当前位置:文档之家› 实时动态(RTK)测量中坐标转换参数计算的几种方法

实时动态(RTK)测量中坐标转换参数计算的几种方法

实时动态(RTK)测量中坐标转换参数计算的几种方法
实时动态(RTK)测量中坐标转换参数计算的几种方法

实时动态(RTK)测量中坐标转换参数计算的几种方法

摘要:RTK所接收到的数据是WGS-84坐标系下的数据,而我们使用的坐标系一般是1954北京坐标系、1980年国家大地坐标系以及一些城市工矿使用的独立坐标,因此,需要将RTK接收到的WGS-84坐标转换成我们工程所使用的坐标系坐标。为此,如何计算这些坐标系统转换参数成为RTK使用过程中的一个非常重要的环节。

关键词:GPS-RTK测量坐标转换

1、RTK技术概述

实时动态(RTK)测量系统,是GPS测量技术与数据传输技术的结合,是GPS测量技术中的一个新突破。GPS测量中,静态、快速静态、动态测量都需要事后进行解算处理才能获得待测点的坐标,而RTK测量实时差分定位是一种能够在野外实时得到厘米级精度的测点坐标。

RTK实时测量技术具有全天候、作业效率高、定位精度高、操作简便等优点,因而得到了广泛的应用,而且技术设备越来越先进与方便。RTK测量系统一般由以下三部分组成:GPS接收设备、数据传输设备、软件系统。数据传输系统由基准站的发射电台与流动站的接收电台组成,它是实现实时动态测量的关键设备。

2、RTK实时测量坐标参数转换

RTK所接收到的数据是WGS-84坐标系下的数据,而我们一般使用的坐标系是1954北京坐标系、1980年国家大地坐标系以及一些城市工矿使用的独立坐标,因此,需要将RTK接收到的WGS-84坐标转换成我们使用的1954北京坐标系坐标或1980年国家大地坐标系坐标或城市工矿使用的独立坐标系坐标。为此,如何计算坐标系统转换参数成为RTK使用过程中的很重要的一个环节。

根据RTK的原理,参考站和流动站直接采集的都为WGS84坐标,参考站一般以一个WGS84坐标作为起始值来发射,实时地计算点位误差并由电台发射出去,流动站同步接收WGS84坐标并通过电台来接收参考站的数据,条件满足后就可达到固定解,流动站就可实时得到高精度的相对于参考站的WGS84三维坐标,这样就保证了参考站与流动站之间的测量精度。如果要符合到已有的已知点上,需要把原坐标系统和现有坐标系统之间的转换参数求出。

3、三参数转换

各地转换参数及转换参数的计算方法

坐标转换 一、中央经线(LONGITUDEORIGIN) 在坐标转换中,首先需要设置测区的中央经线,以下是新疆各地州的中央经线,仅供参考。 乌鲁木齐E87度 吐鲁番E87度 鄯善E93度 哈密E93度 阿勒泰E87度 塔城E81度 克拉玛依E87度 奎屯E87度 博乐E81度 伊犁E81度 阿克苏E81度 库尔勒E87度 喀什E75度 和田E81度 二、投影比例(SCALE) 系统一般默认值时+0.9996。将改值改为1 三、东西偏差(ALSEE) 系统一般默认值:+1000000.0m。将该值改为:+500000.0m 四、南北偏差(FALSEN) 系统一般默认值:+100000.0m。将该值改为:+0.0m 五、dx\dy\dz\da\df DX、DY、DZ是坐标在三个方向的平移量,原则上在不同的地区,值是不一样的。 六、下面用软件COORD 进行转换!!! 以下面这个实例来求解转换参数:某林内有一个北京-54坐标系下的已知点,中央经线E117°,属于3度带,其坐标为X=4426818.5,Y=456613.7,h=63.9,其对应的WGS84坐标系统下的坐标为B=39°58′27.120″N,L=116°29′32.874″E,H=58。.由这两套坐标进行系统坐标转换三参数Dx、Dy、Dz求解。 打开COORD转换软件,如图:

1、请按步骤操作,点击坐标转换,选择投影设置。测量地区属于高斯投影3度带的选择高斯投影3度带,测量地区属于高斯投影6度带的选择高斯投影6度带,中央子午线根据所在地区中央经线填入。由实例填入中央经线117度,高斯投影3度带。 图2 2、点击坐标转换,选择计算三参数。此时,需要到当地测绘部门去咨询当地的一个已知点的大地坐标和平面坐标。将大地坐标的三个参数和平面坐标的三个参数填入。左边椭球基准,选择WGS-84坐标系。右边根据用户要求可选择北京-54坐标系或者国家-80坐标系,点击确定。 如图3,由实例,我们填入大地坐标和平面坐标 图3

空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类 正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。 在测量中常用的坐标系有以下几种: 一、空间直角坐标系 空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。空间直角坐标系可用图2-3来表示: 图2-3 空间直角坐标系 二、空间大地坐标系 空间大地坐标系是采用大地经、纬度和大地高来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。空间大地坐标系可用图2-4来表示:

图2-4空间大地坐标系 三、平面直角坐标系 平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。在我国采用的是高斯-克吕格投影也称为高斯投影。UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。 高斯投影是一种横轴、椭圆柱面、等角投影。从几何意义上讲,是一种横轴椭圆柱正切投影。如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。 高斯投影满足以下两个条件: 1、 它是正形投影; 2、 中央子午线投影后应为x 轴,且长度保持不变。 将中央子午线东西各一定经差(一般为6度或3度)范围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下图2-5右侧所示。 图2-5 高斯投影 x 方向指北,y 方向指东。 可见,高斯投影存在长度变形,为使其在测图和用图时影响很小,应相隔一定的地区,另立中央子午线,采取分带投影的办法。我国国家测量规定采用六度带和三度带两种分带方法。六度带和三度带与中央子午线存在如下关系: 366 N L =中; n L 33=中 其中,N 、n 分别为6度带和3度带的带号。

手持GPS参数设置及全国各地坐标转换参数

如何设置手持GPS相关参数及全国各地坐标转换参数一、如何设置手持GPS相关参数 (一)手持GPS的主要功能 手持GPS,指全球移动定位系统,是以移动互联网为支撑、以GPS 智能手机为终端的GIS系统,是继桌面Gis、WebGis之后又一新的技术热点。目前功能最强的手持GPS,其集成GPRS通讯、蓝牙技术、数码相机、麦克风、海量数据存储、USB/RS232端口于一身,能全面满足您的使用需求。 主要功能:移动GIS数据采集、野外制图、航点存储坐标、计算长度、面积角度(测量经纬度,海拔高度)等各种野外数据测量;有些具有双坐标系一键转换功能;有些内置全国交通详图,配各地区地理详图,详细至乡镇村落,可升级细化。 (二)手持GPS的技术参数 因为GPS卫星星历是以WGS84大地坐标系为根据建立的,手持GPS单点定位的坐标属于WGS84大地坐标系。WGS84坐标系所采用的椭球基本常数为:地球长半轴a=6378137m;扁率F=1/298.257223563。 常用的北京54、西安80及国家2000公里网坐标系,属于平面高斯投影坐标系统。北京54坐标系,采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:地球长半轴a=6378245m;扁率F=1

/298.2。西安80坐标系,其椭球的参数为:地球长半轴 a=6378140m;扁率F=1/298.257。国家2000坐标系,其椭球的参数为:地球长半轴a=6378137m;扁率F=1/298.298.257222101。 (三)手持GPS的参数设置 要想测量点位的北京54、西安80及国家2000公里网高精度坐标数据,必须学习坐标转换的基础知识,并分别科学设置手持GPS的各项参数。 首先,在手持式GPS接收机应用的区域内(该区域不宜过大),从当地测绘部门收集1至两个已知点的北京54、西安80或国家2000坐标系统的坐标值;然后在对应的点位上读取WGS84坐标系的坐标值;之后采用《万能坐标转换》软件,可计算出DX、DY、DZ的值。 将计算出的DX、DY、DZ三个参数与DA、DF、中央经线、投影比例、东西偏差、南北偏差等六个常数值输入GPS接收机。将GPS接收机的网格转换为“UserGrid”格式,实际测量已知点的公里网纵、横坐标值,并与对应的公里网纵、横坐标已知值进行比较,二者相差较大时要重新计算或查找出现问题的原因。详细过程可查看《万能坐标转换》软件的【手持GPS参数设置】界面。 (四)自定义坐标系统(User)投影参数的确定

计算转换参数方法

计算转换参数方法 一、知道基准站的北京54坐标x,y 如果是这种情况,那么直接可以用软件计算得到基准站的54经纬度,直接用这个坐标设置基准站就可以了,在软件里面四个转换参数都为默认值:dx,dy,scale,rotation 举例:54坐标x = 3391531.060 y = 408652.459 45.917 在菜单坐标转换里面选择投影设置,如下图1: 在这里选择投影方式和设置中央子午线,一般情况都是3度带和6度带。 然后如下图进行经纬度转换,如图2: 图中两边的椭球基准都选择北京-54坐标系,左边在“选择源坐标类型”里面选择“平面坐标”,右边的“选择目标坐标类型”中选择“大地坐标”。 这里计算的经纬度就是使用基准站的54坐标转换得到的。我们就可以把这个坐标设置到基准站的GPS中去。 在海测软件里面我们也只要设置中央子午线就可以了。4个地方转换参数都是默认值,不用

