当前位置:文档之家› 煤层气体积压裂技术

煤层气体积压裂技术

煤层气排采技术规范

煤层气排采技术规范

煤层气企业标准 煤层气井排采工程技术规范 (试行) 2008-08-18发布2008-08-18实施

煤层气企业标准 煤层气井排采工程技术规范 1范围 本标准规定了煤层气井排采工程施工过程中各工序的技术标准,包括排采总体方案的制定、泵抽系统、排采设备及地面流程的安装、场地标准、下泵作业、洗井、探冲砂、资料录取、分析化验、总结报告编制等技术要求。 本标准适用于煤层气井的排采作业工程。 2引用标准 下列标准所包含的条文,通过对标准的引用而成为本规范的条文。 中联煤层气有限责任公司煤层气井排采作业管理暂行办法 SY/T 5587.6-93 油水井常规修井作业起下油管作业规程 SY/T 5587.7-93 油水井常规修井作业洗井作业规程 SY/T 5587.16-93 油水井常规修井作业通井、刮削套管作业规程 SY/T 5587.5-93 油水井常规修井作业探砂面、冲砂作业规程 SY/T5523-92 油气田水分析方法 SY/T6258-1996 有杆泵系统设计计算方法

3 排采总体方案的制定 3.1基本数据 3.1.1钻井基本数据 钻井基本数据包括地理位置、构造位置、井别、井型、施工单位、目的层、开钻日期、完钻日期、完井日期、钻井周期、完钻井深、完钻层位、最大井斜、井深、方位、人工井底、补芯高。 3.1.2完成套管程序 完成程序包括套管规范、下深、钢级、壁厚、水泥返高、固井质量、短套管、油补距。 3.1.3煤层深度、厚度及射孔井段 3.1.4解吸/吸附分析成果 包括含气量、含气饱和度、临界压力 3.1.5注入/压降测试及原地应力测试数据 包括渗透率、表皮系数、储层压力、压力梯度、研究半径、煤层温度、闭合压力、闭合压力梯度、破裂压力等。 3.2 排采总体方案 3.2.1排采目的 3.2.2排采目的层及排采方式 3.2.3排采设备及工艺流程设计 3.2.4排采周期 3.3工艺技术要求 3.3.1动力系统 3.3.2抽油机 3.3.3泵挂组合

致密砂岩油藏直井体积压裂技术研究与实

致密砂岩油藏直井体积压裂技术研究与实践 林海霞 (中国石油吉林油田公司采油工艺研究院) 摘要本文借鉴国内外体积压裂理念与改造经验,在大安北扶杨和高台子油层开展了体积压裂探索研究与实践,分析了体积压裂改造机理、对储层条件的要求和在大安北致密砂岩油藏开展体积压裂改造的可行性,探索了体积压裂选井原则、压裂技术措施,在现场成功应用并取得好的改造效果和压后投产效果,为同类致密砂岩油藏改造提供了有益的借鉴。 主题词致密砂岩体积压裂滑溜水压裂扶杨油层 0.引言 吉林油田大安北地区扶杨和高台子油层储层特征为物性差(ф4.6-14%;k0.01-1.2md)、中等偏强水敏、塑性强(平均模量39366MPa,平均水平两项主应力差7.7MPa,平均泥质含量16.93%),采用常规压裂改造措施难以满足生产需求,需通过技术创新改变开发现状,这就使得直井体积压裂技术应用成为可能。 1.体积压裂作用机理 吴奇等人结合国外研究给出了“体积压裂”的定义及作用[1]。通过压裂的方式对储层实施改造,在形成一条或者多条主裂缝的同时,通过分段多簇射孔、高排量、大液量、低粘液体以及转向材料和技术的应用,实现对天然裂缝、岩石层理的沟通,以及在主裂缝的侧向强制形成次生裂缝,并在次生裂缝上继续分枝形成二级次生裂缝,以此类推,尽最大可能增加改造体积,让主裂缝与多级次生裂缝交织形成裂缝网络系统,将可以进行淋巴液的有效储集体“打碎”,使裂缝壁面与储层基质的接触面积最大,极大地提高储层整体渗透率,实现对储层在长、宽、高三维方向的全面改造,增大渗流面积及导流能力,广义的体积压裂包括以下3种模式[2]:①使天然裂缝不断扩张和脆性岩石产生剪切滑移,形成天然裂缝与人工裂缝相互交错的裂缝网络,将可以渗流的有效储层打碎,使裂缝壁面与储层基质的接触面积最大。②采用多种方法在有限的井段内增加水力裂缝条数和密度(天然裂缝也可能开启),这些裂缝累积控制的泄流面积随裂缝的条数、缝长、缝宽、缝高等因素变化而变化。③利用储层水平两向应力差与裂缝延伸净压力的关系,实现裂缝延伸净压力大于两个水平主应力差值与岩石抗张强度之和,形成以主缝和分支裂缝相组合的枝状裂缝。 2.实现体积压裂的条件 2.1岩石的脆性指数 储层岩性具有显著的脆性特征,是实现体积改造的物质基础。大量研究及现场试验表明:不同区域,储层岩石矿物组分差异较大,富含石英或者碳酸盐岩等脆性矿物的储层有利于产生复杂缝网,粘土矿物含量高的塑性地层不易形成复杂缝网[2]。脆性指数越高,岩石越容易形成复杂裂缝。一般来说,要形成复杂的网络系统,岩石的脆性指数要不低于50%。 目前,岩石脆性指数的计算有几种方法,一种方法是根据岩石矿物组成判断[3],即取岩石中石英含量与岩石中石英、碳酸盐及粘土总含量的比值作为该岩石脆性指数。一般石英含量超过30%便数据库认为岩石具有较高的脆性指数。 岩石脆性指数的计算第二种方法则是根据岩石力学特性判断,由杨氏模量及泊松比计算得到。

