当前位置:文档之家› 材料物理习题

材料物理习题

材料物理习题
材料物理习题

1. 什么是德布罗意物质波假设。

德布罗意认为实物微粒也应像光一样具有波粒二象性。

故也应该有E=mc2=h υ

P=mv=h/λ

λ =h/p=h/MoV( 当v 远小于光速c 时)

对于电子绕核运动,德布罗意推出了波尔的量子化条件,认为只有满足相波谐振的那条轨道才是稳定的轨道。电子的轨道是由υ/v 对闭合回路的积分取整数值来确定。

谐振的条件是l=2πr=n λ。即电子波长的周长是相波波长的整数倍。也就是说,氢原子中作稳定的圆周运动的电子相应的波应该是一个驻波。(画图)

2. 什么是海森堡测不准原理?

由于衍射效应,同时确定微观粒子的位置和动量,原则上是不可能的,若将其中的一个量的测量精度提高,则另一个测量量的精度会相应的降低。其典型关系式是: 这里的Δx 、ΔP 、ΔE 、Δt 分别是位置、动量、能量和时间测不准量 海森堡原理表明了量子力学的一个基本特点:我们不能决定某一物理量的确切数值,而只能从大量的测量中得到它的几率分布。

3. 描述微观粒子所需的量子数:需要4个量子数,分别是主量子数n ,角量子数l ,磁量子数m l 和自旋量子数ms

1. 主量子数n :决定能级能量,n=1,2,3,4…….习惯上,在光谱学符号中,n 为1时为K 壳层,为2时称为L 壳层,一次类推(M 、N 、O 、….)主量子数越大,能级越高。

2. 角量子数l : 决定微观粒子的角动量。l=0,1,2,3…n -1。光谱学符号,l=0,1,2,3状态分别称为s ,p ,d ,f 状态。

3. 磁量子数ml :决定轨道角动量在空间的方位。对于同一角量子数l ,ml=0,±1, ±2…. ±l

4. 自旋量子数ms :描述微观粒子的自旋方向,只有两个值,分别是1/2和-1/2

4. 两个原子从无限远处靠近而形成结

合键,试述结合键的普遍性质。

原子间存在着相互作用力。相互作

用力包括引力和斥力两类。引力来源于

异性电荷之间的库仑力。斥力来源于有

二,一是通行电荷库仑力;二是泡利原

理引起的斥力。

当两原子相距无限远时,相互作用

力为零;两原子靠近时,同时产生引力

h t E h p x ≥??≥??. . =≈???=≈???ππ22h t E h P x

和斥力,但引力大于斥力,并随r减小而增大。到达r=rm时,合引力最大,此时两原子快速靠近。r再减小,合力逐渐减小,到r=r0时,合力等于零。此时达到平衡,处于晶体中晶格平衡位置。当r再减小时,斥力大于引力,并随r 减小而迅速增大。

5.结合键类型:包括主价键和次价键两类,主价键包括:离子键,共价键和金

属键三类。次价键包括分子键和氢键两类。

6. 描述驻波的特点和“驻”字的意义。

驻波是由两列振幅相同在同一直线上沿不同方向传播时形成的叠加波。

它的振幅与位置有关,振幅大小按余弦规律随x变化,形成振幅恒为0的波节和恒最大的波腹。所有质点都按同一频率作简谐振动。

同一段的点相位相同,相邻段的点相位相反,相位不能发生传播。

当质点同时达到平衡位置时,势能为零,动能最大,此时动能集中在波腹附近;当质点同时达到最大位移时,动能为零,势能最大,波节处变形最大,故势能集中在波节附近。动能和势能在波节附近和波腹附近相互间转换,但不会在不同的波段中传递,其驻波能流密度为零。

1)“驻”字第一层含义:波形不传播,是媒质质元的一种集体振动形态。

2)“驻”字的第二层含义:驻波的相位不传播。

3)“驻”字的第三层含义:驻波不传播能量。

7. 禁带的物理意义?

在k=±n/2a时,由于周期性势场的影响,当总能量为E0-|Vn|的能级被电子占有后,再增加一个电子,只能占据E0+|Vn|能级,而在这两能级之间的能态是禁止的。

8. 什么是布利渊区?

把波矢空间看作倒格矢空间,E-k关系可把倒格矢空间划分成许多区间,在区间内能量是连续的,在区间边缘k=±n/2a处能量不连续,发生突变。这样的区间称为布里渊区间。

9. 论述金属经典自由电子理论与量子自由电子理论以及能带理论的区别。

经典自由电子理论:假设内部势能为零,边界处势能很高,即电子在内部处于自由状态,运动服从经典力学规律,特别是理想气体的运动规律。

量子自由电子理论:考虑晶格势场对电子运动的影响,但不考虑其周期性,而把它看成一个平均势场。价电子是共有的,可以在整个金属内自由运动,价电子之间以及价电子与离子之间没有相互作用,电子运动遵循量子力学原理。其状态函数为连续函数,形成的能级为准连续能级。

能带理论:考虑晶格周期性势场以及电子间的相互作用对电子运动的影响。又分为准自由电子近似和紧束缚电子近似。

准自由电子近似:电子的行为和量子自由电子论中的电子相同,认为晶格周期势场对电子作用很弱,电子几乎是按照量子力学规律自由运动的,但是其形成的能级不是准连续的,而是在k=±n/2a 处出现不允许电子出现的禁带,其禁带宽度为2|Vn|(Vn为微扰势)。

紧束缚电子近似:原子轨道线性组合法。晶体中原子间距较大,晶格势变化显著,在原子附近的电子受自身原子的束缚较紧,不容易产生共有化运动,同孤立原子中的原子行为相似,因此可用原子轨道的线性组合构成紧束缚电子的电子波函数。当晶体中N个原子靠得很近时,孤立原子能级展宽并分裂成N个接近连续的密集能级,形成能带。当原子彼此远离时,能带变窄,极限情况下,趋于孤立原子的能级。