设置。 二、知道两个wgs84坐标和两个地方坐标,其中一个是基准站的坐标 这时候,我们可以很方便的设置基准站,但是在流动站的船上,我们必须设置相关的坐标转换参数。现在我们在软件里面设计了输入地方坐标转换参数的对话框。主要的工作就是要求出这四个转换参数。需要有几个步骤,但是对于一个工程来说,只要在工作前花半个小时就可以了。具体步骤和图示如下: 1、84经纬度转换成54投影坐标 如图1设置投影带和中央子午线 2、把两个点的经纬度转换成54投影坐标,如下图 如上图的设置,在左边的椭球基准选择WGS-84坐标系,右边也是相同的坐标系。举例已知的两组数据如下: 点一 B = 030:38:26.645 L = 122:02:49.556 地方坐标 x’ = -65839.283 y’ = 55680.371 点二 B = 030:37:59.928 L = 122:03:07.031 地方坐标 x’ = -66659.526 y’ = 56150.074 分别得到高斯平面投影坐标 点一 x = 3391469.448 y = 408651.927 点二 x = 3390704.294

参数估计习题参考答案2014

参数估计习题参考答案 班级: 姓名: 学号: 得分 一、单项选择题: 1. 区间估计表明的是一个 ( B ) (A )绝对可靠的范围 (B )可能的范围 (C )绝对不可靠的范围 (D )不可能的范围 2. 甲乙是两个无偏估计量,如果甲估计量的方差小于乙估计量的方差,则称 ( D ) (A )甲是充分估计量 (B )甲乙一样有效 (C )乙比甲有效 (D )甲比乙有效 3. 设总体服从正态分布,方差未知,在样本容量和置信度保持不变的情形下,根据不同的样本值得到总体均值的置信区间长度将 ( D ) (A )增加 (B )不变 (C )减少 (D )以上都对 4.设容量为16人的简单随机样本,平均完成工作时间13分钟,总体服从正态分布且标准差为3分钟。若想对完成工作所需时间构造一个90%置信区间,则 ( A ) A.应用标准正态概率表查出z 值 B.应用t-分布表查出t 值 C.应用二项分布表查出p 值 D.应用泊松分布表查出λ值 5. 100(1-α)%是 ( C ) A.置信限 B.置信区间 C.置信度 D.可靠因素 6.参数估计的类型有 ( D ) (A )点估计和无偏估计(B )无偏估计和区间估计 (C )点估计和有效估计(D )点估计和区间估计 7.在其他条件不变的情况下,提高抽样估计的可靠程度,其精度将 (C ) (A )增加 (B )不变 (C )减少 (D )以上都对 二、计算分析题 1、12,, ,n X X X 是总体为2 (, ) N μσ的简单随机样本.记1 1n i i X X n ==∑,2 21 1()1n i i S X X n ==--∑,221T X S n =-.请证明 T 是2 μ的无偏估计量. 解 (I) 因为2 (,)X N μσ,所以2 (, )X N n σμ,从而2 ,E X DX n σμ= = . 因为 221()()E T E X S n =-221 ()E X E S n =- 221()()DX E X E S n =+-222211 n n σμσμ=+-= 所以,T 是2μ的无偏估计 设总体X ~N (μ,σ 2 ),X 1,X 1,…,X n 是来自X 的一个样本。试确定常数c 使2 1 1 21 )(σX X c n i i i 为∑-=+-的无偏估计。 解:由于

坐标转换之计算公式

坐标转换之计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ???+-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半 径,f 椭球扁率,W 为第一辅助系数 a b a e 2 2-= 或 f f e 1*2-= W a N B W e =-=22sin *1( 3 参心空间直角坐标转换参心大地坐标

[]N B Y X H H e N Y X H N Z B X Y L -+=+-++==cos ))1(**)()(*arctan( )arctan(2 2222 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工 程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 5 2224253 2236 4254 42232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24 cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++=) 3、高斯投影反算公式:

大地坐标转换成施工坐标公式

大地(高斯平面)坐标系工程坐标系转换大地坐标系--->工程坐标系 ======================== 待转换点为P,大地坐标为:Xp、Yp 工程坐标系原点o: 大地坐标:Xo、Yo 工程坐标:xo、yo 工程坐标系x轴之大地方位角:a dX=Xp-Xo dY=Yp-Yo P点转换后之工程坐标为xp、yp: xp=dX*COS(a)+dY*SIN(a)+xo yp=-dX*SIN(a)+dY*COS(a)+yo 工程坐标系--->大地坐标系 ======================== 待转换点为P,工程坐标为:xp、yp 工程坐标系原点o: 大地坐标:Xo、Yo 工程坐标:xo、yo 工程坐标系x轴之大地方位角:a dx=xp-xo dy=yp-yo P点转换后之工程坐标为xp、yp: xp=Xo+dx*COS(a)-dy*SIN(a)

yp=Yo+dx*SIN(a)+dy*COS(a) 坐标方位角计算程序 置镜点坐标:ZX ZY 后视点坐标:HX HY 方位角:W 两点间距离: S Lb1 0← {A, B, C, D}← A〝ZX=〞:B〝ZY=〞:C〝HX=〞:D 〝HY=〞:W=tg1((D-B)÷(C-A)):(D-B)>0=>(C-A)>0=>W=W:∟∟(D-B)>0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)>0=>W=360+W∟∟W=W◢ S=√((D-B)2+(C-A)2) ◢ Goto 0← CASIO fx-4500p坐标计算程序 根据坐标计算方位角 W=W+360△W:“ALF(1~2)=”L1 A“X1=”:B“Y1=”:Pol(C“X2”-A,D“Y2”-B:“S=”▲W<0 直线段坐标计算 L1 X“X(0)”:Y“Y(0)”:S“S(0)”:A“ALF” L2 Lb1 2 L3 {L}:L“LX”