煤层气井压裂技术现状研究及应用

煤层气井压裂技术现状研究及应用 摘要:煤层气其主要成分为高纯度甲烷。煤层气开发的主要增产措施是压裂,而压裂设计是实施压裂作业的关键。本文介绍了煤层气储层的特征,并根据美国远东能源公司煤层气井压裂工艺技术,对其在山西寿阳区块几口井的压裂设计进行了分析。讨论了煤层气井压裂设计的主要参数如施工排量、压裂液、支撑剂、加砂程序的优化措施。 关键词:煤层气储层压裂设计小型压裂测试树脂涂层砂 1 引言 美国是率先进行煤层气开采的国家,其煤层气工业起步于70年代,大规模的发展则是在80年代。我国是世界上煤炭资源最丰富的国家之一,经测算煤层甲烷总资源量为30~351012 m3,约是美国的三倍。我国煤层气目前处于商业化生产的阶段。至今已在全国各煤矿区施工600多口煤层气井、10余个井组,大部分进行了压裂增产等措施。煤层气是我国常规天然气最现实、最可靠的替代能源,开发和利用煤层气可以有效地弥补我国常规天然气在地域分布上的不均和供给量上的不足。山西省是中国煤层气储量最丰富的地区之一,开发利用煤层气的优势十分突出,如何坚持科学发展的指导思想,解决开发利用过程中遇到的难点和瓶颈问题,达到合理有效地开发利用是我们当前应该着重思考的问题。 2 煤层气概况 煤层气俗称瓦斯,其主要成分为高纯度甲烷,是成煤过程中生成的、并以吸附和游离状态赋存于煤层及周岩的自储式天然气体,属于非常规天然气。在亿万年漫长的煤炭形成过程中,都有以甲烷为主的气体产生,如果它较多地从母质煤炭岩层中游离迁移出来并进入具有孔隙性和渗透性均良好的构造中储存积聚,则被称为煤成气(即煤基天然气),其开采方式与常规天然气较相似。 2.1 煤层气的赋存特点 煤层气藏与常规气藏最大的差异就是煤层甲烷不是以简单的游离状态储存于煤岩的孔隙中,煤层气中90%以上均是吸附状态附着于煤的内表面上,少量的煤层气是以游离状态储存于煤岩的割理、裂隙和孔隙中,还有部分煤层气是以溶解状态储存于煤层水中。煤是一种多孔介质,其中微孔隙特别发育,形成了异常巨大的内表面面积,据测定每吨煤的内表面面积可达0.929亿m2 。煤的颗粒表面分子通过范德华力吸引周围气体分子,这是固体表面上进行的一种物理吸附过程。压力对吸附作用有明显影响,国内外的研究均表明,随着压力增加,煤对甲烷的吸附量逐渐增大。 2.2 煤层气储层特征

水平井体积压裂技术的探讨

水平井体积压裂技术的探讨 摘要:我国重要的石油开采基地大庆,其外围的储油层渗透率较低(为4—5)×10-3μm2,丰度也低(10~20)×104km2,厚度也薄(单层的厚度大约在50cm),若用直井的方式开采效益很低甚至没有效益,若用水平井的方式开采,则能较好的解决外围的低渗透油田的多井的地产问题,可达到高效开采的目的。随着我国对石油需求量的增大和油价的居高不下,国家加大了对石油领域的投入和科研攻关的力度,水平井的攻关技术日臻成熟,得到了新的突破,特别是水平井的压裂的技术提高更明显,刚开始实行的是全井笼统限流法压裂,通过攻关则发展到现在的以下几种:1、段内限流多段压裂;2、胶塞压裂;3、双封单卡分段压裂;4、水力喷砂压裂;5、机械桥塞分段压裂。共5种方式和工艺。在提高水平井的开发效果方面,虽然这些新技术和新工艺取得了明显的效果,但是还存在一些问题和不足,使水平井压后产量的增加受到限制。 关键词:水平井;体积压裂;水泥加固 1. 关于在水平井压裂方面面临的技术难题 水平井压裂方面面临着两大技术难题:第一、由于通过压裂后裂缝的形成种类单一,使得油层的改造不够充分。由于所开发的水平井的位置地质条件不好,存在低孔和储层低渗透,并且油层所处的地质环境不好。像AN油田,砂岩单层的平均厚度只有80公分,而有效厚度只有30公分,并且平均孔隙度只有17%不到,且渗透率只有渗透率13.3×10-3μm2,含油的饱和度只有区区的51%。在此区做得无用功较多,钻遇率低,单层砂岩的平均钻遇率只有36%,而有效的钻遇率刚刚达到13.8%。面对这样的水平井,有效的处理方法就是在投产前需要压裂处理,但是运用常规的压裂技术一段段进行压裂,每段压裂段只能出现一条主要裂缝,使得储层的渗流面积受到很大限制,这样一来,对低渗透储层以及特低渗透储层而言远远达不到开采的要求。并且因为储层的渗透性能较差不好,常出现如下情况:刚刚开始时候,产能还不错,但时间不长产能下滑的很快,造成前高后低的现象。第二、为防止井崩,必须用水泥加固井壁。对低渗透以及特低渗透储层的处理方式,就是用水泥进行加固,但是水泥古井也会带来弊端,就是固井伤害,并且对油层的污染很严重。油井钻探完毕后,水泥固井的周期大约在两昼夜以上,这样一来,由于水泥浆浸泡长时间浸泡油层,会对储层造成很大伤害。同时,由于受到以重力为主的诸多因素的影响,水平段的固井质量难以得到有效保障,施工中常发生因油套环形空间不均匀导致窜槽、套变等事故,对随之而来的分段压裂施工造成很大安全隐患。同时,由于水泥固井后还要实施射孔后才能做到压裂,故大大增加了施工的成本。 2 水平井的体积压裂施工技术商榷

