的切向量与当地的的速度向量重合。 迹线:流体质点点的运动迹象。 差别:迹线是同一质点在不同时刻的位移曲线。 流线是同一时刻、不同质点连接起来的速度场向量线。 流线微分方程:ω dz v dy u dx == 迹线微分方程:t x U i i ??= 9.质点加速度:质点速度向量随时间的变化率。 U U t U a )(??+??= 质点加速度=速度的局部导数+速度的迁移导数。 物理量的质点导数=物理量的局部导数+物理量的对流导数。

流体力学期末考试计算

水 水银 题1图 1 2 3 题型一:曲面上静水总压力的计算问题(注:千万注意方向,绘出压力体) 1、AB 曲面为一圆柱形的四分之一,半径R=0.2m ,宽度(垂直纸面)B=0.8m ,水深H=1.2m ,液体密度3/850m kg =ρ,AB 曲面左侧受到液体压力。求作用在AB 曲面上的水平分力和铅直分力。(10分) 解:(1)水平分力:RB R H g A h P z c x ?-==)2 (ργ…….(3分) N 1.14668.02.0)22 .02.1(8.9850=??- ??=,方向向右(2分)。 (2)铅直分力:绘如图所示的压力体,则 B R R R H g V P z ??? ? ????+-==4)(2πργ……….(3分) 1.15428.04 2.014.32.0)2.02.1(8.98502=???? ? ?????+?-??=,方向向下(2分) 。 2.有一圆滚门,长度l=10m ,直径D=4.2m ,上游水深H1=4.2m ,下游水深H2=2.1m ,求作用于圆滚门上的水平和铅直分压力。

解题思路:(1)水平分力: l H H p p p x )(2 1222121-=-=γ 方向水平向右。 (2)作压力体,如图,则 l D Al V p z 4 432 πγγγ? === 方向垂直向上。 3.如图示,一半球形闸门,已知球门的半径m R 1= ,上下游水位差m H 1= ,试求闸门受到的水平分力和竖直分力的大小和方向。 解: (1)水平分力: ()2R R H A h P c πγγ?+===左,2R R A h P c πγγ?='=右 右左P P P x -= kN R H 79.30114.31807.92=???=?=πγ, 方向水平向右。 (2)垂直分力: V P z γ=,由于左、右两侧液体对曲面所形成的压力体均为半球面,且两侧方向相反,因而垂直方向总的 压力为0。 4、密闭盛水容器,已知h 1=60cm,h 2=100cm ,水银测压计读值cm h 25=?。试求半径R=0.5m 的半球盖AB 所受总压力的水平分力和铅垂分力。

流体力学试题 答案及评分标准

流体力学试卷 一、名词解释(共10小题,每小题4分,共40分) 1、流体力学 2、连续介质基本假设 3、理想流体 4、牛顿内摩擦定律 5、动量定律 6、流线和迹线 7、恒定流 8、层流和紊流 9、水击(锤)现象 10、明渠底坡 二、简答题(共5小题,每小题5分,共30分) 1、简述毕托管测流速的原理 2、雷诺数及其物理意义 3、简述水在土壤中的状态 4、试简述理想液体恒定元流的能量方程z+常数γ=+g v p 22 各项的物理意义 5、简述曲面边界层的分离现象 6、堰流的类型 五、计算题(共3小题,每小题10分,共30分) 1、闸门AB 曲面为一圆柱形的四分之一,半径r=2.0m ,垂直纸面的宽度b=1.0m ,水深H=4.0m ,闸门曲面左侧受到水压力。求作用在闸门AB 曲面上的水平分力和铅直分力。 2、某矩形断面排水沟,采用浆砌块石衬砌,粗糙系数n=0.025,底宽1.5m ,全长1000m ,进出口底板高差为0.4m ,计算水深为1.0m 时输送的明渠均 匀流流量。 3、如图闭合并联管路,用旧铸铁管从A 向B 输水,已知d1=150mm ,l 1=800m ; d2=150mm ,l 2=500m ;d3=200mm ,l 3=1000mm ;总流量Q=100L/s ,求分支路上的流量Q1、Q2、Q3及AB 间损失水头。 一、名词解释(本大题共10小题,每小题4分,共40分)

