当前位置:文档之家› 杭州九沙河三维有限元分析报告

杭州九沙河三维有限元分析报告

杭州九沙河三维有限元分析报告
杭州九沙河三维有限元分析报告

三维有限元分析(Midas GTS)

为准确分析基坑开挖对邻近地铁区间隧道产生的影响,并考虑基坑开挖的空间效应,采用大型商业通用有限元分析软件Midas GTS按连续介质有限元方法进行弹塑性分析。

Midas GTS软件可进行三维建模,具有强大的非线性分析能力,内含多种土体和岩体本构模型,适于大型岩土工程的变形及稳定性分析,在国内外岩土工程数值分析中得到广泛的应用。通过建立全尺寸的三维模型,根据基坑开挖的全过程中各具体施工步,采用“激活钝化”的方式控制各层基坑土体加固,围护桩施工,土方开挖,底板施工及堆载的设置,根据基坑工程施工工况模拟基坑开挖全过程,最终对围护结构、邻近地铁隧道和周边地层的变形和内力做出合理的预测。

模型参数的选取

1.模型尺寸

根据基坑开挖对周边的影响范围,合理选取模型尺寸可减少边界条件对计算结果的影响。计算模型平面尺寸为300m(X方向)X200m(Y方向)。最大围护结构深度为51m,模型计算深度(Z方向)取为60m,模型如下图所示

2.本构模型

(1)土体本构模型

土体采用Mohr-Coulomb模型进行模拟,目前岩土工程界常用的屈服准则[1] 有:Tresca屈服准则、Mises屈服准则、Drukle-Plager屈服准则以及Mohr-Coulomb屈服准则和双剪应力屈服准则等。在各种屈服准则中Mohr-Coulomb屈服准则模型能反映土体的抗压强度不同的S- D效应(Strength Difference Effect)与对静水压力的敏感性,而且简单实用,土体参数c、φ值可以通过各种不同的常规试验测定。因此, 较其他准则具有较好的可比性,在工程实践中有着重要的作用和地位,得到了广泛的应用。基坑开挖过程中,绝大部分土体处于卸荷状态,因此,实际岩土体的弹性模量要大于压缩模量,与回弹模量相近,土体的弹性模量与埋深密切相关,Midas GTS模型中土体采用Mohr-Coulomb模型可设置弹性模量随深度的变化量,故相比其他商业有限元软件中Mohr-Coulomb模型只能采用固定的弹性模量值要灵活准确。

(2)其他单元本构模型

计算中围护桩、抗拔桩、围护桩顶板,基坑底板等材料采用弹性模型进行模拟。地铁隧道的变形要求严格,地铁隧道在基坑开挖下的变形处于弹性阶段,故对隧道管片也采用弹性模型。

3材料参数取值

计算中不同分层土体的模型参数、重度、侧压力系数等参数部分从地质勘察报告中得到,另一部分通过监测数据反演分析得到。

勘察报告给出的变形参数是压缩模量,压缩模量的计算中考虑了很大一部分塑性变形。类似基坑开挖过程中,绝大部分土体处于卸荷状态,因此,实际岩土体的弹性模量要大于压缩模量,与回弹模量相近,土体的弹性模量与埋深密切相关,故本报告在选取土体弹性模量时在地勘压缩模量的基础上进行了修正。参数如下表所示

4边界约束

模型边界采用标准约束形式,在侧向边界面施加水平方向约束(X方向UX=0,Y方向UY=0),在模型底面施加竖直方向约束(UZ=0)。边界约束如下图所示

5网格划分及单元类型

为保证网格划分质量,核心区土体及盾构管片种子(SEED)间距为3m,外围土层种子间距为12m。总共单元数为41793。

网格划分图下图

6模型施工步骤按下表所示

工况一:初始应力场平衡(包括隧道);

工况二:原堆土从10.0m高程卸载至8.0m高程,并堆填另一块从6.0m标高

至8.0m高程;

工况三:搅拌桩、抗拔桩施工;

工况四:地下水位降至1.0m高程;

工况五:堆土卸载至标高6.0m。

工况六~工况十七(remove1~11):1~11区块分块开挖。

工况十八:钢锭堆载移除。

三维分析结果

1.土体变形情况(注,标记的数值为坑底处土体变形量,单位mm)

8m以上标高土体卸除后变形

降水至-6m后土体变形

6m以上土体卸除后土体变形

1区开挖完成

2区开挖完成

3区开挖完成

4区开挖完成

5区开挖完成

6区开挖完成

7区开挖完成

8区开挖完成

9区开挖完成

10区开挖完成

11区开挖完成

钢锭移除

2.盾构变形情况

8m标高以上土体卸除后变形

围护桩、抗拔桩施工完成后土体变形

降水至-6m后土体变形

6m以上土体卸除后土体变形

1区开挖完成

2区开挖完成

3区开挖完成

4区开挖完成

5区开挖完成

6区开挖完成

7区开挖完成

8区开挖完成

9区开挖完成

10区开挖完成

11区开挖完成

钢锭移除

有限元分析大作业报告

有限元分析大作业报告 试题1: 一、问题描述及数学建模 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: (1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; (2)分别采用不同数量的三节点常应变单元计算; (3)当选常应变三角单元时,分别采用不同划分方案计算。 该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。 二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算 1、有限元建模 (1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences 为Structural (2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 (3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3 (4)建几何模型:生成特征点;生成坝体截面 (5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。