致密油气藏体积压裂技术

致密油气藏体积压裂技术(Stimulated Reservoir Volume)致密油气藏由于其储层本身具有低孔、低渗、低压等特点,因此储层的自然产能很低,相要实现高效商业化开发,必须采用压裂技术对储层进行改造。由于储层基质向裂缝供液能力太差,仅靠单一压裂主缝的常规压裂技术很难取得预期的增产效果,因此必须探索研究新型的压裂改造技术,“体积压裂技术”的提出具有深刻意义。 国外已将此技术成功应用于页岩气、致密砂岩气以及页岩油的开发,国内也对体积压裂开展了初步研究,部分超低渗透区块已经成功实现了体积压裂技术对储集层的改造。体积压裂技术必将逐步成为致密油藏经济有效开发的关键技术。 体积压裂技术(Stimulated Reservoir V olume)是指在水力压裂过程中,使天然裂缝不断扩张和脆性岩石产生剪切滑移,形成天然裂缝与人工裂缝相互交错的裂缝网络,从而增加改造体积,提高初始产量和最终采收率。 体积压裂改造的对象是基质孔隙性储层,天然裂缝不发育,低渗、超低渗油气藏。这类油气藏的压裂裂缝仅扩大了井控面积,但由于垂直于人工裂缝壁面方向的渗透性很差,不足以提供有效的垂向渗流能力,导致压裂产量低或者压后产量递减快等问题。通过体积压裂在垂直于主裂缝方向形成多条人工裂缝,改善了储层的渗流特性,提高了储层改造效果和增产有效期。 作用机理: 在水力压裂的过程中,当裂缝延伸净压力大于两个主应力的差值与岩石的抗张强度之和时,容易形成分叉的裂缝,多条分叉裂缝相交就会形成一个“缝网”的系统,如图1所示,其中,以主裂缝为“缝网”系统的主干,分叉缝可能在距离主裂缝延伸一定长度后,又恢复到原来的裂缝方位上,最终形成了以主裂缝为主干的纵横“网状缝”系统。 图1 “缝网”形成示意图

煤层气地面集输工程技术规范正式版

Through the joint creation of clear rules, the establishment of common values, strengthen the code of conduct in individual learning, realize the value contribution to the organization.煤层气地面集输工程技术 规范正式版

煤层气地面集输工程技术规范正式版 下载提示:此管理制度资料适用于通过共同创造,促进集体发展的明文规则,建立共同的价值观、培养团队精神、加强个人学习方面的行为准则,实现对自我,对组织的价值贡献。文档可以直接使用,也可根据实际需要修订后使用。 1 范围 本标准规定了煤层气地面集输工程设计和施工的技术等。 本标准适用于煤层气地面集输工程建设的设计、施工和验收。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 50251 输气管道工程设计规范

GB 50275-98 压缩机、风机、泵安装工程施工及验收规范 GB/T 15543 油气田液化石油气 GB/T 50183 石油天然气防火规范 SYL 04-83 天然气流量的标准孔板计量方法 SY/T 0076-2003 天然气脱水设计规范 SY/T 0089-2006 油气厂、站、库给水排水设计规范 SY/T 0515-1997 油气分离器规范 JJF 1059—1999 机械设备安装工程施工及验收规范 3 术语和定义 下列术语和定义适用于本文件。

体积压裂技术的研究与应用

体积压裂技术的研究与应用 摘要:对于低渗油藏,由于此类型的储油层密度高,渗透率较低,所以就不能使用常规的压裂形成单一裂缝的增产改造措施,因为此措施不能达到商业的开采价值,因而为了提升其商业开采价值就要探索新的压裂改造技术。在国内提出了体积压裂改造超低渗油藏的设想,其根据是参考国外的页岩气体积压裂技术。国内通过体积压裂的方法在靖安油田初次实验及应用。经实践后得出,虽然低渗油藏储层致密、渗透率低,但是在经体积压裂后,其形成了复杂缝网和增大改造体积,这样不仅在初期油量产出大,而且给与后期稳产极大支持。 关键词:低渗致密增产改造体积压裂缝网 一、体积压裂作用机理 “体积压裂”顾名思义,就是指将可以进行渗流的有效储集体通过压裂的方法“打碎”,这样就形成了一个网络裂缝,通过这样的压裂方式能使储层基质与裂缝壁面的接触面积达到最大化,使得油气可以从任何方向渗流到裂缝的距离最短化,将储层整体渗透率提高到一定的程度,从而使储层可以实现长、宽、高三维立体方向的改造。在工程的施工过程中,通过(1)低猫液体(2)大液量(3)高排量这三项,加以转向技术及材料的应用的辅助,利用直井分层压裂技术和水平井分段改造技术等手段,可以将裂缝网络系统形成规模最大化,储层动用率就会相应的提高,从而提高非常规油气藏采收率。 二、体积压裂的技术特征 2.1 体积压裂改造的条件 (1)地层有天然的裂缝且发育良好;(2)岩石中硅质成分含量高,容易在高压下产生裂缝。岩石在压裂过程中容易产生剪切力破坏,不是形成单一的裂缝,而是有利于形成复杂的网状裂缝,从而提高裂缝密度增加缝隙体积;(3)较小的敏感力度,适用于大型的滑溜水压裂。较弱的水敏地层,有利于提高压裂液的用液规模,同时使用滑溜水压裂,滑溜水黏度低,可以进入天然裂缝中,迫使天然裂缝延展距离增加缝隙体积,扩大了改造体积。 2.2 体积压裂改造技术 国内常用的体积压裂技术是滑溜水大型压裂技术。体积压裂工艺有两个特征。第一“两大”:大排量、大液量。第二“两小”:(1)小粒径低密度支撑剂,支撑剂一般采用70/100目和40/70目陶粒;(2)低砂比,最高砂比不超过支撑剂总量的20.0%。 2.3 体积压裂液体系