10. 作图描述绝缘体、半导体和导体(含三种情况)

的价带、禁带和空带之间的相对位置。

11. 画出自由电子理论中的状态密度函数分布曲线,

费米函数曲线,以及电子分布曲线(随能量变化)

12. 有效质量的物理意义

在能带理论中,电子运动要受到晶格周期场的作

用。根据测不准原理,电子的空间位置和动量都有一

定的范围,因此在?k比布里渊区限度2π/a小得多的

前提下,电子的运动可以看成以ko为中心,波矢在

?k范围内变化的布洛赫波组成的波包运动。此时,晶

体电子可用类经典粒子所具有的经典量描述,并可用

有效质量来概括与晶格有相互作用的电子对外力F的响应,可写成牛顿第二定律的形式:F=m*a

13. 画出并描述有效质量随波矢k变化的定性曲线。

12. 晶体中振动的类型:

晶体中的振动有三种:①晶格振动,即原子在平衡位置附近轻微振动;②扩散,即少数原子离开原来的平衡位置而发生迁移;③熔化,即原子间的联系遭到破坏而使整个晶体瓦解。

固体的比热、热膨胀、热导等直接与晶格振动有关。

13. 什么是格波?

原子在平衡位置附近的振动以前进波的形式在晶格中传播,这种由晶格振动而形成的波叫格波。格波的波长为λ=2π/k;

格波的特点:晶格中原子的振动;相邻原子间存在固定的位相。

14. 什么是色散关系式?

即波的频率(决定颜色)和波矢的函数。一种色散关系式则对应一种类型的格波。在三维固体中,有3PN个色散关系式,即有3PN种格波。其中P为每个原胞内的原子数,N为原胞数。

15. 光学波与声学波比较

16. 声子的概念、特点和物理意义

声子是指晶格振动中的独立简谐振子的能量量子。声子的能量是hw/2 ,是玻色子,其分布遵循玻色统计分布。具有准粒子性,其动量不确定,因为当k 改变一个周期时,还是居于同一振动状态,因此其动量不是真动量。声子数仅与晶格振动的能量有关,即依赖与温度,在T=0K时,没有任何声子被激发,并且可将格波与物质的相互作用理解为声子与物质的碰撞过程。

17. 固体比热的一般规律

固体的比热是指单位质量的固体温度升高1K所要吸收的热量。

固体比热的实验定律是:高温下符合Dulong-Petit定律,低温下符合Debye 定律。

Dulong-Petit定律:高温下的比热为常数,摩尔热容为3R=24.9 J/(K.mol) 。这里R=8.314 J/(K.mol) 是普适气体常数。

Debye定律:低温下的固体比热与T3(温度的三次方)成正比。

18. 描述固体比热的模型以及它们与实验结果的比较。(画出比热随温度变化的一般曲线,并描述不同阶段比热随温度变化的关系)

Einstein模型:假定晶体中所有原子都以相同频率独立振动。每个原子都是一个量子谐振子。这样,晶体内能的积分变成了求和。

Debye模型:假设晶体为各向同性的连续弹性媒质。由晶体振动理论知,此时晶体中仅有3支声学格波。为简单起见,假设他们的波速相同,因而其色散关系是线性的。

在高温下,均能与实验结果相符,趋于常数。但严格对照会发现,实验值在高温区虽然很接近25J/(mol2K),但并不是以3R为渐近线,而是超过3R而所有上升。其原因为德拜模型只考虑了晶格振动对热容的贡献,但事实上,自由电子对热容也有部分贡献。

在低温下,Einstein 模型中比热随温度成指数变化,与实验结果不符,这是因为E模型只适应于光学波,其w随q变化很小,可视为常数,但低温下光学

波难以被激发,只有波长较长的声学波吸收能量而被激发。而Debye模型中,比热随温度的三次方变化,与实验结果相符,因为在低温下,主要以长波格波的激发为主,可以将晶格看成连续介质。

Ⅰ区被放大,只有0~5K范围,cV

∝T;Ⅱ区,cV∝T3;Ⅲ区在θD附近,

cV≈3R;Ⅳ区,cV稍大于3R,增加部

分主要是自由电子对热容的贡献。

19. 德拜温度

在晶格比热理论中,T>德拜温度,适用于经典统计力学规律,T<德拜温度,需要用量子统计规律。

德拜温度可反映原子间结合力,高熔点,Z较小的元素德拜温度较高。

它还与晶体材料的机械性能有关(Au、Pb等德拜温度较低,室温相对于德拜温度已为较高温,由于热振动,原子已明显偏离平衡位置,因此室温加工已相当于热加工,延展性较好。)

20. 请定性解释固体的热膨性

简谐近似能解决比热问题,但不能

解决热膨胀问题。如右图所示,两原子之

间的相互作用势能曲线不是严格的抛物

线,而是不对称的复杂函数。平衡位置的

左边较陡,右边较为平滑,因此原子振动

时,随着振幅的增加,平衡位置将向右边

移动。即原子在平衡位置作非简谐振动。

当T增加时,因非线性作用,原子间距增

大,从而在宏观上表现为体积膨胀。

21. 叙述影响热膨胀系数与其他物理量的关系。

1)由格留涅申关系式:

知膨胀系数与热容成正比,与比容比成反比。实验证明,膨胀系数与温度的关系曲线同热容与温度关系曲线特征一致。

2)热膨胀系数反映了原子结合力的大小,结合力越强,热膨胀系数越小,同样的,结合力相关的其他物理量,如熔点、弹性模量,德拜温度等都会越高。

22. 叙述温度对热导率的影响规律。(公式+画图说明)

温度较低时,声子平均自由程增大到晶粒大小,达到了上限,因此变化不大,而Cv与T的三次方成正比,因此 也与T的三次方成正比。随着温度升高,l减

小,Cv也不随T的三次方变化了,且在德拜温度以后趋于一恒定值。因此,λ主要受l的影响。因此,λ随温度升高而迅速减小。这样,在某个低温处,出现极大值(峰值)。在更高的温度,Cv已基本没有变化,l也逐渐趋于下限,因此λ随温度变化变得缓和。达到高温后,由于热辐射的影响,λ又有稍许回升。、