1、流体力学:是力学的分支(1分),主要研究流体在各种力的作用下,流体本身的运动规律(1分),以及流体与固体壁面、流体与流体间由于存在相对运动时的相互作用(2分)。也即研究流体的机械运动规律。 2、连续介质基本假设:流体力学研究流体的宏观运动规律,对流体的宏观运动(1分),假设流体是由无数质点组成的、没有空隙的连续体(1分),并认为流体的各物理量的变化随时间和空间也是连续的(1分),可应用高等数学中的连续函数来表达流体中各种物理量随空间、时间的变化关系(1分)。 3、理想流体:是流体力学中一个重要假设模型(或流体物理性质的简化)(1分),即流体分子间不存在内聚力(3分)。 4、牛顿内摩擦定律:流体的内摩擦力T(切向力)与流层间的接触面面积A和流层的速度梯度du/dy或变形率成正比(2分),即T=μAdu/dy,μ称为流体动力粘性系数(2分)。 5、动量定律 作用于物体的外力∑F等于该物体在力作用方向上的动量变化率。 6、迹线和流线:迹线:某一流体质点的运动轨迹,是运动的流体质点在不同时刻所占据的空间位置的连线(2分)。流线:是描述流场中各质点瞬态流动方向即速度方向的的曲线(2分)。 7、恒定流:描述流体质点运动的所有参数仅仅是空间坐标(x、y、z)的函数,而与时间 t无关。(或流场中任意空间位置上运动参数或物理量都不随时间而改变,即对时间的偏导数等于零。) 8、层流和紊流:层流:流体质点无横向脉动,质点互不混杂,层次分明,稳定安详的流 动状态(2分)。 紊流:流体质点不仅在轴(纵)向而且在横向均有不规则脉动速度,流体质点杂乱交错的混沌流动状 态(2分)。 9、水击(锤)现象:在有压管道流中(1分),由于某种原因(如阀门突然启闭、换向阀 突然变换工位等),使流体速度突然发生变化(动量发生变化)(1分),从而引起流体压强的突然变化、升压和降压交替进行的水力现象(1分),对于管壁和阀门的作用如锤击一样,也称为水锤(1分)。 10、明渠底坡:明渠渠底与水平线的夹角的正弦值,即流体质点的落差与相应渠长(质点 路径)的比值,i=sinθ=Δz/l。(或单位渠长上的渠底高差。) 11、流体质点:是研究流体宏观运动规律的最小基本单元,具有宏观足够小、微观足够大的性质。一方面,流体质点的尺度比起所研究问题的宏观尺度足够的小,从宏观上可以认为是一个几何上没有体积的点;另一方面,从微观上看,该特征体积远远大于流体分子间的间距,可容纳足够多的流体分子,个别分子运动参数的变化不影响这群分子运动参数的平均值,而不表现其随机性。 二、简答题(本大题共4小题,每小题5分,共20分) 1、简述毕托管测流量的原理(P39) 2、雷诺数及其物理意义。

计算流体力学教案

计算流体力学教案 Teaching plan of computational fluid mechanics

计算流体力学教案 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 一、流体地基本特征 1.物质地三态 在地球上,物质存在地主要形式有:固体、液体和气体。 流体和固体地区别:从力学分析地意义上看,在于它们对外力抵抗地能力不同。 固体:既能承受压力,也能承受拉力与抵抗拉伸变形。 流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。 液体和气体地区别:气体易于压缩;而液体难于压缩; 液体有一定地体积,存在一个自由液面;气体能充满任意形状地容器,无一定地体积,不存在自由液面。 液体和气体地共同点:两者均具有易流动性,即在任何 微小切应力作用下都会发生变形或流动,故二者统称为流体。 2.流体地连续介质模型

微观:流体是由大量做无规则运动地分子组成地,分子之间存在空隙,但在标准状况下,1cm3液体中含有3.3×1022个左右地分子,相邻分子间地距离约为3.1×10-8cm。1cm3气体中含有2.7×1019个左右地分子,相邻分子间地距离约为3.2×10-7cm。 宏观:考虑宏观特性,在流动空间和时间上所采用地一切特征尺度和特征时间都比分子距离和分子碰撞时间大得多。 (1)概念 连续介质(continuum/continuous medium):质点连续充满所占空间地流体或固体。 连续介质模型(continuum continuous medium model):把流体视为没有间隙地充满它所占据地整个空间地一种连续介质,且其所有地物理量都是空间坐标和时间地连续函数地一种假设模型:u =u(t,x,y,z)。 (2)优点 排除了分子运动地复杂性。物理量作为时空连续函数,则可以利用连续函数这一数学工具来研究问题。 3.流体地分类

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20 世纪30~40 年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943 年一直算到1947 年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学" 。 从20 世纪60 年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介 李志印 熊小辉 吴家鸣 (华南理工大学交通学院) 关键词 计算流体力学 数值计算 一 前 言 任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。 计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。 经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。 随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。 二 计算流体力学常用数值方法 流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区