煤层气排采技术规范

煤层气排采技术规范 煤层气企业标准 煤层气井排采工程技术规范 (试行) 2008-08-18发布 2008-08-18实施 煤层气企业标准 煤层气井排采工程技术规范 1 范围 本标准规定了煤层气井排采工程施工过程中各工序的技术标准,包括排采总体方案的制定、泵抽系统、排采设备及地面流程的安装、场地标准、下泵作业、洗井、探冲砂、资料录取、分析化验、总结报告编制等技术要求。本标准适用于煤层气井的排采作业工程。 2 引用标准 下列标准所包含的条文,通过对标准的引用而成为本规范的条文。中联煤层气有限责任公司煤层气井排采作业管理暂行办法 SY/T 5587.6-93 油水井常规修井作业起下油管作业规程 SY/T 5587.7-93 油水井常规修井作业洗井作业规程 SY/T 5587.16-93 油水井常规修井作业通井、刮削套管作业规程 SY/T 5587.5-93 油水井常规修井作业探砂面、冲砂作业规程 SY/T5523-92 油气田水分析方法 SY/T6258-1996 有杆泵系统设计计算方法 3 排采总体方案的制定 3.1基本数据

3.1.1钻井基本数据 钻井基本数据包括地理位置、构造位置、井别、井型、施工单位、目的层、开钻日期、完钻日期、完井日期、钻井周期、完钻井深、完钻层位、最大井斜、井深、方位、人工井底、补芯高。 3.1.2完成套管程序 完成程序包括套管规范、下深、钢级、壁厚、水泥返高、固井质量、短套管、油补距。 3.1.3煤层深度、厚度及射孔井段 3.1.4解吸/吸附分析成果 包括含气量、含气饱和度、临界压力 3.1.5注入/压降测试及原地应力测试数据 包括渗透率、表皮系数、储层压力、压力梯度、研究半径、煤层温度、闭合压力、闭合压力梯度、破裂压力等。 3.2 排采总体方案 3.2.1排采目的 3.2.2排采目的层及排采方式 3.2.3排采设备及工艺流程设计 3.2.4排采周期 3.3工艺技术要求 3.3.1动力系统 1 3.3.2抽油机 3.3.3泵挂组合 3.3.4 地面排采流程 a.采气系统;