23.叙述非晶体的导热机理和规律

非晶体具有远程无序,近程有序的结构。因此,可以近似看成由直径非常小的极细小晶粒组成的“晶体”。较低温度时,主要是声子导热。而声子平均自由程l在不同温度基本上是常数(几个原子间距)。因此λ随温度变化与Cv随温度变化一致,先上升,最后出现一个与横坐标几乎平行的直线,不再出现峰值。若是较为透明的非晶体,在高温时,由于光子导热(其导热率随温度的三次方增大)会使得热导率继续随着温度升高而急剧升高。

24. 叙述显微结构和化学组成对热导率的影响规律

1)显微结构越复杂,对声子散射越大,热导率越小。

2)多晶体由于晶粒尺寸小,晶界多,晶界处杂质和缺陷也较多,因此热导率总是比单晶体小。

3)质点的原子量越小,密度越小,E越大,德拜温度越高,热导率越大。

3)当杂质浓度很低时,杂质效应十分明显,随着杂质含量增加,效应不断减弱。4)杂质和缺陷对热导率的影响在低温时随着温度升高而加剧,当温度高于德拜温度的一半时,与温度无关。这是因为在极低温度下,声子传到的平均波长大于线缺陷的线度,不发生散射。随着温度升高,波长逐渐减小,接近线缺陷线度时达到最大,从此温度再升高,散射效应也不发生变化,因此与温度无关。

25.以下是二维晶格在第一布里渊区的状态密度E-k图(a)和等能线图(b),其中E-k图中的横坐标<10>和<11>分别代表二维晶格的<10>和<11>方向,也即E-k图(a)中纵坐标OE两边不代表同一方向上的E-k曲线。而是有45°夹角(见图(b))。等能线从中心开始的圆逐渐变成局部有外突出的圆,进而变成分裂的四段圆弧,为什么?

《材料物理性能》试卷B.doc

一、是非题(I 分X1O=10分) 得分 评分人 1、 非等轴晶系的晶体,在膨胀系数低的方向热导率最大。 () 2、 粉末和纤维材料的导热系数比烧结材料的低得多。 () 3、 第一热应力因子/?是材料允许承受的最大温度差。 () 4、 同一种物质,多晶体的热导率总是比单晶的小。 () 5、 电化学老化的必要条件是介质中的离子至少有一种参加电导。() 6、 玻璃中的电导基本上是离子电导。 () 7、 薄玻璃杯较厚玻璃杯更易因冲开水而炸裂。 () 8、 压应力使单晶材料的弹性模量变小。 () 9、 多晶陶瓷材料断裂表面能比单晶大。 () 10、 材料的断裂强度取决于裂纹的数量。 () 二、名词解释(2分X 10=20分) 得分 评分人 题号 -------- - ? ---- * 四 五 六 七 八 九 总分 合分人 得分 材料物理性能课程结束B 试卷 考试形式 闭卷 考试用时120分钟

1、固体电解质: 2、表面传热系数: 3、P型半导体: 4、施主能级: 5、声频支: 6、稳定传热: 7、载流了的迁移率: 8、蠕变: 9、弛豫:

10、滑移系统:

三、简答题(5分X4=20分,任选4题) 得分 评分人 1、导温系数。的物理意义及其量纲? 2、显微结构对材料脆性断裂的影响? 3、写出两个抗热应力损伤因子的表达式并对其含义及作用加以说明。 4、不同材料在外力作用时有何不同的变形特征?

四、问答题(9分X4=36分) 得分 评分人 1、何为裂纹的亚临界生长?试用应力腐蚀理论解释裂纹的亚临界生长? 2、请对图1表示的氧化铝单晶的入-丁曲 线分析说明。o I JI O 0 200 400 600 800 1000 1200 1400 T/K图1氧化铝单晶的热导率随温度的变 化

无机材料物理性能习题库

2、材料的热学性能 2-1 计算室温(298K )及高温(1273K )时莫来石瓷的摩尔热容值,并请和按杜龙-伯蒂规律计算的结果比较。 (1) 当T=298K ,Cp=a+bT+cT -2=87.55+14.96 10-3298-26.68 105/2982 =87.55+4.46-30.04 =61.97 4.18 J/mol K=259.0346 J/mol K (2) 当T=1273K ,Cp=a+bT+cT -2=87.55+14.96 10-31273-26.68 105/12732 =87.55+19.04-1.65 =104.94 4.18 J/mol K=438.65 J/mol K 据杜隆-珀替定律:(3Al 2O 32SiO 4) Cp=21*24.94=523.74 J/mol K 2-2 康宁玻璃(硅酸铝玻璃)具有下列性能参数:λ=0.021J/(cm s ℃); α=4.610?6/℃;σp =7.0Kg/mm 2,E=6700Kg/mm 2,μ=0.25。求其第一及第二热冲击断裂抵抗因子。 第一冲击断裂抵抗因子:E R f αμσ)1(-==666 79.8100.75 4.61067009.810-???????=170℃ 第二冲击断裂抵抗因子:E R f αμλσ) 1(-= '=1700.021=3.57 J/(cm s) 2-3 一陶瓷件由反应烧结氮化硅制成,其热导率λ=0.184J/(cm s ℃),最大厚度=120mm 。如果表面热传递系数h=0.05 J/(cm 2s ℃),假定形状因子S=1,估算可安全应用的热冲击最大允许温差。 h r S R T m m 31.01? '=?=226*0.18405 .0*6*31.01 =447℃ 2-4、系统自由能的增加量TS E F -?=?,又有! ln ln ()!! N N N n n =-,若在肖特基缺 定律所得的计算值。 趋近按,可见,随着温度的升高Petit Dulong C m P -,