计算流体力学过渡到编程的傻瓜入门教程

借宝地写几个小短文,介绍CFD的一些实际的入门知识。主要是因为这里支持Latex,写起来比较方便。 CFD,计算流体力学,是一个挺难的学科,涉及流体力学、数值分析和计算机算法,还有计算机图形学的一些知识。尤其是有关偏微分方程数值分析的东西,不是那么容易入门。大多数图书,片中数学原理而不重实际动手,因为作者都把读者当做已经掌握基础知识的科班学生了。所以数学基础不那么好的读者往往看得很吃力,看了还不知道怎么实现。本人当年虽说是学航天工程的,但是那时本科教育已经退步,基础的流体力学课被砍得只剩下一维气体动力学了,因此自学CFD的时候也是头晕眼花。不知道怎么实现,也很难找到教学代码——那时候网络还不发达,只在教研室的故纸堆里搜罗到一些完全没有注释,编程风格也不好的冗长代码,硬着头皮分析。后来网上淘到一些代码研读,结合书籍论文才慢慢入门。可以说中间没有老师教,后来赌博士为了混学分上过CFD专门课程,不过那时候我已经都掌握课堂上那些了。 回想自己入门艰辛,不免有一个想法——写点通俗易懂的CFD入门短文给师弟师妹们。本人不打算搞得很系统,而是希望能结合实际,阐明一些最基本的概念和手段,其中一些复杂的道理只是点到为止。目前也没有具体的计划,想到哪里写到哪里,因此可能会很零散。但是我争取让初学CFD 的人能够了解一些基本的东西,看过之后,会知道一个CFD代码怎么炼成的(这“炼”字好像很流行啊)。欢迎大家提出意见,这样我尽可能的可以追加一些修改和解释。

言归正传,第一部分,我打算介绍一个最基本的算例,一维激波管问题。说白了就是一根两端封闭的管子,中间有个隔板,隔板左边和右边的气体状态(密度、速度、压力)不一样,突然把隔板抽去,管子内面的气体怎么运动。这是个一维问题,被称作黎曼间断问题,好像是黎曼最初研究双曲微分方程的时候提出的一个问题,用一维无粘可压缩Euler方程就可以描述了。 这里 这个方程就是描述的气体密度、动量和能量随时间的变化()与它们各自的流量(密度流量,动量流量,能量流量 )随空间变化()的关系。 在CFD中通常把这个方程写成矢量形式 这里 进一步可以写成散度形式

计算流体力学习题-期中考试题题库2

1)把有量纲二维Euler方程组转换成无量纲形式。 解:二维Euler方程组如下所示: 引入参考量:自由来流密度,自由来流x方向速度,流场中物体特征长度,则有 将上面式子代入二维Euler方程组,则 2)求出定常不可压缩粘性流动方程组特征根,并分析它的数学性质和类型。 解:定常不可压缩粘性流动方程组为 设流函数为ψ,则有 定常不可压缩粘性流动方程组化简为 ☆ 根据☆方程组有 λ=±i 所以该方程组的数学性质和类型是确定的,它是椭圆形的。 3)对流方程的两步迎风差分格式为: 分析它的精度和稳定性。 解:设,则有 ☆ 根据Taylor展开公式有 据此有 代入☆式 下面分析稳定性 ☆ 代入☆式 放大因子 要使,则有 时两步迎风差分格式是稳定的。 4)的Lax-Wendroff一步差分格式的精度和稳定性。 解:根据Taylor展开公式有 据此有 下面分析稳定性 ☆ 代入☆式 放大因子

当时,,Lax-Wendroff一步差分格式是稳定的。 5)分析Burgers方程的Lax差分格式的精度和稳定性。 解:Lax差分格式为 下面分析稳定性 ☆ 代入☆式 放大因子 ☆☆ 令,求的极值 端点值时令, 综上所述有Lax差分格式稳定的条件是 6)分析的紧致格式的精度和稳定性 解:根据泰勒展开有 下面分析稳定性 放大因子 根据,求得 此时,紧致格式是稳定的。 7)分析差分格式的精度和稳定性。 解:根据泰勒展开有 分析稳定性 8)推导的蛙跳差分格式的修正方程。 解:根据泰勒展开 其修正方程为 9)对流方程的一阶迎风差分格式为: 用Taylor分析方法求出差分格式耗散项和色散项表达式。 解:根据泰勒展开有 10)数值计算实习 采用二阶迎风差分格式或Warming-Beam差分格式数值求解一位激波管问题,并和二阶MacCor mack差分格式计算结果进行比较。 解:

《计算流体力学》结课作业解读

2012~2013学年第1学期 12级研究生《计算流体力学》结课作业 适用专业:供热供燃气通风及空调工程 一、结合某一具体学科,阐述纯理论方法、实验方法及数值方法在科学研究中的各自优缺点,在此基础上论述数值模拟方法的发展前景。(不少于4千字)。 流体力学是力学的一个重要分支, 是研究流体(液体和气体)的力学运动规律及其应用的学科, 主要研究在各种力的作用下,流体本身的静止状态和运动状态特征,以及流体和相邻固体界面有相对运动时的相互作用和流动规律。在人们的生活和生产活动中随时随地都可遇到流体,流体力学与人类的日常生活和生产事业密切相关。按其研究内容的侧重点不同,分为理论流体力学和工程流体力学。其中理论流体力学主要采用严密的数学推理方法,力求准确性和严密性,工程流体力学侧重于解决工程实际中出现的问题,而不追求数学上的严密性。当然由于流体力学研究的复杂性,在一定程度上,两种方法都必须借助于实验研究,得出经验或半经验的公式。 在实际工程的诸多领域流体力学都起着十分重要的作用。如气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了流体力学自身的不断发展。1950年后,计算机的发展给予流体力学以极大的推动作用。 目前,解决流体力学问题的方法主要有实验方法、理论分析方法和数值方法三种。 实验方法 同物理学、化学等学科一样,流体力学的研究离不开实验,尤其是对新的流体运动现象的研究。实验能显示运动特点及其主要趋势,有助于形成概念,检验理论的正确性。二百年来流体力学发展史中每一项重大进展都离不开实验。流体力学实验研究方法有实物实验、比拟研究和模型研究三类:实物实验是用仪器实测原型系统的流动参数,适用于较小的原型;比拟实验是利用电场和磁场来模拟流场,实施起来限制条件较多;模型研究是实验流体力学最常用的研究方法。 实验研究的一般过程是:在相似理论的指导下建立实验模型,用流体测量技术测量流动参数,处理和分析实验数据。建立实验模型要求模型与原型满足相似理论,即满足两个流场

高等流体力学试题

1.简述流体力学有哪些研究方法和优缺点? 实验方法就是运用模型实验理论设计试验装置和流程,直接观察流动现象,测量流体的流动参数并加以分析和处理,然后从中得到流动规律。实验研究方法的优点:能够直接解决工程实际中较为复杂的流动问题,能够根据观察到的流动现象,发现新问题和新的原理,所得的结果可以作为检验其他方法的正确性和准确性。实验研究方法的缺点主要是对于不同的流动需要进行不同的实验,实验结果的普遍性稍差。 理论方法就是根据流动的物理模型和物理定律建立描写流体运动规律的封闭方程组以及相应初始条件和边界条件,运 用数学方法准确或近似地求解流场,揭示流动规律。理论方法的优点是:所得到的流动方程的解是精确解,可以明确地给出各个流动参数之间的函数关系。解析方法的缺点是:数学上的困难比较大,只能对少数比较简单的流动给出解析解,所能得到的解析解的数目是非常有限的。 数值方法要将流场按照一定的规则离散成若干个计算点,即网格节点;然后,将流动方程转化为关于各个节点上流动 参数的代数方程;最后,求解出各个节点上的流动参数。数值方法的优点是:可以求解解析方法无能为力的复杂流动。数值方法的缺点是:对于复杂而又缺乏完整数学模型的流动仍然无能为力,其结果仍然需要与实验研究结果进行对比和验证。 2.写出静止流体中的应力张量,解释其中非0项的意义. 无粘流体或静止流场中,由于不存在切向应力,即p ij =0(i ≠j ),此时有 P =00000 0xx yy zz p p p ??????????=000000p p p -????-????-??=-p 00000011????1?????? = -p I 式中I 为单位张量,p 为流体静压力。 流体力学中,常将应力张量表示为 p =-+P I T (2-9) 式中p 为静压力或平均压力,由于其作用方向与应力定义的方向相反,所以取负值;T 称为偏应力张量,即 T =xx xy xz yx yy yz zx zy zz τττττττττ?????????? (2-10) 偏应力张量的分量与应力张量各分量的关系为:i =j 时,p ij 为法向应力,τii = p ij - p ;当i ≠j 时p ij 为粘性剪切应力,τij =p ij 。τii =0的流体称为非弹性流体或纯粘流体,τii ≠0的流体称为粘弹性流体。 3.分析可压缩(不可压缩)流体和可压缩(不可压缩)流动的关系. 当气体速度流动较小(马赫数小于0.3)时,其密度变化不大,或者说对气流速度的变化不十分敏感,气体的压缩性没有表现出来。因此,在处理工程实际问题时,可以把低速气流看成是不可压缩流动,把气体可以看作是不可压缩流体。而当气体以较大的速度流动时,其密度要发生明显的变化,则此时气体的流动必须看成是可压缩流动。 流场任一点处的流速v 与该点(当地)气体的声速c 的比值,叫做该点处气流的马赫数,用符号Ma 表示: Ma /v c v == (4-20) 当气流速度小于当地声速时,即Ma<1时,这种气流叫做亚声速气流;当气流速度大于当地声速时,即Ma>l 时,这种气流称为超声速气流;当气流速度等于当地声速时,即Ma=l 时,这种气流称为声速气流。以后将会看到,超声速气流和亚声速气流所遵循的规律有着本质的不同。 马赫数与气流的压缩性有着直接的联系。由式(4-11)可得 所以有 222Ma d ρv dv dv ρc v v =-=-。 (4-21) 当Ma≤0.3时,dρ/ρ≤0.09dv /v 。由此可见,当速度变化一倍时,气体的密度仅仅改变9%以下,一般可以不考虑密度的变化,即认为气流是不可压缩的。反之,当Ma>0.3时,气流必须看成是可压缩的。 4.试解释为什么有时候飞机飞过我们头顶之后才能听见飞机的声音. 5.试分析绝能等熵条件下截面积变化对气流参数(v ,p ,ρ,T )的影响.