煤层气压裂工艺技术及实施要点分析

煤层气压裂工艺技术及实施要点分析 发表时间:2019-07-17T09:24:30.543Z 来源:《建筑学研究前沿》2019年7期作者:康锴 [导读] 我国地大物博,矿产资源丰富,煤层气资源总储量占居首位,可以与天然气的总储量相媲美。 新疆维吾尔自治区煤田地质局一六一煤田地质勘探队 摘要:近几年,我国经济建设发展迅速,煤矿企业为我国发展做出了很大贡献。我国煤层具有松软、压力低、表面积大和割理发育的特征,导致煤层气开采普遍存在经济效益低、单井产量低的问题。为了适应煤层气特殊的产出条件,本文探讨煤层气压裂工艺技术与实施要点,以期为我国煤层气开采提供参考意见。 关键词:煤层气;压裂工艺技术;实施要点 引言 我国地大物博,矿产资源丰富,煤层气资源总储量占居首位,可以与天然气的总储量相媲美。因为煤层气本身属于清洁能源发展行列,本身带有极强的清洁性能和使用的高效性,对于此资源进行科学合理的开发应用,能够有效缓解现阶段我国能源紧缺的尴尬局面。进行开采过程中,需要对煤层的低饱和、低渗透和低压的发展特点充分了解,可以通过对水力压裂技术的改造升级,完成增产增效工作,保证煤层气井开采效率和高质量发展。在此过程中,需要注意的问题是,因为不同煤层在发展过程中,都受到不同介质的作用,其内部构成和物质特性方面都存在很大差异性,所以,科学掌握煤层气压裂工艺技术有着重要的现实意义。 1煤层气探采历史 1733年美国首次实现地下管道煤层气抽放,1920年第一次完成3口地面煤层气抽采井。1953年在圣胡安完成高产井,日产1.2万m3。我国起步较晚,1957年阳泉四矿在井下成功实现,临近煤层瓦斯抽采。1992年正式开始研究实验。1996年中联煤层气有限责任公司的成立,标志着我国煤层气开发研究的新纪元。 2矿岩压裂的主要影响因素 2.1天然裂缝割理 在煤层开采发展过程中,主要的裂缝系统包括天然裂缝和割理,这两种现象会严重影响到压裂裂缝的发展形态,同时还会对周围水文地质的发展起到一定的影响作用。通常它们的主要性能会对水力裂缝的形态进行延伸,造成冲击作用,也就是说,通过这两个作用力的共同作用,煤层气井在发展和延伸的时候,很容易发生突然转向和次生裂缝。 2.2矿岩力学性质 对矿岩力学性质进行研究的过程中,需要重点做好三个方面的工作:首先,做好矿岩硬度和密实度的勘察工作。第二,对整体强度和弹性力度问题进行研究。第三,深入探讨研究断裂相关内容。对有显著特点的矿样进行综合检测分析,通过观察和对比,得到的结论是,矿岩在受到某些压力和应力的共同作用下,其自身的特征也会发生改变,呈现出弹性模量低、脆性大、易破碎和易受压缩等显著特点,所以,需要对矿岩力学性质进行综合研究。 2.3地应力 在矿井气层发生水力起裂现象的过程中,地应力的变化情况会对裂缝整体位置和形态产生主要影响作用。通过科学调查结果显示,起裂压力大小情况与地应力差之间存在负相关的变化发展联系。换言之,破裂压力的影响因素主要为天然裂缝与最大水平主应力间的夹角,在高水平应力差作用力的影响下,会发生层次较规律的主缝问题。在低水平应力差作用力的影响下,裂缝问题就会向周边进行延伸和扩展。 3煤层气压裂工艺技术 3.1大排量压裂技术 在煤层储层中,有着大量的天然割理系统,加之在压裂施工中使用了活性水压裂液,因此容易造成在压裂过程中滤失量过大及效率低的情况。而为了控制液体滤失以保障效率,应当要根据活性水压裂液的特点,选择大排量注入压裂液的施工方式。 3.2低砂比压裂技术 煤层气压裂的砂比是由多种因素共同决定的,包括煤层本身的特性、压裂液及其排量、支撑剂密度等等。煤层具有性脆、易破碎以及易滤失等特性,而这些都容易引起压裂过程中煤层出现砂堵;再者压裂液粘度低,也是造成砂堵的一项常见因素。而若应用低砂比压裂技术,则能够十分有效地预防砂堵现象。 3.3脉冲加砂技术 若想实现煤层气开采的增产,其主要途径之一就是尽量增加缝长和沟通天然割理系统。在深层煤层气的压裂施工过程中,支撑剂的泵入可以选择采用将前置液与携砂液交替注入的方式。这种方法既能够更多地增加缝长和沟通天然割理系统,同时又能够防止砂堵,提高压裂效率。 3.4复合支撑技术 该深层煤层气储层的闭合压力<20MPa,经分析和评价后,认为其在支撑剂的选择上以石英砂为宜。由于煤层气储层具有易滤失的特点,所以在加砂前,首先要处理天然割理,即加入适量的细粒径石英砂,从而降低其滤失;其次在加砂过程中,要加入适量的中粒径石英砂,从而延伸裂缝;而在加砂后期,则要加入粗粒径石英砂,以使煤层中的气流畅通。 4煤层气压裂工艺技术及实施要点分析 4.1优选煤层气压裂液体系 在煤层气压裂中,压裂液既需要携砂、造缝,又会因液体浸入储层而伤害煤层,所以优选压裂液体系至关重要,即要求煤层气压裂液满足压裂工艺的技术要求、与储层配伍性且尽量不伤害煤层。煤层气井从客观实际出发优选压裂液体系,具体要点包括:一是少用添加剂,如有机类添加剂,以免伤害煤储层;二是研发与煤层气压裂条件相适宜的压裂液材料,以提高其与煤储层的配伍性;三是在满足压裂工艺与施工要求的前提下,提高压裂液的经济性,从而适应市场经济的发展要求。据此,山西沁水盆地煤层气井决定选用清水压裂。

煤层气井压裂标准样本

沁水盆地南部煤层气田枣园煤层气开发示范工程项目煤层气井压裂总体技术方案 中联煤层气有限责任公司

沁水盆地南部煤层气田枣园煤层气开发示范工程项目压裂总体技术方案 设计人: 审核人: 审批人: 中联煤层气有限责任公司

目录 前言 一、地质概况 二、基本数据 三、地质设计 四、施工工艺技术要求 五、安全环保及质量要求 六、应提交的资料报告 七、附录: 附录1、主要施工工序预测 附录2、压裂施工应上主要设备、材料 附录3、井身结构示意图

前言 枣圆煤层气开发试验区总体布置40口井,1999年首先实施第一批井—“9+1方案”,即以TL-003井为基础,再打9口井,组成10口井的井网。井网呈菱形分布(图3),菱形的短轴/长轴约为0.6;井网井距沿主裂缝方向(以TL-003井压裂资料为依据,主裂缝方位为N45°E。)约400m,垂直主裂缝方向不小于300m 。 “9+1方案”菱形井网周边上共布置有7口井,中心位置布有三口井。 井网其它各井钻井工程全部结束后,统一对煤层进行射孔压裂和排水采气试验。以整体改造,面积降压为基础,采取同步实施,单井监测,综合评估的方法评价煤层在井间干扰条件下的地层压力变化,吸附气的脱附情况以及出水产气能力。 在压裂工艺上,选取不同类型的压裂液,目的是通过压裂改造和测试手段,评价不同液体对煤层的改造程度和增产效果,从中优化出适合本地区储层特征的压裂液体系。