(6)模型施加约束:约束采用的是对底面BC 全约束。大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为: }{*980098000)10(Y y g gh P -=-==ρρ 2、 计算结果及结果分析 (1) 三节点常应变单元 三节点常应变单元的位移分布图 三节点常应变单元的应力分布图

有限元分析实验报告

武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析 开课学院机电工程学院 指导老师姓名 学生姓名 学生专业班级机电研 1502班 2015—2016 学年第2学期

实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 1.1方形截面悬臂梁模型建立 建模环境:DesignModeler 15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。(2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图1.1所示。 图1.1 方形截面梁模型 1.2 定义单元类型: 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图1.2所示:

图1.2 网格划分 1.21 定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示: 图1.3 定义边界条件 1.23 应力分布如下图1.4所示: 定义完边界条件之后进行求解。

有限元非线性计算特点

有限元非线性计算特点 文章通过几个典型的工程计算模型,分析比较有限元线性与非线性计算结果,阐释了有限元非线性计算的特点及优点。 标签:工程计算;线性;非线性 1 引言 有限元单元法已成为强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题,有限元的线性分析已被广泛采用。但对于许多航空工程中遇到的问题,如进气道等,仅仅采用线性求解是不真实的,而采用非线性计算将更符号实际情况。本文借助MSC/NASTRAN有限元分析程序,对于典型的工程计算模型分析比较线性与非线性计算结果,从而给出非线性计算相对于线性计算的优点及特点。 2 有限元非线性计算的特点及优点 为了明确有限元非线性计算结果与线性计算结果的差异,更好的展现有限元非线性计算的特点,本节将借助于有限元分析软件MSC/NASTRAN,对一受外载的矩形薄板根据不同的边界条件,进行非线性及线性静力分析,通过分析比较计算结果,说明有限元非线性静力计算中的一些特点。 2.1 非线性与线性计算结果随载荷的变化 首先,给出薄板尺寸、载荷。 模型尺寸:薄板尺寸为500×500×1.5mm。 载荷:受法向气动压力(pressure),气动压力由小到大变化依次为0.01MPa、0.02MPa、0.04MPa、0.08MPa、0.16MPa。 取薄板中央节点位移、应力及薄板边缘中部节点位移,比较线性计算结果和非线性计算结果。在分别进行有限元线性及非线性分析后,给出位移、应力及支反力结果随载荷的变化曲线。图1、图3、图5分别为采用限元线性计算得到的参考点的位移、应力及支反力变化曲线;图2、图4、图6分别为采用有限元非线性计算得到的参考点的位移、应力及支反力变化曲线。 由圖1、3、5可见,采用线性静力分析后,参考点位移、应力、支反力均随载荷增加而线性增大,位移、应力、支反力与载荷呈明显的线性关系,这是线性静力分析的特点。对于本例,可以预言,在其它条件不变的情况下,计算出一套载荷下的结果,就可以按照线性关系求出压力载荷下的位移、应力及支反力结果。

华科大有限元分析题及大作业题答案——船海专业(DOC)

姓名:学号:班级:

有限元分析及应用作业报告 一、问题描述 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。

二、几何建模与分析 图1-2力学模型 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。 假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3 三、第1问的有限元建模 本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。 1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural 2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 3)定义材料参数 4)生成几何模 a. 生成特征点 b.生成坝体截面 5)网格化分:划分网格时,拾取所有线段设定input NDIV 为10,选择网格划分方式为Tri+Mapped,最后得到200个单元。 6)模型施加约束: 约束采用的是对底面BC全约束。 大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在L AB上,方向水平向右,载荷大小沿L AB由小到大均匀分布(见图1-2)。以B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为: ρ(1) = gh P- =ρ g = - 10 {* } 98000 98000 (Y ) y

有限元分析报告

《有限元基础理论》报告 学院: 班级: 姓名: 学号: 任课老师: 二〇一一年十二月

题目一:三维托架实体受力分析 题目:1、三维托架实体受力分析:托架顶面承受50psi的均匀分布载荷。托架通过有孔的表面固定在墙上,托架是钢制的,弹性模量E=29×106psi,泊松比v=0.3.试通过ANSYS输出其变形图及其托架的von Mises应力分布。 题目1的分析:先进行建模,此建模的难点在对V3的构建(既图中的红色部分)。要想构建V3,首先应将A15做出来,然后执行Main Menu>Preprocessor>Modeling>Operate>Booleans>Add>V olumes命令,将所有的实体合并为一个整体。建模后,就对模型进行网格的划分,实行Main Menu>Preprocessor>Meshing>MeshTool,先对网格尺寸进行编辑,选0.1,然后点Meshing,Pick all进行网格划分,所得结果如图1.1。划分网格后,就可以对模型施加约束并进行加载求解了。施加约束时要注意,由于三维托架只是通过两个孔进行固定,故施加约束应该只是针对两孔的内表面,执行Main Menu>Solution>Define Loads>Apply>Structrual>Displacement>Symmetry B.C>On Areas命令,然后拾取两孔的内表面,单击OK就行了。施加约束后,就可以对实体进行加载求解了,载荷是施加在三维托架的最顶上的表面的,加载后求解运算,托架的变形图如图1.2。