计算流体力学复习题

设流经某多孔介质的一维流动的控制方程为:0=+ dx dp c μμ;()0=dx F d μ其中,系C 与空间位置有关,F 为流道的有效截面积。对于下图所示的均匀网格,已知:2,38,200,4,5,2.0,25.031=?======x p p F F C C C B C B 。 以上各量的单位都是调的,试采用SIMPLE 算法确定C B u u p 和,2的值。 解:在一项无源的流动中药是连续性方程得到满足,不同几何位置上的流速必是同向的,故 u u 实际上是2u 项。在作数值计算时,变量的平方项要作线性化处理。为加速迭代收敛过 程,采用如下线性化方法:设0u 为上一次计算值或(初始假定值),u 为本次计算值,则: () 2 02022u u u u -? 此式的导出过程与导出Newton 迭代法求根公式相似。于是,对于B 、 C 界面有: x C u p p u u B B B B ?--=0120 * 22 (a ) x C u p p u u C C C C ?--=0 23 0* 22(b ) 而压力修正值2p 相应的速度修正值则为: x C u p u B B B ?'-= '02 2 (c ) x C u p u C C C ?'='0 22 (d ) 利用这些公式,即可进行关于2,p u u C B 以及的迭代计算。设,,120 p 15020 0===C B u u 则由式(a )与(b )得: 12.8335.3337.52150.580 --215u *B =+=??= 14.3336.8337.515 40.282215u *C =+=??+= 这两个速度值不满足连续方程。计算修正后的速度: 2 2 B *B B 06666.0833.1215 40.25p - 12.833u u u p '-=??'='+= 22 C *C C 08333.0333.141542.0p 14.333u u u p '+=??'+='+= 代入连续方程,得: ()()22 08333.03333.14406666.0833.125p p '+='- 833.66666.02 ='p 251.102='p C

高等流体力学

高等流体力学 第一章 流体力学的基本概念 连续介质:流体是由一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所 谓的连续介质。 流体质点:是指微小体积内所有流体分子的总和。 欧拉法质点加速度:时变加速度与位变加速度和 z u u y u u x u u t u dt du a x z x y x x x x x ??+??+??+??== 质点的随体导数:质点携带的物理量随时间的变化率称为质点的随体导数,用dt d 表示。在欧拉法描述中的任意物理量Q 的质点随体导数表述如下: x k k Q u t Q dt dQ ??+??= 式中Q 可以是标量、矢量、张量。质点的随体导数公式对任意物理量都成立,故将质点的 随体导数的运算符号表示如下: x k k u t dt d ??+??= 其中 t ?? 称为局部随体导数,x k k u ??称为对流随体导数,即在欧拉法描述的流动中,物理 量的质点随体导数等于局部随体导数与对流随体导数之和。 体积分的随体导数:质点携带的物理量随时间的变化率称为质点的随体导数。则在由流体质点组成的流动体积V 中标量函数Φ(x, t )随时间的变化率就是体积分的随导函数。 由两部分组成①函数Φ 对时间的偏导数沿体积V 的积分,是由标量场的非恒定性引起的。②函数Φ通过表面S 的通量。由体积V 的改变引起的。 ()dV divv dt d dV v div t dS u dV t dV dt d v v n s v v ?? ? ???Φ+Φ=??????Φ+?Φ?=Φ+?Φ?=Φ??????????????()dV adivv dt da dV av div t a dS au dV t a adV dt d v v n s v v ?? ????+=??????+??=+??=?????????????? 变形率张量: 11ε 12ε13ε D ij = 21ε 22ε 23ε 31ε 32ε 33ε