一、地质概况 沁水南部-该区为煤田普查区、详查区和精查区。西部和北部主要为普查区和远景区。目前共有煤层气井20口,其中16口排采井。已完成的煤田勘探(87口井)和煤层气勘探(21口井)能够比较好的控制了煤层的分布、主要煤层的厚度变化、埋深和煤岩煤质的变化;煤层气井资料比较好地揭示了煤层含气量渗透率和储层压力的分布特征。勘探结果表明,该区总体上为一个高渗富集区。该区主要地质特征如下: 1、煤层分布与沉积环境 勘探结果表明,该区煤层厚度大,区域上分布稳定,3号煤层厚度5~7m,平均6m;15号煤层厚度2~4m,平均厚度3m。煤田地质勘探所获得的煤层厚度及分布特征基本是可靠的。 煤层分布状态与其沉积环境密切相关。C3t早期主要为大范围的分流间湾相环境,P1s 早期主要为湖泊~沼泽相环境,上述沉积环境有利于成煤。 2、煤层实际含气量 近期煤层气井实测气含量资料表明,采用现代方法测得的含气量结果比煤田勘探提供的瓦斯含量高1/3~3/5。 根据TL-003井、TL-006井、TL-007井、晋试1井、潘2井和CQ-9井的实测结果,一般在20~30m3/t,平均23~25m3/t之间。在寺头断层以东地区,煤层含气量高,表现出由北向南含气量逐渐增高的趋势。煤层实际含气量高于煤田勘探成果。 3、含气饱和度 根据目前所掌握的资料,该区自北向南含气饱和度由低向高。TL-003井3号煤的含气饱和度只有85.6%,到潘庄地区则呈饱和或超饱和状态。这种变化规律,主要受控于保存条件。 对于这种构造特别稳定的煤层,煤层顶板的封盖性起到不可忽视的作用,高含气量井的3号煤层直接顶板主要为泥岩。 沁水南部3号煤层顶板岩性

沁水盆地南部煤层气压裂_排采关键技术研究_杨焦生

第46卷第1期一一一一一一一一一一一一一一中国矿业大学学报一一一一一一一一一一一一一V o l .46N o .12017年1月一一一一一一一一一J o u r n a l o fC h i n aU n i v e r s i t y o fM i n i n g &T e c h n o l o g y 一一一一一一一一一J a n .2017收稿日期:20160503 基金项目:国家重大专项(2016Z X 05041G002 )通信作者:杨焦生(1980-), 男,河南省焦作市人,工程师,博士研究生,从事煤层气开发研究工作.E Gm a i l :y a n g j s 69@p e t r o c h i n a .c o m.c n T e l :13513014216沁水盆地南部煤层气压裂二排采关键技术研究 杨焦生1,赵一洋1,王玫珠1,王一勃1,王金友2,张继东1,刘一坤1 (1.中国石油勘探开发研究院廊坊分院,河北廊坊一065007; 2.渤海钻探工程有限公司第二录井分公司,河北任丘一062552)摘要:为了提高沁水盆地南部煤层气压裂二排采技术适应性,采用数值模拟和动态分析方法,研究了压裂裂缝形态与产能的关系二不同排采阶段控制机理与要点二煤层气井产水特征及其对产气的影响,建立了复杂裂缝条件下产能分析方法二煤层可动水及外来水侵评价方法.认为地质条件及压裂工艺控制裂缝发育形态,在低渗煤层中形成一条高导流的压裂主裂缝至关重要.研究结果表明:在渗透率为0.1~1m D 低渗煤层中形成一条高导流的主裂缝越长,产气效果越好.排采方面,单相水流阶段应以降低应力敏感伤害二扩大压降为主,该阶段排采时间6~10个月以上二降液速度2~5m /d 二可动水排出30%以上二压降半径大于120m ( 已产生井间干扰)的井易高产;两相流初期上产阶段应控制好动液面二套压和气体瞬时流速,保证气二水稳定产出,降低不稳定流动造成的附加伤害.煤层气井产水特征二产水量大小及煤层中水的采出程度决定后期产气效果,而煤层中原始可动水量大小二外来水体规模及侵入程度控制产水量及压降,据此可指导排采管控.关键词:煤层气;压裂;复杂裂缝;排采控制;生产诊断;产水特征;外来水侵中图分类号:P618.11 文献标志码:A 文章编号:1000G1964(2017)01G0102G09 S t u d y o f k e y t e c h n o l o g i e s o n c o a l b e dm e t h a n e f r a c t u r i n g a n d d r a i n a g e i n t h e s o u t h e r nQ i n s h u i b a s i n Y A N GJ i a o s h e n g 1,Z H A O Y a n g 1,WA N G M e i z h u 1,WA N GB o 1 ,WA N GJ i n y o u 2,Z H A N GJ i d o n g 1, L I U K u n 1(1.L a n g f a n g B r a n c h ,P e t r o C h i n aR e s e a r c h I n s t i t u t e o fP e t r o l e u m E x p l o r a t i o na n dD e v e l o p m e n t ,L a n g f a n g ,H e b e i 065007,C h i n a ;2.N o .2L o g g i n g B r a n c ho fC N P CB o h a i D r i l l i n g E n g i n e e r i n g C o m p a n y L t d ,R e n q i u ,H e b e i 062552,C h i n a )A b s t r a c t :T o i m p r o v e t h e a d a p t a b i l i t y o f f r a c t u r i n g a n dd r a i n a g e t e c h n o l o g i e s o f c o a l b e dm e t h Ga n e (C B M )i nt h eS o u t h e r n Q i n s h u i b a s i n ,t h er e l a t i o n s h i p b e t w e e nf r a c t u r em o r p h o l o g y a n d d e l i v e r a b i l i t y ,d r a i n a g e m e c h a n i s m a n dc o n t r o l m e t h o d si nd i f f e r e n ts t a g e s ,a n d w a t e rd i s Gc h a r g e c h a r a c t e r i s t i c s a n d i t s i m p a c to nC B M p r o d u c t i o nw e r ed i s c u s s e db y n u m e r i c a l s i m u l a Gt i o na n dd y n a m i ca n a l y s i sm e t h o d .A l s od e l i v e r a b i l i t y a n a l y s i sm e t h o du n d e r t h ec o m p l i c a t e d f r a c t u r e s ,a n d e v a l u a t i o n p r o c e d u r e o f c o a l s e a m m o v a b l ew a t e r a n d e x t r a n e o u sw a t e r i n v a s i o n w e r e e s t a b l i s h e d .I t i s c o n s i d e r e d t h a t t h e g e o l o g i c a l c o n d i t i o n s a n d f r a c t u r i n gp r o c e s sd i r e c t l y c o n t r o l t h em o r p h o l o g y o f f r a c t u r e s ,a n d i t i s t h em o s t e s s e n t i a l f o rC B Mt o f o r mah i g hc o n Gd u c t i v i t y m a j o r f r a c t u r e i n t h e l o w Gp e r m e a b i l i t y c o a l s e a m.T h e r e s u l t s s h o wt h a tw h e n t h e v a l Gu e o f p e r m e a b i l i t y i s 0.1 1m D ,t h e l o n g e r t h em a j o r f r a c t u r e l e n g t h i s ,t h eb e t t e r t h eC B M p r o d u c t i o n i s .I n a s p e c t o f d r a i n a g e ,t h e s i n g l e Gp h a s ew a t e r f l o ws t a g e s h o u l db e d o m i n a t e db y 网络出版时间:2016-08-02 10:53:10 网络出版地址:https://www.doczj.com/doc/6015608632.html,/kcms/detail/32.1152.td.20160802.1053.002.html