手持GPS全参数设置及全国各地坐标转换全参数.docx

实用标准文档 如何设置手持 GPS 相关参数及全国各地坐标转换参数 一、如何设置手持GPS 相关参数 (一)手持 GPS的主要功能 手持 GPS,指全球移动定位系统,是以移动互联网为支撑、以GPS智能手机为终端的GIS系统,是继桌面 Gis、WebGis 之后又一新的技术热点。目前功能最强的手持GPS,其集成 GPRS通讯、蓝牙技术、数码相机、麦克风、海量数据存储、 USB/RS232 端口于一身,能全面满足您的使用需求。 主要功能:移动 GIS数据采集、野外制图、航点存储坐标、计算长度、面积角度(测 量经纬度,海拔高度)等各种野外数据测量;有些具有双坐标系一键转换功能;有些内置 全国交通详图,配各地区地理详图,详细至乡镇村落,可升级细化。 (二)手持 GPS的技术参数 因为 GPS卫星星历是以 WGS84 大地坐标系为根据建立的,手持 GPS单点定位 的坐标属于 WGS84 大地坐标系。 WGS84 坐标系所采用的椭球基本常数为:地球长半轴a=6378137m ;扁率 F=1 /298.257223563 。 常用的北京 54 、西安 80 及国家 2000 公里网坐标系,属于平面高斯投影坐标系统。北京 54 坐标系,采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:地球长半 轴a=6378245m;扁率F=1/298.2。西安80坐标系,其椭球的参数为:地球长半 轴a=6378140m;扁率F=1/298.257。国家2000坐标系,其椭球的参数为:地球长半轴 a=6378137m;扁率F=1/298. 257222101。 (三)手持 GPS的参数设置

要想测量点位的北京 54 、西安 80 及国家 2000 公里网高精度坐标数据,必须学 习坐标转换的基础知识,并分别科学设置手持 GPS的各项参数。 首先,在手持式 GPS接收机应用的区域内 (该区域不宜过大 ),从当地测绘部门收 集 1至两个已知点的北京 54 、西安 80 或国家 2000 坐标系统的坐标值;然后在对应的 点位上读取WGS84 坐标系的坐标值;之后采用《万能坐标转换》软件,可计算出DX 、DY、 DZ 的值。 将计算出的 DX 、 DY、 DZ 三个参数与 DA 、DF、中央经线、投影比例、东西偏差、南北偏差等六个常数值输入GPS接收机。将 GPS接收机的网格转换为 “UserGrid ”格式,实际测量已知点的公里网纵、横坐标值,并与对应的公里网纵、横坐标已知值进行比较,二者相差较大时要重新计算或查找出现问题的原因。详细 过程可查看《万能坐标转换》软件的【手持GPS参数设置】界面。 (四)自定义坐标系统(User )投影参数的确定 1、自己观测计算 新机拿到手之后,供应商都给提供一个投影参数,这对于要求不高的一般用户 来说基本可以满足工作需要,而对于一些专业用户来说,就要自己来测算参数。一 般型号的导航型手持GPS自定义坐标系统( User )投影参数设置界面都提供了五个 变量(△X、△Y、△Z、△A 、△F)需要设置,而实际工作中,后两个参数(△A 、△F)针对某一坐标系统来说为固定参数(北京 54 坐标系△A=-108 、△F=0.0000005 ),无需改动,需要自己测算的参数主要为前三个(△ X、△Y、△Z),一般称为三参数。 2、经验坐标