材料物理基础知识点总结

点缺陷1范围分类1点缺陷.在三维空间各方向上尺寸都很小,在原子尺寸大小的晶体缺陷.2线缺陷在三维空间的一个方向上的尺寸很大(晶粒数量级),另外两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷.其具体形式就是晶体中的位错3面缺陷在三维空间的两个方向上的尺寸很大,另外一个方向上的尺寸很小的晶体缺陷 2点缺陷的类型1空位.在晶格结点位置应有原子的地方空缺,这种缺陷称为“空位”2.间隙原子.在晶格非结点位置,往往是晶格的间隙,出现了多余的原子.它们可能是同类原子,也可能是异类原子3.异类原子.在一种类型的原子组成的晶格中,不同种类的原子替换原有的原子占有其应有的位置3点缺陷的形成弗仑克耳缺陷:原子离开平衡位置进入间隙,形成等量的空位和间隙原子.肖特基缺陷:只形成空位不形成间隙原子.(构成新的晶面)金属:离子晶体:1 负离子不能到间隙2 局部电中性要求 4点缺陷的方程缺陷方程三原则: 质量守恒, 电荷平衡, 正负离子格点成比例增减. 肖特基缺陷生成:0=V M,,+ V O··弗仑克尔缺陷生成: M M=V M,,+ M i ·· 非计量氧化物:1/2O2 (g)=V M,,+ 2h· + O O不等价参杂:Li2O=2Li M, + O O + V O··Li2O+ 1/2O2 (g) =2Li M, + 2O O + 2h· .Nb2O5=2Nb Ti ·+ 2 e, + 4O O + 1/2O2 (g) 5过饱和空位.晶体中含点缺陷的数目明显超过平衡值.如高温下停留平衡时晶体中存在一平衡空位,快速冷却到一较低的温度,晶体中的空位来不及移出晶体,就会造成晶体中的空位浓度超过这时的平衡值.过饱和空位的存在是一非平衡状态,有恢复到平衡态的热力学趋势,在动力学上要到达平衡态还要一时间过程. 6点缺陷对材料的影响.原因无论那种点缺陷的存在,都会使其附近的原子稍微偏离原结点位置才能平衡即造成小区域的晶格畸变.效果1提高材料的电阻定向流动的电子在点缺陷处受到非平衡力(陷阱),增加了阻力,加速运动提高局部温度(发热)2加快原子的扩散迁移空位可作为原子运动的周转站3形成其他晶体缺陷过饱和的空位可集中形成内部的空洞,集中一片的塌陷形成位错4改变材料的力学性能.空位移动到位错处可造成刃位错的攀移,间隙原子和异类原子的存在会增加位错的运动阻力.会使强度提高,塑性下降. 位错 7刃型位错若将上半部分向上移动一个原子间距,之间插入半个原子面,再按原子的结合方式连接起来,得到和(b)类似排列方式(转90度),这也是刃型位错. 8螺型位错若将晶体的上半部分向后移动一个原子间距,再按原子的结合方式连接起来(c),同样除分界线附近的一管形区域例外,其他部分基本也都是完好的晶体.而在分界线的区域形成一螺旋面,这就是螺型位错 9柏氏矢量.确定方法,首先在原子排列基本正常区域作一个包含位错的回路,也称为柏氏回路,这个回路包含了位错发生的畸变.然后将同样大小的回路置于理想晶体中,回路当然不可能封闭,需要一个额外的矢量连接才能封闭,这个矢量就称为该位错的柏氏矢10柏氏矢量与位错类型的关系刃型位错,柏氏矢量与位错线相互垂直.(依方向关系可分正刃和负刃型位错).螺型位错,柏氏矢量与位错线相互平行.(依方向关系可分左螺和右螺型位错).混合位错,柏氏矢量与位错线的夹角非0或90度. 柏氏矢量守恒1同一位错的柏氏矢量与柏氏回路的大小和走向无关.2位错不可能终止于晶体的内部,只能到表面,晶界和其他位错,在位错网的交汇点, 11滑移运动--刃型位错的滑移运动在晶体上施加一切应力,当应力足够大时,有使晶体上部向有发生移动的趋势.假如晶体中有一刃型位错,显然位错在晶体中发生移动比整个晶体移动要容易.因此,①位错的运动在外加切应力的作用下发生;②位错移动的方向和位错线垂直;③运动位错扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动(滑移);④位错移出晶体表面将在晶体的表面上产生柏氏矢量大小的台阶.螺型位错的滑移在晶体上施加一切应力,当应力足够大时,有使晶体的左右部分发生上下移动的趋势.假如晶体中有一螺型位错,显然位错在晶体中向后发生移动,移动过的区间右边晶体