玛湖致密砾岩油藏水平井体积压裂技术探索与实践

2019年3月第24卷第2期中国石油勘探 CHINA PETROLEUM EXPLORATION DOI. 10.3969/j .issn.l 672-7703.2019.02.013 玛湖致密砾岩油藏水平井体积压裂技术探索与实践 许江文I 李建民I 乌卩元月I 丁坤I 江洪2 (1中国石油新疆油田公司工程技术研究院,2中国石油新疆油田公司开发公司) 摘 要:玛湖油田致密砾岩油藏油气富集、开发潜力巨大,但成藏条件复杂、岩性致密、储层物性差、非均质性强、 砂体跨度大,压裂面临着起裂困难、裂缝复杂程度低、有效支撑难度大、稳产能力差等挑战。针对油藏地质特征与改 造难点,秉承“缝控储量”的理念,拓宽非常规油藏体积压裂认识,通过5年的探索与实践,集成了以细分切割为主 要特点的致密砾岩油藏水平井体积压裂技术系列。通过速钻桥塞分段、小裂缝间距分簇射孔、大排量逆混合注入相结 合,确保段内多簇裂缝高效起裂延展;组合加砂工艺与大液量滑溜水替代瓜尔胶入井相结合,在改善裂缝纵向及远端 支撑剂铺置效果、提高裂缝导流能力的同时,实现地层增能蓄能;从而实现了致密砾岩储层的体积改造,确保了压裂 改造的长期有效。该项技术目前已在玛湖全区的勘探、评价与产能建设领域推广应用,累计在11区块实施水平井86 井次,改造后水平井增产稳产效果显著提升,取得了玛湖致密砾岩油藏效益开发的突破,有效推动了玛湖油田的整体 开发和规模效益动用。 关键词:玛湖油田;致密砾岩油藏;水平井;细分切割体积压裂 中图分类号:TE357.1 文献标识码:A Exploration and practice of volume fracturing tech no l ogy in horizontal well of Mahu tight conglomerate reservoirs Xu Jiangwen 1, Li Jianmin 1, Wu Yuanyue 1, Ding Kun 1, Jiang Hong 2 (1 Engineering Technology Research Institute, PetroChina Xinjiang Oilfield Company; 2 PetroChina Xinjiang Oilfield Development Company ) Abstract: Mahu tight conglomerate reservoirs have huge potential of tight oil resource and exploitation. Based on the complex reservoir -forming conditions, poor reservoirs property, strong heterogeneity and large sand body span, hydraulic fracturing in this area was facing serious challenges in fracture initiation and proppant placement. Annual production capacity of fractured wells were under expectation. According to the concept of "fracture-controlled reserves", series technologies of subdivision volume fracturing are integrated after 5 years of exploration. High-efficiency initiation and extension of multi-cluster fractures in one section are achieved by using drillability bridge plug segmented, small crack spacing cluster perforation and large displacement inverse mixing injection technologies. The effect of proppant placement and reservoir pressure are improved through multi-scale proppant adding method and increasing the dosage of slippery water to replace the guar gum. The series technologies have been widely applied in 11 blocks and 86 wells in Mahu, including exploration, evaluation and development area. For tight oil reservoir, the fracturing and producing effects have improved and economic development has been realized. Then, development of the total Mahu oilfield is effectively promoted. Key words: Mahu oilfield,tight conglomerate reservoirs,horizontal well, subdivision volume fracturing technology 0引言准鳴尔盆地玛湖凹陷是一个多层系成藏的大型富 坯凹陷。近年来,在二叠系、三叠系致密砾岩油藏勘 探不断获得突破,探明石油地质储量达5.2xl08t [H41o 目前主要开发玛北斜坡和玛西斜坡二叠系百口泉组致 密砾岩油藏,油藏埋深普遍大于3000m,以玛131井 区百口泉组油藏为代表的玛北斜坡致密砾岩油藏物性 差、非均质性强、砂体跨度大、油层分布特征差异大、 地层能量较弱;以玛18井区百口泉组油藏为代表的 基金项目:国家科技重大专项“大型油气田及煤层气开发” (2017ZX05070)。 第一作者简介:许江文(1967-),男,湖南祁东人,硕士,2002年毕业于西南石油大学,教授级高级工程师,现主要从事钻完井 技术研究及油气勘探工作。地址:新疆克拉玛依市胜利路87号中国石油新疆油田公司工程技术研究院,邮政编码:834000。E-mail : xujw@petrochina . com . cn 收稿日期:2018-09-20;修改日期:2019-01-11