X射线机暴光参数计算法

X射线机曝光参数计算法 基本参数确定 一、以透照厚度为准:单壁单影=T;双壁单影或双壁双影=2T 1、≤10mm时,1mm相当于5KV; 2、10~20mm时,1mm相当于6.2KV; 3、21~30 mm时,1mm相当于9KV; 4、31~40 mm时,1mm相当于12KV; 二、焦距 焦距每增加或者减少100mm,电压增大或者减少10KV。 三、时间 1分钟=25KV 三、X射线机曝光参数为(基数): 透照厚度T=8mm时,电压170KV,时间为1分钟。 四、X射线机焦点到窗口的距离 XXQ 2005 120 mm XXQ 2505 150 mm XXQ 3005 170 mm 五、计算方法 1、当透照厚度增加或者减少1 mm时,电压变化按(一)中各变化范围执行; 2、当焦距每增加或者减少100mm时,压变化按(二)中执行; 3、时间每增加或者减少1分钟,电压增加或者减少25KV; 例:计算φ219*14管焊口的曝光 第一步:确定所用X射线机型号,XXQ 2505或者XXQ 3005型; 第二步:计算焦距-----219+150=369 mm或者219+170=389 mm 第三步:确定焦距和电压变化量,我们一般以X射线机曝光正常基数为准,即600 mm;这里φ219*14的焦距为219+150=369 mm或者219+170=389 mm,比基数600 mm缩短231 mm或者211 mm,那么电压就应该减去23.1KV或者21.1KV。 第四步:计算透照厚度变化时,电压变化量,我们基本厚度是8 mm,现在透照厚度是 14×2=28 mm。这样比基本厚度8 mm增加20mm,根据(一)中4参照,电压补偿量为: 20 mm×8KV=160KV。因为基数是170KV,故正常曝光参数为:170KV+160KV-23.1KV=306.9KV 或者170KV+160KV-21.1KV=308.9KV,时间1分钟。 第五步:因为1分钟=25KV,在此基础上计算XXQ 2505或者XXQ 3005型的曝光参数: 1、XXQ 2505:用240KV拍片,其时间为(306.9 KV-240 KV)÷25KV/分钟=2.68 分钟;这里2.68分钟是在原来1分钟基础需要补偿的2.68分钟,故还应加上基础1分钟, 即正常曝光时间为2.68分钟+1分钟≈4分钟

参数估计习题参考答案

参数估计习题参考答案

参数估计习题参考答案 班级:姓名:学号:得分 一、单项选择题: 1、关于样本平均数和总体平均数的说法,下列正确的是( B ) (A)前者是一个确定值,后者是随机变量(B)前者是随机变量,后者是一个确定值 (C)两者都是随机变量(D)两者都是确定值 2、通常所说的大样本是指样本容量( A ) (A)大于等于30 (B)小于30 (C)大于等于10 (D)小于10 3、从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,当样本容量增大时,样本均值的标准差将( B ) (A)增加(B)减小(C)不变(D)无法确定 4、某班级学生的年龄是右偏的,均值为20岁,标准差

为 4.45.如果采用重复抽样的方法从该班抽取容量为100的样本,那么样本均值的分布为( A ) (A)均值为20,标准差为0.445的正态分布(B)均值为20,标准差为4.45的正态分布 (C)均值为20,标准差为0.445的右偏分布(D)均值为20,标准差为4.45的右偏分布 5. 区间估计表明的是一个( B ) (A)绝对可靠的范围(B)可能的范围(C)绝对不可靠的范围(D)不可能的范围 6. 在其他条件不变的情形下,未知参数的1-α置信区间,( A ) A. α越大长度越小 B. α越大长度越大 C. α越小长度越小 D. α与长度没有关系 7. 甲乙是两个无偏估计量,如果甲估计量的方差小于乙估计量的方差,则称( D ) (A)甲是充分估计量(B)甲乙一样有效(C)乙比甲有效(D)甲比乙有效 8. 设总体服从正态分布,方差未知,在样本容量和置信度保持不变的情形下,根据不同的样本值得到总体均

大地坐标与直角空间坐标转换计算公式

大地坐标与直角空间坐标转换计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ? ?? +-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半径,f 椭球扁率,W 为第一辅助系数 a b a e 2 2-= 或 f f e 1 *2-= W a N B W e = -=22 sin *1( 西安80椭球参数: 长半轴a=6378140±5(m )

短半轴b=6356755.2882m 扁 率α=1/298.257 3 参心空间直角坐标转换参心大地坐标 [ ] N B Y X H H e N Y X H N Z B X Y L -+= +-++==cos ))1(**)() (*arctan() arctan(2 22 2 2 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 52224253 2236 425442232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++ =) 3、高斯投影反算公式:

坐标转换三参数计算器使用说明

坐标转换三参数计算器使用说明 一、软件功能 该软件可实现在北京54坐标系、西安80坐标系、WGS84坐标系(GPS通常采用WGS84坐标系)之间进行三参数条件下的高精度相互转换,求取手持GPS 的北京54(或西安80)DA、DF、DX、DY、DZ坐标转换的参数。 二、使用说明 软件分成上下二部分,上半部为在两个不同椭球体间求坐标转换的三参数DX、DY、DZ,下半部为在两个不同椭球体间的坐标转换(如下图)。 在两个不同椭球体间进行坐标转换首要条件是必需知道坐标转换参数,通常有三参数和七参数转换二种方式,本程序提供三参数转换方式。 实例1:我要求手持GPS的北京54(或西安80)坐标转换参数。 向有关部门收集所在工作区内已知点(只要一个控制点)的WGS84坐标系经纬度坐标,以及同点的北京54(或西安80)坐标系中的直角坐标,即可进行本软件操作了。如某一个控制点的WGS84经度、纬度、高程为: 109度34分28.94343秒, 31度02分25.65526秒, 104.967米,该控制点北京54坐标为:x=3436391.566m,y=37363926.964m(37为带号),h=108.717m ,将上述数据输入在软件上半部相应栏中,注意勾选前后坐标系正确(坐标系A,坐标系B),