博士研究生入学考试《计算流体力学》考试大纲

博士研究生入学考试《计算流体力学》考试大纲 本《计算流体力学》考试大纲适用于动力工程及工程热物理一级学科流体机械及工程专业博士研究生入学考试。“计算流体力学”是流体力学领域的重要技术之一,使用数值方法在计算机中对流体力学的控制方程进行求解,从而可预测流场的流动。要求考生掌握计算流体力学的基本原理和方法论,掌握流体力学的控制方程组,掌握基本的数值方法,能够对物理问题进行数学建模,选用合适的CFD方法进行编程求解,具备综合运用所学知识分析和解决问题的能力。 一、考试基本要求 1.熟练掌握纳维-斯托克斯(Navier-Stokes)控制方程组的基本概念及推导; 2.掌握偏微分方程的分类及不同类型的一般性质; 3.掌握方程离散化的基本方法,包括显式法和隐式法,及误差与稳定性分析; 4.掌握偏微分方程的数值解法。 5.能够对不可压缩低速流物理问题进行分析建模和数值求解。 二、考试方式与时间 博士研究生入学《计算流体力学》考试为笔试,闭卷考试,考试时间为180分钟。 三、考试主要内容和要求 (一)流体力学方程及模型方程 1、考试内容 (1)流体力学的控制方程:连续性方程、动量方程、能量方程;(2)物质导数;(3)速度散度;(4)物理边界条件。 2、考试要求 灵活运用空间位置固定的无穷小微团模型或随流体运动的无穷小微团模型进行控制方程的推导,了解式中各项的意义,掌握微分形式中的守恒形式和非守恒形式之间的转换。 (二)偏微分方程的数学性质对CFD的影响

1、考试内容 (1)偏微分方程的分类:双曲型、抛物型、椭圆型;(2)确定偏微分方程的类型;(3)不同类型偏微分方程的一般性质 2、考试要求 能够确定偏微分方程的类型并分析不同类型偏微分方程的一般性质 (三)偏微分方程的数值解法 1、考试内容 (1)偏微分方程的离散化方法:有限差分法、有限元方法;(2)误差与稳定性分析2、考试要求 掌握有限差分法、有限元方法,能够推导各阶精度的有限差分表达式,并对差分表达式进行稳定性分析。 (四)计算流体力学的应用 1、考试要求 根据具体的不可压缩低速流物理问题,给出相应的控制方程,边界条件,初始条件,选用合适的CFD方法对问题进行数值求解。 四、试卷题型及比例 ●试题包括选择题、推导分析题和计算应用题。 ●题型(大约比例):选择题占10%、推导分析题占50%、计算应用题占40%。 五、参考教材 ●《计算流体力学》,傅德熏、马延文著,高等教育出版社 ●《计算流体力学基础及其应用》,John D. Anderson 著,吴颂平、刘赵淼译

计算流体力学中有限差分法、有限体积法和有限元法的区别

有限元法,有限差分法和有限体积法的区别 1. FDM 1.1 概念 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 1.2 差分格式 (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 1.3 构造差分的方法 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶

中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2. FEM 2.1 概述 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 2.2 原理 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。(1)从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法;(2)从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格;(3)从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。 不同的组合同样构成不同的有限元计算格式。

高等流体力学考试大纲

《高等流体力学》考试大纲 一、考试性质 《高等流体力学》是我校相关专业博士入学专业基础课考试科目。 二、考试形式与试卷结构 1、答卷方式:闭卷,笔试 2、答题时间;180分钟 3、题型比例 概念20% 计算与应用80% 4、参考书目 《高等流体力学》高学平,天津大学出版社,2005. 《高等工程流体力学》张鸣远等,西安交通大学出版社,2006. 三、考试要点 1、流体力学的基本概念 连续介质、欧拉法质点加速度、质点随体导数、体积分的随体导数、变形率张量、旋转角速度、判断有旋流与无旋流、涡量与速度环量的关系、应力张量的概念(包括切应力的特性、压应力的特性)、牛顿流体的本构方程(本构方程的概念、切应力和法向应力与变形的关系)。 2、流体运动的基本方程 微分形式的连续方程的表达形式、不可压缩流体的确切定义、理解其含义。N-S方程的各种表示形式、流体的能量包括哪几种形式,