无机材料物理性能题库(2)综述

名词解释 1.应变:用来描述物体内部各质点之间的相对位移。 2.弹性模量:表征材料抵抗变形的能力。 3.剪切应变:物体内部一体积元上的二个面元之间的夹角变化。 4.滑移:晶体受力时,晶体的一部分相对另一部分发生平移滑动,就叫滑移. 5.屈服应力:当外力超过物理弹性极限,达到某一点后,在外力几乎不增加的情况下,变形骤然加快,此点为屈服点,达到屈服点的应力叫屈服应力。 6.塑性:使固体产生变形的力,在超过该固体的屈服应力后,出现能使该固体长期保持其变形后的形状或尺寸,即非可逆性。 7.塑性形变:在超过材料的屈服应力作用下,产生变形,外力移去后不能恢复的形变。 8.粘弹性:一些非晶体和多晶体在比较小的应力时,可以同时变现出弹性和粘性,称为粘弹性. 9.滞弹性:弹性行为与时间有关,表征材料的形变在应力移去后能够恢复但不能立即恢复的能力。 10.弛豫:施加恒定应变,则应力将随时间而减小,弹性模量也随时间而降低。 11.蠕变——当对粘弹性体施加恒定应力,其应变随时间而增加,弹性模量也随时间而减小。 12.应力场强度因子:反映裂纹尖端弹性应力场强弱的物理量称为应力强度因子。它和裂纹尺寸、构件几何特征以及载荷有关。 13.断裂韧性:反映材料抗断性能的参数。 14.冲击韧性:指材料在冲击载荷下吸收塑性变形功和断裂功的能力。 15.亚临界裂纹扩展:在低于材料断裂韧性的外加应力场强度作用下所发生的裂纹缓慢扩展称为亚临界裂纹扩展。 16.裂纹偏转增韧:在扩展裂纹剪短应力场中的增强体会导致裂纹发生偏转,从而干扰应力场,导致机体的应力强度降低,起到阻碍裂纹扩展的作用。 17.弥散增韧:在基体中渗入具有一定颗粒尺寸的微细粉料达到增韧的效果,称为弥散增韧。 18.相变增韧:利用多晶多相陶瓷中某些相成份在不同温度的相变,从而达到增韧的效果,称为相变增韧。 19.热容:分子热运动的能量随着温度而变化的一个物理量,定义为物体温度升高1K所需要的能量。 20.比热容:将1g质量的物体温度升高1K所需要增加的热量,简称比热。 21.热膨胀:物体的体积或长度随温度升高而增大的现象。 热传导:当固体材料一端的温度笔另一端高时,热量会从热端自动地传向冷端。22.热导率:在物体内部垂直于导热方向取两个相距1米,面积为1平方米的平行平面,若两个平面的温度相差1K,则在1秒内从一个平面传导至另一个平面的热量就规定为该物质的热导率。 23.热稳定性:指材料承受温度的急剧变化而不致破坏的能力,又称为抗热震性。 24.抗热冲击断裂性:材料抵抗温度急剧变化时瞬时断裂的性能。 25.抗热冲击损伤性:材料抵抗热冲击循环作用下缓慢破坏的性能。 26.热应力:材料热膨胀或收缩引起的内应力。 27.声频支振动:振动的质点中包含频率甚低的格波时,质点彼此间的位相差不

材料物理性能课后习题答案

材料物理性能习题与解答

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其氏模量为3.5×109 N/m2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) ( 0114 .0 10 5.3 10 10 1 40 1000 9 4 0cm E A l F l E l l= ? ? ? ? ? = ? ? = ? = ? = ? - σ ε 10 909 .4 0? 0851 .0 1 = - = ? = A A l l ε 名义应变

1-3一材料在室温时的氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量. ,.,1 1 2 1 212 12 1 2 1 21 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝====∝= ===???? ? ?亦即做功或者: 亦即面积εεεεεεεσεσεσ)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为

《新能源材料物理基础》主要知识点(word文档物超所值)

《新能源材料物理基础》知识要点 绪论知识要点 1)能源的概念 能源亦称能量资源或能源资源,是指可产生各种能量(如热量、电能、光能和机械能等)或可作功的物质的统称,是指能够直接取得或者通过加工、转换而取得有用能的各种资源 2)能源的重要意义 能源是整个世界发展和经济增长的最基本的驱动力,是人类赖以生存的基础。 人的衣食住行都离不开各种形式的能源。 能源与人类社会的生存与发展休戚相关 3)按照来源,能源可以分为哪三类? 来自地球外部天体的能源(主要是太阳能) 地球本身蕴藏的能量。如原子核能、地热能等。 地球和其他天体相互作用而产生的能量。如潮汐能 4)按照基本形态,能源可以分为哪两类? 有一次能源和二次能源 5)按照使用性质,能源可以分为哪两类? 有燃料型能源(煤炭、石油、天然气、泥炭、木材)和非燃料型能源(水能、风能、地热能、海洋能)。 6)新能源概念 又称非常规能源,是指传统能源(煤炭、石油、天然气、水能、木材等)之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源。 7)新能源的特点 1)资源丰富,可再生,可供人类永续利用; 2)能量密度低,开发利用需要较大空间; 3)不含碳或含碳量很少,对环境影响小;

4)分布广,有利于小规模分散利用; 5)间断式供应,波动性大,对继续供能不利; 6)目前除水电外,可再生能源的开发利用成本较化石能源高。 8)新能源有哪些主要类型? 大中型水电; 新可再生能源,包括小水电、太阳能、风能、现代生物质能、地热能、海洋能; 传统生物质能。 9)新能源材料的概念与主要类型 新能源材料,就是为利用这些非常规的能源,所制造的新兴材料。 能源技术材料、能量转换与储能材料和节能材料等。 快离子导体与燃料电池知识要点 1.材料的导电载流子主要有哪些? 电子,电子空穴;离子,离子空位 2.材料按照其导电性大小,可以分为4种类型;导电性与温度的关系 超导体导体半导体绝缘体

材料无机材料物理性能考试及答案

材料无机材料物理性能考试及答案

————————————————————————————————作者:————————————————————————————————日期:

无机材料物理性能试卷 一.填空(1×20=20分) 1.CsCl结构中,Cs+与Cl-分别构成____格子。 2.影响黏度的因素有____、____、____. 3.影响蠕变的因素有温度、____、____、____. 4.在____、____的情况下,室温时绝缘体转化为半导体。 5.一般材料的____远大于____。 6.裂纹尖端出高度的____导致了较大的裂纹扩展力。 7.多组分玻璃中的介质损耗主要包括三个部分:____、________、____。 8.介电常数显著变化是在____处。 9.裂纹有三种扩展方式:____、____、____。 10.电子电导的特征是具有____。 二.名词解释(4×4分=16分) 1.电解效应 2.热膨胀 3.塑性形变 4.磁畴 三.问答题(3×8分=24分) 1.简述晶体的结合类型和主要特征: 2.什么叫晶体的热缺陷?有几种类型?写出其浓度表达式?晶体中离子电导分为哪几类? 3.无机材料的蠕变曲线分为哪几个阶段,分析各阶段的特点。 4.下图为氧化铝单晶的热导率与温度的关系图,试解释图像先增后减的原因。 四,计算题(共20分) 1.求熔融石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm,弹性模量值从60 到75GPa。(10分) 2.康宁1273玻璃(硅酸铝玻璃)具有下列性能参数: =0.021J/(cm ·s ·℃);a=4.6×10-6℃-1;σp=7.0kg/mm2,