输入中央经线(37带,输111),点击参数计算,计算结果为 DA=-108,DF=0.00000048,dx=32.284979,dy=-90.792978,dz=-57.993043, 此参数即为手持GPS北京54坐标参数。此三参数为不同椭球体间进行坐标转换奠定了基础。以上计算是精确算法,不存在漏洞。 如果收集控制点确实很困难,在不严谨的情况下,用手持GPS在工作区内某点上设置在WGS84状态下长时间观察读数,取平均值,获取WGS84经度、纬度、高程。北京54(或西安80)坐标你再想办法得到(因为你那已经有测量成果了就好说,如果还没开展测量的话,你就得在大比例尺图上读坐标,越精确越好),也能解决问题,但这个办法不推荐使用,你把求得的参数在其它地貌特征点上检验一下是否提高了定点精度,没提高的话,请重复几次,直到符合定点精度要求。 以上方法求得的坐标转换参数为北京54坐标系、西安80坐标系、WGS84坐标系之间相互转换提供了基础,请注意不同地区参数是不一样的。 实例2:如何将WGS84坐标转换为北京54坐标 已知某点WGS84坐标经纬度、高程(GPS通常采用WGS84坐标系)为: 113度12分34.5678秒, 34度56分12.3456秒, 123.888米,已知WGS84坐标转换为北京54坐标三参数为dx=32.284979,dy=-90.792978,dz=-57.993043。输入软件下半部相应栏中,中央经线111输入右上角相应栏中,点击单点转换,北京54坐标结果为X=3869865.711m, Y=19701880.461m(19带),H=127.052m

坐标转换模型

坐标转换模型 1.空间直角坐标系间的转换模型(七参数模型) ①公式(布尔莎模型): ②分析: (1)将O-XYZ中的长度单位缩放l+m倍,使其与O'-X'Y'Z'的长度单位一致; (2)从X反向看向原点O,以O为旋转点,让O-XYZ绕X轴顺时针旋转Wx角,使经过旋转后的Y轴与O'-X'Y'Z’平面平行; (3)从Y反向看向原点O,以O为旋转点,让O-XYZ绕Y轴顺时针旋转Wy角,使经过旋转后的X轴与O'-X'Y'Z'平面平行。显然,此时Z轴也与Z'轴平行; (4)从Z反向看向原点O,以O点为旋转点,O-XYZ绕Z轴顺时针旋转Wz角,使经过旋转后的X轴与X’轴平行。显然,此时O-XYZ的三个坐标轴己与O'-X'Y'Z’中相应的坐标轴平行; 原坐标为O-XYZ,转换到新坐标O-X’Y’Z’.(两坐标系都为空间直角坐标系)其中(dX dY dZ)为坐标原点的平移参数,即将坐标O-XYZ的原点分别沿三个坐标轴平移-dX,-dY,-dZ,使原坐标轴与O-X’Y’Z’的点重合。m为尺度参数,(w1 w2 w3)分别为坐标轴的旋转参量(角度),构成的旋转矩阵分别为: 分别将R1 R2 R3代入上式,可得:

当旋转角度w1 w2 w3很小时(<=10),cos(w)=1,sin(w)=0;在误差允许范围内可以将模型简化为:(同样七参数模型) 四参数模型是在七参数模型的特例,没有考虑坐标轴的旋转量,只考虑坐标轴的平移。 总结: 类似布尔莎模型(以坐标原点为参考点),还有莫洛金斯基坐标模型(以目标点为变换中心)、武测转换模型和范士转换模型(以控制网参考点的站心地平坐标系的三个坐标轴为旋转轴),这些坐标转换模型很容易实现相关坐标在不同坐标系的转换,但是参考位置的偏移向量的相关参数,在实际运用中这些参量是很难测定的,并且受地球重力等物理因素的影响,两个坐标系统即使经过相似变换,仍可能存在较大的残差,所以这些模型适用于简单且规则模型中。 ④程序: clc clear all dX=input('please input value of dX=');

齿轮各参数计算方法

齿轮各参数计算方法 1、齿数Z 闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多一些为好,小一些为好,小齿轮的齿数可取为z1=20~40。开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿数,一般可取z1=17~20。为使齿轮免于根切,对于α=20度的标准支持圆柱齿轮,应取z1≥17 2、模数m 齿距与齿数的乘积等于分度圆的周长,即pz=πd。为使d为有理数的条件是 p/π为有理数,称之为模数。即:m=p/π 模数m是决定齿轮尺寸的一个基本参数。齿数相同的齿轮模数大,则其尺寸也大。