并对各种形式进行解释,写出单位质量流体能量的表达式、流体运动微分形式的基本方程组有哪些方程组成,通常有几个未知量,方程组是否封闭、对于不可压缩流体,如何求解速度场、压强场以及温度场,说明其求解步骤。 3、势流运动 势流运动控制方程及求解步骤;势流求解常用的方法有哪些。速度势函数与流函数;复势与复速度;恒定平面势流的解析方法有哪几种途径;保角变换法的思路。 4、粘性流体运动 基本方程及求解途径;黏性流体运动的基本性质;黏性流体运动的解析解(如两平行板间的层流、普阿塞流的流速分布的推导)、小雷诺数流动近似解的思路;边界层的概念;边界层厚度(名义厚度、位移厚度);边界层方程的相似性解的概念;边界层的分离现象。5、紊流运动 紊流的特征及分类;壁面剪切紊流的发生过程及紊流结构;时间平均法和系综平均法的概念。紊流运动方程—雷诺方程的推导思路,雷诺方程的形式及与N-S方程的区别,雷诺应力项的意义。紊流模型的用途,紊流模型通常有哪几类(零方程模型、一方程模型、二方程模型、其他模型);紊流动能k、能量耗散率ε。 6、涡旋运动 涡旋的运动学性质、涡旋运动的基本方程;涡旋的形成。

流体力学考试复习资料考点(1)

一、流体力学及其研究对象 流体:液体和气体的总称。 流体力学:是研究流体的科学,即根据理论力学的普遍原理,借助大量的实际资料,运用数学和实验方法来研究流体的平衡和运动规律及其实际应用的一门科学。 流体力学研究的对象:液体和气体 流 二、流体的力学特性 1、流体与固体的区别主要在于受剪应力后的表现有很大的差异。 固体--能承受剪应力、压应力、张应力,没有流动性。 流体--只能承受压应力,不能承受拉力和剪力,否则就会变形流动,即流体具有流动性。 2、液体与气体的主要差别在于受压后的表现上的差异。

液体:受压后体积变化很小,常称不可压缩流体;液体的形状随容器的形状而变,但其体积不变。 气体:受压后体积变化很大,常称可压缩流体;气体的形状和体积都随容器而变。 注:气体的体积变化小于原体积的20%时,可近似看作不可压缩流体。 1.1.1流体的密度 1、流体密度的定义及计算 定义:单位体积流体的质量,以ρ表示,单位为kg/m3 (1)均质流体: 标态(2)混合流体: 混合气体: 混合液体: 2、流体的密度与温度、压力的关系 (1)液体:工程上,液体的密度看作与温度、压力无关。 (2)气体:与温度和压力有关。

理想气体: 或 工业窑炉:P=P0 分析:t↑ρ↓;t↓ρ↑ 1.1.2流体的连续性 流体的连续性:流体看成是由大量的一个一个的连续近质点组成的连续的介质,每个质点是一个含有大量分子的集团,质点之间没有空隙。质点尺寸:大于分子平均自由程的100倍。 连续性假设带来的方便: (1)它使我们不考虑复杂的微观分子运动,只考虑在外力作用下的宏观机械运动。 (2)能运用数学分析的连续函数工具。 【例题】已知烟气的体积组成百分组成为:H2O12%,CO218%,N270%,求此烟气标态在及200℃的密度。

流体力学试卷及答案期末考试

流体力学试卷及答案一 一、判断题 1、 根据牛顿内摩擦定律,当流体流动时,流体内部内摩擦力大小与该处的流速大小成正比。 2、 一个接触液体的平面壁上形心处的水静压强正好等于整个受压壁面上所有各点水静压强的平均 值。 3、 流体流动时,只有当流速大小发生改变的情况下才有动量的变化。 4、 在相同条件下,管嘴出流流量系数大于孔口出流流量系数。 5、 稳定(定常)流一定是缓变流动。 6、 水击产生的根本原因是液体具有粘性。 7、 长管是指运算过程中流速水头不能略去的流动管路。 8、 所谓水力光滑管是指内壁面粗糙度很小的管道。 9、 外径为D ,内径为d 的环形过流有效断面,其水力半径为 4 d D -。 10、 凡是满管流流动,任何断面上的压强均大于大气的压强。 二、填空题 1、某输水安装的文丘利管流量计,当其汞-水压差计上读数cm h 4=?,通过的流量为s L /2,分析当汞水压差计读数cm h 9=?,通过流量为 L/s 。 2、运动粘度与动力粘度的关系是 ,其国际单位是 。 3、因次分析的基本原理是: ;具体计算方法分为两种 。 4、断面平均流速V 与实际流速u 的区别是 。 5、实际流体总流的伯诺利方程表达式为 , 其适用条件是 。 6、泵的扬程H 是指 。 7、稳定流的动量方程表达式为 。 8、计算水头损失的公式为 与 。 9、牛顿内摩擦定律的表达式 ,其适用范围是 。 10、压力中心是指 。 三、简答题 1、 稳定流动与不稳定流动。 2、 产生流动阻力的原因。 3、 串联管路的水力特性。 4、 如何区分水力光滑管和水力粗糙管,两者是否固定不变? 5、 静压强的两个特性。 6、 连续介质假设的内容。 7、 实际流体总流的伯诺利方程表达式及其适用条件。 8、 因次分析方法的基本原理。 9、 欧拉数的定义式及物理意义。 10、 压力管路的定义。 11、 长管计算的第一类问题。