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为1.0 1.0 0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变)(91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100 =-=?=A A l l ε名义应变)(99510 524.445006MPa A F T =?==-σ真应力

材料表征方法在材料物理基础中的应用

(工程)材料物理基础课程论文 X射线衍射分析在材料物理基础中的应用 朱莉莉 S1613W0804 摘要:X射线衍射分析(X-ray diffraction,简称XRD)是一种十分有效的的材料分析方法。在众多的研究和生产中被广泛应用。将具有一定波长的X射线照射到晶体性结构物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。介绍了X 射线衍射的基本原理, 从物相鉴定、点阵参数测定、微观应力测定等几方面概述了X 射线衍射技术在材料分析中的应用进展。 关键词:材料分析,X射线衍射,原理,应用

Abstract: X-ray diffraction analysis (XRD) is a very effective material analysis method, which is widely used in many research and production.When X-rays having a certain wavelength are irradiated onto a crystalline structural substance, the X-rays are scattered due to the regular arrangement of atoms or ions in the crystal, and the scattered X-rays are intensified in some directions, Crystal structure corresponding to the unique diffraction phenomenon. X-ray diffraction method has no damage to the sample, no pollution, fast, high precision, and can get a lot of information about the integrity of the crystal, etc. This article introduced the basic principle of Xraydiffraction , and discussed the application progress of X-ray diffraction technology in material analysis , which includes phase identification , determination of lattice parameter and determination of microcosmic stress etc . Key words:Material analysis, X - ray diffraction, principle, application

无机材料物理性能课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=,V 2=。则有 当该陶瓷含有5%的气孔时,将P=代入经验计算公式E=E 0+可得,其上、下限弹性模量分别变为 GPa 和 GPa 。 1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度 τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

最新无机材料物理性能考试试题及答案

无机材料物理性能考试试题及答案 一、填空(18) 1. 声子的准粒子性表现在声子的动量不确定、系统中声子的数目不守恒。 2. 在外加电场E的作用下,一个具有电偶极矩为p的点电偶极子的位能U=-p·E,该式表明当电偶极矩的取向与外电场同向时,能量为最低而反向时能量为最高。 3. TC为正的温度补偿材料具有敞旷结构,并且内部结构单位能发生较大的转动。 4. 钙钛矿型结构由 5 个简立方格子套购而成,它们分别是1个Ti 、1个Ca 和3个氧简立方格子 5. 弹性系数ks的大小实质上反映了原子间势能曲线极小值尖峭度的大小。 6. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 7. 制备微晶、高密度与高纯度材料的依据是材料脆性断裂的影响因素有晶粒尺寸、气孔率、杂质等。 8. 粒子强化材料的机理在于粒子可以防止基体内的位错运动,或通过粒子的塑性形变而吸收一部分能量,达从而到强化的目的。 9. 复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 10.裂纹有三种扩展方式:张开型、滑开型、撕开型 11. 格波:晶格中的所有原子以相同频率振动而形成的波,或某一个原子在平衡位置附近的振动是以波的形式在晶体中传播形成的波 二、名词解释(12) 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性能等。 电子的共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子的某一电子壳层转移到相邻原子的相似壳层上去,因而电子可以在整个晶体中运动。这种运动称为电子的共有化运动。 平衡载流子和非平衡载流子:在一定温度下,半导体中由于热激发产生的载流子成为平衡载流子。由于施加外界条件(外加电压、光照),人为地增加载流子数目,比热平衡载流子数目多的载流子称为非平衡载流子。 三、简答题(13) 1. 玻璃是无序网络结构,不可能有滑移系统,呈脆性,但在高温时又能变形,为什么? 答:正是因为非长程有序,许多原子并不在势能曲线低谷;在高温下,有一些原子键比较弱,只需较小的应力就能使这些原子间的键断裂;原子跃迁附近的空隙位置,引起原子位移和重排。不需初始的屈服应力就能变形-----粘性流动。因此玻璃在高温时能变形。 2. 有关介质损耗描述的方法有哪些?其本质是否一致? 答:损耗角正切、损耗因子、损耗角正切倒数、损耗功率、等效电导率、复介电常数的复项。多种方法对材料来说都涉及同一现象。即实际电介质的电流位相滞后理想电介质的电流位相。因此它们的本质是一致的。 3. 简述提高陶瓷材料抗热冲击断裂性能的措施。 答:(1) 提高材料的强度 f,减小弹性模量E。(2) 提高材料的热导率c。(3) 减小材料的热膨胀系数a。(4) 减小表面热传递系数h。(5) 减小产品的有效厚度rm。

材料物理性能课后习题问题详解_北航出版社_田莳主编

材料物理习题集 第一章 固体中电子能量结构和状态(量子力学基础) 1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3) 计算它对Ni 晶体(111)面(面间距d =2.04×10-10 m )的布拉格衍射角。(P5) 12 34 131 192 1111 o ' (2) 6.610 = (29.110 5400 1.610 ) =1.67102K 3.7610sin sin 2182h h p mE m d d λπ λ θλ λ θθ----=???????=?==?=解:(1)= (2)波数= (3)2 2. 有两种原子,基态电子壳层是这样填充的 ; ; s s s s s s s 226232 2 6 2 6 10 2 6 10 (1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量 子数的可能组态。(非书上内容)