3、分度圆直径d 齿轮的轮齿尺寸均以此圆为基准而加以确定,d=mz 4、齿顶圆直径da和齿根圆直径df 由齿顶高、齿根高计算公式可以推出齿顶圆直径和齿根圆直径的计算公式: da=d+2ha df=d-2hf =mz+2m=mz-2×1.25m =m(z+2)=m(z-2.5) 5、分度圆直径d 在齿轮计算中必须规定一个圆作为尺寸计算的基准圆,定义:直径为模数乘以齿数的乘积的圆。实际在齿轮中并不存在,只是一个定义上的圆。其直径和半径分别用d和r表示,值只和模数和齿数的乘积有关,模数为端面模数。与变位系数无关。标准齿轮中为槽宽和齿厚相等的那个圆(不考虑齿侧间隙)就为分度圆。标准齿轮传动中和节圆重合。但若是变位齿轮中,分度圆上齿槽和齿厚将不再相等。若为变位齿轮传动中高变位齿轮传动分度圆仍和节圆重合。但角变位的齿轮传动将分度圆和节圆分离。 6、压力角αrb=rcosα=1/2mzcosα 在两齿轮节圆相切点P处,两齿廓曲线的公法线(即齿廓的受力方向)与两节圆的公切线(即P点处的瞬时运动方向)所夹的锐角称为压力角,也称啮合角。对单个齿轮即为齿形角。标准齿轮的压力角一般为20”。在某些场合也有采用α=14.5°、15°、22.50°及25°等情况。

坐标系转换问题及转换参数的计算方法

坐标系转换问题及转换参数的计算方法 对于坐标系的转换,给很多GPS的使用者造成一些迷惑,尤其是对于刚刚接触的人,搞不明白到底是怎么一回事。我对坐标系的转换问题,也是一知半解,对于没学过测量专业的人来说,各种参数的搞来搞去实在让人迷糊。在我有限的理解范围内,我想在这里简单介绍一下,主要是抛砖引玉,希望能引出更多的高手来指点迷津。 我们常见的坐标转换问题,多数为WGS84转换成北京54或西安80坐标系。其中WGS84坐标系属于大地坐标,就是我们常说的经纬度坐标,而北京54或者西安80属于平面直角坐标。对于什么是大地坐标,什么是平面直角坐标,以及他们如何建立,我们可以另外讨论。这里不多罗嗦。 那么,为什么要做这样的坐标转换呢? 因为GPS卫星星历是以WGS84坐标系为根据而建立的,我国目前应用的地形图却属于1954年北京坐标系或1980年国家大地坐标系;因为不同坐标系之间存在着平移和旋转关系(WGS84坐标系与我国应用的坐标系之间的误差约为80),所以在我国应用GPS进行绝对定位必须进行坐标转换,转换后的绝对定位精度可由80提高到5-10米。简单的来说,就一句话,减小误差,提高精度。 下面要说到的,才是我们要讨论的根本问题:如何在WGS84坐标系和北京54坐标系之间进行转换。 说到坐标系转换,还要罗嗦两句,就是上面提到过的椭球模型。我们都知道,地球是一个近似的椭球体。因此为了研究方便,科学家们根据各自的理论建立了不同的椭球模型来模拟地球的形状。而且我们刚才讨论了半天的各种坐标系也是建立在这些椭球基准之上的。比如北京54坐标系采用的就是克拉索夫斯基椭球模型。而对应于WGS84坐标系有一个WGS84椭球,其常数采用IUGG第17届大会大地测量常数的推荐值。WGS84椭球两个最常用的几何常数:长半轴:6378137±2(m);扁率:1:298.257223563 之所以说到半长轴和扁率倒数是因为要在不同的坐标系之间转换,就需要转换不同的椭球基准。这就需要两个很重要的转换参数dA、dF。 dA的含义是两个椭球基准之间半长轴的差;dF的含义是两个椭球基准之间扁率倒数的差。 在进行坐标转换时,这两个转换参数是固定的,这里,我们给出在进行84—〉54,84—〉80坐标转换时候的这两个参数如下: WGS84>北京54:DA:-108;DF:0.0000005 WGS84>西安80:DA: -3 ;DF: 0 椭球的基准转换过来了,那么由于建立椭球的原点还是不一致的,还需要在dXdYdZ这三个空间平移参量,来将两个不同的椭球原点重合,这样一来才能使两个坐标系的椭球完全转换过来。而由于各地的地理位置不同,所以在各个地方的这三个坐标轴平移参量也是不同的,因此需要用当地的已知点来计算这三个参数。具体的计算方法是: 第一步:搜集应用区域内GPS“B”级网三个以上网点WGS84坐标系B、L、H值及我国坐标系(BJ54或西安80)B、L、h、x值。(注:B、L、H分别为大地坐标系中的大地纬度、大地经度及大地高,h、x分别为大地坐标系中的高程及高程异常。各参数可以通过各省级测绘局或测绘院具有“A”级、“B”级网的单位获得。) 第二步:计算不同坐标系三维直角坐标值。计算公式如下: X=(N+H)cosBcosL