体积压裂形成复杂网络裂缝的影响因素

体积压裂 体积压裂是在水力压裂的过程中,通过在主裂缝上形成多条分支缝或者沟通天然裂缝,最终形成不同于常规压裂的复杂裂缝网络,增加井筒与储集层接触体积,改善储集层的渗流特征及整体渗流能力,从而提高压裂增产效果和增产有效期。其主要特点有以下几点。 (1) 复杂网络裂缝扩展形态 常规压裂以形成双翼对称裂缝为目的,在致密油藏中垂直于裂缝面方向的基质渗流能力并未得到改善。体积压裂的裂缝是在三维方向卜形成相互交错的网状裂缝或者树状裂缝,在缝网区域形成一定的改造体积,增大了泄油体积。 (2) 复杂渗流机理 油气在复杂缝网中的渗流机理至今仍没有理想的研究成果。文献[7」研究了页岩基质向复杂缝网中的渗流,考虑裂缝中达西流和基质中扩散流的双机理渗流以及压敏性对渗透率的影响,建立了天然裂缝发育的双重孔隙度模型,但求解用拟压力的方法进行了标准简化。目前比较主流的观点是采用分形理论来精确刻画缝网内的渗流特性,利用缝网中主裂缝与次裂缝的自相似性,建v.油气在复杂缝网中的渗流模型。 (3) 裂缝发生错断、滑移、剪切破坏 剪切缝是岩石在外力作用下破裂并产生滑动位移,在岩层表面形成不规则或凹凸不平的几何形状,具有自我支撑特性的裂缝。体积压裂过程中裂缝的扩展形式不是单一的张开型裂缝,当压力低于最小水平主应力时,产生剪切断裂。(4) 诱导应力和多缝应力干扰裂缝发生转向 当裂缝延伸净压力大于2个水平主应力的差值与岩石的抗张强度之和时,容易在主裂缝卜产生分叉缝,分叉缝延伸到一定距离后又恢复到原来的裂缝方位,最终多个分叉缝便形成复杂的裂缝网络。 体积压裂能否形成复杂网络裂缝,取决于储集层地质和压裂施工工艺两方面因素。 1.1地质因素 (1)储集层岩石的矿物成分储集层岩石的矿物成分会影响岩石的力学性质,从

煤层气排采技术规范

煤层气企业标准 煤层气井排采工程技术规范 (试行) 2008-08-18 发布2008-08-18 实施

煤层气企业标准 煤层气井排采工程技术规范 1范围 本标准规定了煤层气井排采工程施工过程中各工序的技术标准,包括排采 总体方案的制定、泵抽系统、排采设备及地面流程的安装、场地标准、下泵作 业、洗井、探冲砂、资料录取、分析化验、总结报告编制等技术要求。 本标准适用于煤层气井的排采作业工程。 2引用标准 下列标准所包含的条文,通过对标准的引用而成为本规范的条文。 中联煤层气有限责任公司煤层气井排采作业管理暂行办法 油水井常规修井作业 油水井常规修井作业 油水井常规修井作业 油水井常规修井作业 油气田水分析方法 3排采总体方案的制定 3.1基本数据 3.1.1钻井基本数据 钻井基本数据包括地理位置、构造位置、井别、井型、施工单位、目的层、开钻日期、完 钻日 期、完井日期、钻井周期、完钻井深、完钻层位、最大井斜、井深、方位、人工井底、 补芯咼。 3.1.2完成套管程序 完成程序包括套管规范、下深、钢级、壁厚、水泥返高、固井质量、短套管、油补距。 3.1.3煤层深度、厚度及射孔井段 3.1.4解吸/吸附分析成果 包括含气量、含气饱和度、临界压力 3.1.5注入/压降测试及原地应力测试数据 包括渗透率、表皮系数、储层压力、压力梯度、研究半径、煤层温度、闭合压力、闭合压 力梯度、破裂压力等。 3.2排采总体方案 3.2.1排采目的 3.2.2排采目的层及排采方式 3.2.3 排采设备及工艺流程设计 3.2.4 排采周期 3.3 工艺技术要求 3.3.1 动力系统 SY/T 5587.6-93 SY/T 5587.7-93 SY/T 5587.16-93 SY/T 5587.5-93 SY/T5523-92 起下油管作业规程 洗井作业规程 通井、刮削套管作业规程 探砂面、冲砂作业规程 SY/T6258-1996 有杆泵系统设计计算方法

相关主题
文本预览
相关文档 最新文档