3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级 的能量比费米能级高出多少k T ?(P15) 1()exp[]1 1 ln[1] ()()1/4ln 3()3/4ln 3F F F F f E E E kT E E kT f E f E E E kT f E E E kT = -+?-=-=-=?=-=-?解:由将代入得将代入得 4. 已知Cu 的密度为8.5×103 kg/m 3 ,计算其E 0 F 。(P16) 2 2 03 23426 23 3 31 18(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5 =1.0910 6.83F h E n m J eV ππ---=????????=解: 由 5. 计算Na 在0K 时自由电子的平均动能。(Na 的摩尔质量M=22.99,.0ρ?33 =11310kg/m ) (P16)

无机材料物理性能期末复习题

期末复习题参考答案 一、填空 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。 5.电介质材料中的压电性、铁电性与热释电性是由于相应压电体、铁电体和热释电体都是不具有对称中心的晶体。 6.复介电常数由实部和虚部这两部分组成,实部与通常应用的介电常数一致,虚部表示了电介质中能量损耗的大小。 7.无机非金属材料中的载流子主要是电子和离子。 8.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 10.对于中心穿透裂纹的大而薄的板,其几何形状因子Y= 。 11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 15.当温度不太高时,固体材料中的热导形式主要是声子热导。 16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 17.电滞回线的存在是判定晶体为铁电体的重要根据。 18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 20.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 21.晶体发生塑性变形的方式主要有滑移和孪生。 22.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 23.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。 滞弹性:当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。 格波:处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,格波的一个

材料物理性能部分课后习题8页

课后习题 第一章 1.德拜热容的成功之处是什么? 答:德拜热容的成功之处是在低温下,德拜热容理论很好的描述了晶体热容,CV.M∝T的三次方 2.何为德拜温度?有什么物理意义? 答:HD=hνMAX/k 德拜温度是反映晶体点阵内原子间结合力的一个物理量 德拜温度反映了原子间结合力,德拜温度越高,原子间结合力越强 3.试用双原子模型说明固体热膨胀的物理本质 答:如图,U1(T1)、U2(T2)、U3(T3)为不同温度时的能量,当原子热振动通过平衡位置r0时,全部能量转化为动能,偏离平衡位置时,动能又逐渐转化为势能;到达振幅最大值时动能降为零,势能打到最大。由势能曲线的不对称可以看到,随温度升高,势能由U1(T1)、U2(T2)向U3(T3)变化,振幅增加,振动中心就由r0',r0''向r0'''右移,导致双原子间距增大,产生热膨胀 第二章 1.镍铬丝电阻率300K为1×10-6Ω·m加热到4000K时电阻率增加5%假定在此温度区间内马西森定则成立。试计算由于晶格缺陷和杂质引起的电阻率。 解:按题意:p(300k) = 10∧-6 则: p(400k) = (10∧-6)* (1+0.05) ----(1) 在400K温度下马西森法则成立,则: p(400k) = p(镍400k) + p(杂400k)

----(2) 又: p(镍400k) = p(镍300k) * [1+ α * 100] ----(3) 其中参数: α为镍的温度系数约 = 0.007 ; p(镍300k)(室温) = 7*10∧-6 Ω.cm) 将(1)和(3)代入(2)可算出杂质引起的电阻率 p(杂400k)。 2.为什么金属的电阻因温度升高而增大,而半导体的电阻却因温度的升高而减小? 对金属材料,尽管温度对有效电子数和电子平均速率几乎没有影响,然而温度升高会使离子振动加剧,热振动振幅加大,原子的无序度增加,周期势场的涨落也加大。这些因素都使电子运动的自由称减小,散射几率增加而导致电阻率增大 而对半导体当温度升高时,满带中有少量电子有可能被激发到上面的空带中去,在外电场作用下,这些电子将参与导电。同时,满带中由于少了一些电子,在满带顶部附近出现了一些空的量子状态,满带变成了部分占满的能带,在外电场作用下,仍留在满带中的电子也能够起导电作用。 3.表征超导体性能的3个主要指标是什么?(P80) (表征超导体的两个基本特性完全的导电性和完全的抗磁性) 1),临界转变温度TC,即成为超导态的最高温度 2)。临界磁场HC,即能破坏超导态的最小磁场,HC的大小与超导材料的性质有关 3),临界电流密度JC,即材料保持超导状态的最大输入电流 第三章 1.什么是自发磁化?(P142) 在铁磁质内部存在着很强的“分子场”,在这种“分子场”的作用下,原