参数估计习题课

第21讲 参数估计习题课 教学目的:1. 通过练习使学生进一步掌握矩估计和最大似然估计的计算方法; 2. 通过练习使学生理解无偏性和有效性对于评价估计量标准的重要性; 3. 通过练习使学生进一步掌握正态总体参数的区间估计和单侧置信限。 教学重点:矩估计和最大似然估计,无偏性与有效性,正态总体参数的区间估计。 教学难点:矩估计,最大似然估计,正态总体参数的区间估计。 教学时数:2学时。 教学过程: 一、知识要点回顾 1. 矩估计 用各阶样本原点矩n k i i 11x n k V ==∑ 作为各阶总体原点矩k EX 的估计,1,2,k =L 。若有参 数2g(,(),,)k E X E X E X θ=L ()(),则参数θ的矩估计为 n n n 2i=1i=1i=1 111?(,,,)k i i i X X X n n n θ=∑∑∑L 。 2. 最大似然估计 似然函数1()(;)n i i L f x θθ==∏,取对数ln[()]L θ,从 ln() d d θθ =0中解得θ的最大似然估计θ ?。 3. 无偏性,有效性 当θθ=?E 时,称θ?为θ的无偏估计。 当21?D ?D θθ<时,称估计量1?θ比2 ?θ有效。 二 、典型例题解析 1.设,0()0, 0x e x f x x θθ-?>=?≤?,求θ的矩估计。 解 ,0 dx xe EX x ?+∞ -=θθ设du dx u x x u θ θ θ1 ,1 ,= = = 则0 0011 1()0()u u u EX ue du ue e du e θθθθ+∞+∞--+∞ --+∞????==-+=+-??? ?????=θ 1

坐标转换之计算公式

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 坐标转换之计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度 L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ? ?? +-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半径,f 椭球扁率,W 为第一辅助系数

a b a e 2 2-= 或 f f e 1 *2-= W a N B W e = -=22 sin *1( 3 参心空间直角坐标转换参心大地坐标 [ ] N B Y X H H e N Y X H N Z B X Y L -+= +-++==cos ))1(**)() (*arctan() arctan(2 22 2 2 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式:

手持GPS参数设置及全国各地坐标转换参数

如何设置手持GPS相关参数及全国各地坐标转换参数 一、如何设置手持GPS相关参数 (一)手持GPS的主要功能 手持GPS,指全球移动定位系统,是以移动互联网为支撑、以GPS智能手机为终端的GIS 系统,是继桌面Gis、WebGis之后又一新的技术热点。目前功能最强的手持GPS,其集成GPRS通讯、蓝牙技术、数码相机、麦克风、海量数据存储、USB/RS232端口于一身,能全面满足您的使用需求。 主要功能:移动GIS数据采集、野外制图、航点存储坐标、计算长度、面积角度(测量经纬度,海拔高度)等各种野外数据测量;有些具有双坐标系一键转换功能;有些置全国交通详图,配各地区地理详图,详细至乡镇村落,可升级细化。 (二)手持GPS的技术参数 因为GPS卫星星历是以WGS84坐标系为根据建立的,手持GPS单点定位的坐标属于WGS84坐标系。WGS84坐标系所采用的椭球基本常数为:地球长半轴a=6378137m;扁率F=1/298.257223563。 常用的54、80及国家2000公里网坐标系,属于平面高斯投影坐标系统。54坐标系,采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:地球长半轴 a=6378245m;扁率F=1/298.2。80坐标系,其椭球的参数为:地球长半轴a=6378140m;扁率F=1/298.257。国家2000坐标系,其椭球的参数为:地球长半轴a=6378137m;扁率F=1/298. 257222101。 (三)手持GPS的参数设置

要想测量点位的54、80及国家2000公里网高精度坐标数据,必须学习坐标转换的基础知识,并分别科学设置手持GPS的各项参数。 首先,在手持式GPS接收机应用的区域(该区域不宜过大),从当地测绘部门收集1至两个已知点的54、80或国家2000坐标系统的坐标值;然后在对应的点位上读取WGS84坐标系的坐标值;之后采用《万能坐标转换》软件,可计算出DX、DY、DZ 的值。 将计算出的DX、DY、DZ三个参数与DA、DF、中央经线、投影比例、东西偏差、南北偏差等六个常数值输入GPS接收机。将GPS接收机的网格转换为“UserGrid”格式,实际测量已知点的公里网纵、横坐标值,并与对应的公里网纵、横坐标已知值进行比较,二者相差较大时要重新计算或查找出现问题的原因。详细过程可查看《万能坐标转换》软件的【手持GPS参数设置】界面。 (四)自定义坐标系统(User)投影参数的确定 1、自己观测计算 新机拿到手之后,供应商都给提供一个投影参数,这对于要求不高的一般用户来说基本可以满足工作需要,而对于一些专业用户来说,就要自己来测算参数。一般型号的导航型手持GPS自定义坐标系统(User)投影参数设置界面都提供了五个变量(△X、△Y、△Z、△A、△F)需要设置,而实际工作中,后两个参数(△A、△F)针对某一坐标系统来说为固定参数(54坐标系△A=-108、△F=0.0000005),无需改动,需要自己测算的参数主要为前三个(△X、△Y、△Z),一般称为三参数。

相关主题
文本预览
相关文档 最新文档