高等工程流体力学

高等工程流体力学 粘性流动 康顺 华北电力大学能源与动力工程系学院 Kangs@https://www.doczj.com/doc/6d6930829.html,

内容提纲 ?边界层及其方程 ?层流边界层流动转捩 ?湍流边界层结构 ?流动分离、二次流动与旋涡 能源动力领域流动问题的主要特征 ?全三维 ?非定常 ?粘性 ?高雷诺数,边界层 ?边界层:层流、转捩、湍流(紊流),分离流动,旋涡运动 叶轮机械(透平和压气机等)大多由单个或多个级组成。每个级含有一 排静子叶片列和一排转子叶片列。在级内的气流场中,一般至少有以下 几种流动现象发生:1、前缘马蹄涡;2、通道涡;3、顶部间隙涡;4、 边界层转捩;5、叶片尾迹;6、旋涡、尾迹等与叶片列周期性非定常相 互作用。 ?激波、激波与边界层相互作用

边界层流动 边界层 边界层概念:粘性很小的流体以大雷诺数运动时,在大部分流场上可以略去粘性的作用;但在物面附近的很薄的一层流体内必须考虑粘性作用。这一薄层流体称为边界层。 平板边界层示意图有边界的流动图谱 如右上图所示:流动分为三个区:边界层,尾迹区,位流区(外部势流区) 二维平板的边界层微分方程 设直匀流以零迎角平行流过一块长度为的平板,如左下图所示,人为规定,当某个y处的速度达到层外自由流的99%时,这一点到物体表面的距离(即y)称为边界层在改点的厚度,记为。显然,边界层的厚度是与X有关的,所以可以写成。 平板边界层 边界层的厚度很小,满足此关系式: 在忽略质量力的前提下,粘性平面不可压流的运动方程加上连续方程是: 用边界层条件式上式,y的数值限制在边界层之内,即 υ ∞l δδ(x) δ(x)l δ(x)<< 22 22 22 22 1 () 1 () u u u p u u u t x y x x y p u t x y y x y u x y υν ρ υυυυυ υν ρ υ ? ?????? ++=-++? ??????? ? ??????? ++=-++? ??????? ? ?? +=? ???? l δ(x)<<0yδ ≤≤

高等流体力学复习资料

扩散:指流体在没有对流混合情况下,流体由分子的随机运动引起的质量传递的一种性质。 本构方程:是反应物体的外部效应与内部结构之间关系的方程。对动力的粘性流体而言,外部黏性应力与内部变形速度之间的关系成为本构方程。 变形速度张量:[]? ???? ?????=zz zy zx yz yy yx xz xy xx s εεεεεεεεε,,,,,,,其中,z y v x zz yy xx ??= ??=??=ω εεμε,,, ???? ????+??==x v y yx xy μεε21,??? ????+??==z x zx xz μωεε21,??? ? ????+??==y z v zy yz ωεε21 雷诺应力:在不可压缩流体的雷诺方程中,j i -μμρ称为雷诺应力(i ,j>1,2,3)当i=j 时为法相雷诺应力,不等时称为均向雷诺应力。 镜像法:是确定干扰后流场的方法之一,是一种特别的奇点法。 粘性:流体微团发生相对滑移时产生切向阻力的性质。 不可压缩流体: 0=Dt D ρ 的流体称为不可压缩流体。不可压缩均质流体:C =ρ 可压缩流体:密度随温度和压强变化的流体称为可压缩流体。 紊流:是一种随机的三维非定常有旋流动。紊流的基本特征:1,不规则流动状态;2,参数随时间空间随机变化;3,空间分布大小形状各不相同漩涡;4,具有瞬息万变的流动特征;5,流动参数符合概率规律;6,相邻参数有关联。 流体:通常说能流动的物质为流体,液体和气体易流动,我们把液体和气体称之为流体。严格地说:在任何微小剪切力的持续作用下,能够连续不断变形的物质称为流体,流体显然不能保持一定的形状,即具有流动性。 耗散函数:i i ij x p ??μ' 称为耗散函数Γ,Γ表示单位时间内单位体积流体由机械能耗散成热能 i i ij ij i i ij x v div x p ????????+??? ??-=??=Γμμεδμμμ232'' 应力张量:[]??? ? ??????=zz zy zx yz yy yx xz xy xx p p p p p p p p p p ,,,,,,称为应力张量,它是描述运动黏性流体内任一点应力 状态的物理量。

相关主题
文本预览
相关文档 最新文档