材料物理性能测试思考题答案

有效电子数:不是所有的自由电子都能参与导电,在外电场的作用下,只有能量接近费密能的少部分电子,方有可能被激发到空能级上去而参与导电。这种真正参加导电的自由电子数被称为有效电子数。 K状态:一般与纯金属一样,冷加工使固溶体电阻升高,退火则降低。但对某些成分中含有过渡族金属的合金,尽管金相分析和X射线分析的结果认为其组织仍是单相的,但在回火中发现合金电阻有反常升高,而在冷加工时发现合金的电阻明显降低,这种合金组织出现的反常状态称为K状态。X射线分析发现,组元原子在晶体中不均匀分布,使原子间距的大小显著波动,所以也把K状态称为“不均匀固溶体”。 能带:晶体中大量的原子集合在一起,而且原子之间距离很近,致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。 禁带:允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。 价带:原子中最外层的电子称为价电子,与价电子能级相对应的能带称为价带。 导带:价带以上能量最低的允许带称为导带。 金属材料的基本电阻:理想金属的电阻只与电子散射和声子散射两种机制有关,可以看成为基本电阻,基本电阻在绝对零度时为零。 残余电阻(剩余电阻):电子在杂质和缺陷上的散射发生在有缺陷的晶体中,绝对零度下金属呈现剩余电阻。这个电阻反映了金属纯度和不完整性。 相对电阻率:ρ (300K)/ρ (4.2K)是衡量金属纯度的重要指标。 剩余电阻率ρ’:金属在绝对零度时的电阻率。实用中常把液氦温度(4.2K)下的电阻率视为剩余电阻率。 相对电导率:工程中用相对电导率( IACS%) 表征导体材料的导电性能。把国际标准软纯铜(在室温20 ℃下电阻率ρ= 0 .017 24Ω·mm2/ m)的电导率作为100% , 其他导体材料的电导率与之相比的百分数即为该导体材料的相对电导率。 马基申定则(马西森定则):ρ=ρ’+ρ(T)在一级近似下,不同散射机制对电阻率的贡献可以加法求和。ρ’:决定于化学缺陷和物理缺陷而与温度无关的剩余电阻率。ρ(T):取决于晶格热振动的电阻率(声子电阻率),反映了电子对热振动原子的碰撞。 晶格热振动:点阵中的质点(原子、离子)围绕其平衡位置附近的微小振动。 格波:晶格振动以弹性波的形式在晶格中传播,这种波称为格波,它是多频率振动的组合波。 热容:物体温度升高1K时所需要的热量(J/K)表征物体在变温过程中与外界热量交换特性的物理量,直接与物质内部原子和电子无规则热运动相联系。 比定压热容:压力不变时求出的比热容。 比定容热容:体积不变时求出的比热容。 热导率:表征物质热传导能力的物理量为热导率。 热阻率:定义热导率的倒数为热阻率ω,它可以分解为两部分,晶格热振动形成的热阻(ωp)和杂质缺陷形成的热阻(ω0)。导温系数或热扩散率:它表示在单位温度梯度下、单位时间内通过单位横截面积的热量。热导率的单位:W/(m·K) 热分析:通过热效应来研究物质内部物理和化学过程的实验技术。原理是金属材料发生相变时,伴随热函的突变。 反常膨胀:对于铁磁性金属和合金如铁、钴、镍及其某些合金,在正常的膨胀曲线上出现附加的膨胀峰,这些变化称为反常膨胀。其中镍和钴的热膨胀峰向上为正,称为正反常;而铁和铁镍合金具有负反常的膨胀特性。 交换能:交换能E ex=-2Aσ1σ2cosφA—交换积分常数。当A>0,φ=0时,E ex最小,自旋磁矩自发排列同一方向,即产生自发磁化。当A<0,φ=180°时,E ex也最小,自旋磁矩呈反向平行排列,即产生反铁磁性。交换能是近邻原子间静电相互作用能,各向同性,比其它各项磁自由能大102~104数量级。它使强磁性物质相邻原子磁矩有序排列,即自发磁化。 磁滞损耗:铁磁体在交变磁场作用下,磁场交变一周,B-H曲线所描绘的曲线称磁滞回线。磁滞回线所围成的面积为铁 =? 磁体所消耗的能量,称为磁滞损耗,通常以热的形式而释放。磁滞损耗Q HdB 技术磁化:技术磁化的本质是外加磁场对磁畴的作用过程即外加磁场把各个磁畴的磁矩方向转到外磁场方向(和)或近似外磁场方向的过程。技术磁化的两种实现方式是的磁畴壁迁移和磁矩的转动。 请画出纯金属无相变时电阻率—温度关系曲线,它们分为几个阶段,各阶段电阻产生的机制是什么?为什么高温下电阻率与温度成正比? 1—ρ电-声∝T( T > 2/ 3ΘD ) ; 2—ρ电-声∝T5 ( T< <ΘD );

材料物理基础教学大纲

材料物理基础教学大纲 (Information Retrieval) (供四年制物理学专业2012级试用) 课程编号:总学时数:48 学分数:3 开课单位:物电学院 课程的性质与任务 材料科学基础课程是材料科学与工程、材料物理、材料化学等专业重要的学科基础课之一,是衔接基础课与专业课的桥梁。 通过该课程的学习, 1. 使学生掌握材料引言、晶体结构、晶体结构缺陷、非晶态结构与性质、表面结构与性质、相平衡与相图、基本动力学过程——扩散、材料中的相变、材料制备中的固态反应、烧结、腐蚀与氧化、疲劳与断裂等方面的科学原理与工程方法。 2. 全面理解材料科学中的共性规律,即材料的组成-形成(工艺)条件-结构-性能-材料用途之间相互关系及制约规律。 3. 在建立材料领域科学基础的同时,通过科学思维方法的训练,培养学生运用科学原理解决实际问题的工程能力,为将来从事材料设计及研发奠定必要的基础。 平时考核与期末考核相结合。平时考核:平时成绩占50%;期末成绩:50%形式为考核,由任课教师自行出题。 大纲内容与基本要求 第一章绪论 第一节材料结构层次 第二节工程材料常见性质与性能 第三节材料的选择 第四节材料的加工工艺、材料性能的环境效应 教学要求: 1.了解发展背景以及本课程的主要内容; 2.介绍本课程的主要特点及学习方法;

3.本课程的目的和要求。 第二章固体的晶体结构 第一节晶体结构及特性 第二节晶体结构的周期性 第三节晶体结构的对称性 第四节晶体结构的表征 第五节常见晶体结构 第六节实际晶体的结构特征 第七节倒易点阵 教学要求: 1. 使学生掌握晶体与非晶体的特点; 2. 了解空间点阵、结晶学指数、晶向与晶面的关系; 3. 掌握金属晶体的结构、非金属元素单质的晶体结构;无机化合物结构; 第三章固体的能带理论基础 第一节固体中的电子状态和能带的形成 第二节周期势场中的电子状态和能带结构 第三节布里渊区和能带理论 第四节导体、半导体和绝缘体 第五节能带理论意义及其局限性 教学要求: 1.使学生掌握能带结构示意图; 2.理解晶体中电子运动的量子状态; 3.掌握布里渊区和能带理论; 第四章晶体的结构缺陷及其运动 第一节点缺陷 第二节位错 第三节位错和缺陷相互作用 第四节晶体中位错的产生极其观察 第五节常见晶体中的特殊位错结构 第六节晶界和相界 教学要求: 1.掌握晶体缺陷的类型及缺陷反应表示法; 2.了解晶体缺陷有利于分析研究结构敏感性能的变化规律和相变、扩散、

相关主题
文本预览
相关文档 最新文档