图1.1、托架网格图 图1.2输出的是原型托架和施加载荷后托架变形图的对比,虚线部分即为托架的原型,从图1.2可看出,由于载荷的作用,托架上面板明显变形了,变形最严重的就是红色部分,这是因为其离托板就远,没有任何物体与其分担载荷,故其较容易变形甚至折断。这是我们 在应用托架的时候应当注意的。

Solidworks三维设计 COSMOS运动仿真 Simulation有限元分析

Ansys培训Solidworks培训有限元分析机构运动仿真 Animator动画仿真、CosmosWork有限元分析:强度、安全系数、正应力、撞击掉落测试、机构尺寸优化、频率分析、扭曲分析、疲劳分析、设计情形等。CosmosMotion机构运动仿真:机构零部件的质心加速度、角加速度、瞬时速度、动量、动能等运动几何关系数据并输出数据表格及曲线图等。 COSMOS的详细功能模块 (1)、前、后处理器(GEOSTAR) GEOSTAR是一个在交互图形用户环境中完全结合特征几何造型和前后处理的处理器。作为最直观的前后处理器之一,GEOSTAR解决复杂模型问题很容易。把COSMOS/M的结构、热力、流力、电磁和优化模块加在一起。 (2)、静力分析模块(STAR) 静力分析模块提供了一个完全集成的带有强大静态分析性能的前后处理器,它将在操作环境中即时显示设计过程。 (3)、频率及挫屈分析模块(DSTAR) 使用DSTAR你能确定在真实的操作环境下,你的设计时怎样进行的。它可以评估出自然频率和系统相应的模式形状。DSTAR也能计算挫屈载荷和相关的挫屈问题特征模式形状。 (4)、热效分析模块(HSTAR) 热效分析模块用来分析稳态和瞬态加热条件如对流、传导和辐射问题(二维和三维),计算温度,温度梯度和热流,解算模拟场应用。 (5)、非线性分析模块(NSTAR) 非线性分析模块提供二维和三维非线性静态和动态分析功能,包括大位移,大塑性,超塑性,粘性,蠕变,非线性热力和柱体挫屈分析,也能够研究三维模型交叉曲面的非线性接触问题。 (6)、疲劳分析模块(FSTAR) 疲劳分析模块分析在循环机械和热力载荷的影响下,机构受到的疲劳程度。FSTAR将提示你产品的疲劳周期影响并显示疲劳破坏的断面。疲劳分析模块计

有限元分析大作业试题

有限元分析习题及大作业试题 要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方 案、载荷及边界条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分 析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单 元改变对精度的影响分析、不同网格划分方案对结果的 影响分析等) E、建议与体会 4)11月1日前必须完成,并递交计算分析报告(报告要求打印)。

习题及上机指南:(试题见上机指南) 例题1 坝体的有限元建模与受力分析 例题2 平板的有限元建模与变形分析 例题1:平板的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: plane 0.5 m 0.5 m 0.5 m 0.5 m 板承受均布载荷:1.0e 5 P a 图1-1 受均布载荷作用的平板计算分析模型 1.1 进入ANSYS 程序 →ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: plane →Run 1.2设置计算类型 ANSYS Main Menu : Preferences →select Structural → OK 1.3选择单元类型 ANSYS Main Menu : Preprocessor →Element T ype →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window) → Options… →select K3: Plane stress w/thk →OK →Close (the Element T ype window) 1.4定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY :0.3 → OK 1.5定义实常数 ANSYS Main Menu: Preprocessor →Real Constant s… →Add … →select T ype 1→ OK →input THK:1 →OK →Close (the Real Constants Window)

有限元分析报告样本

《有限元分析》报告基本要求: 1. 以个人为单位完成有限元分析计算,并将计算结果上交;(不允许出现相同的分析模型,如相 同两人均为不及格) 2. 以个人为单位撰写计算分析报告; 3. 按下列模板格式完成分析报告; 4. 计算结果要求提交电子版,报告要求提交电子版和纸质版。(以上文字在报告中可删除) 《有限元分析》报告 一、问题描述 (要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。图应清楚、明晰,且有必要的尺寸数据。) 一个平面刚架右端固定,在左端施加一个y 方向的-3000N 的力P1,中间施加一个Y 方向的-1000N 的力P2,试以静力来分析,求解各接点的位移。已知组成刚架的各梁除梁长外,其余的几何特性相同。 横截面积:A=0.0072 m2 横截高度:H=0.42m 惯性矩:I=0.0021028m4x 弹性模量: E=2.06x10n/ m2/ 泊松比:u=0.3 二、数学模型 (要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;如进行了简化等处理,此处还应给出文字说明。) (此图仅为例题)

三、有限元建模(具体步骤以自己实际分析过程为主,需截图操作过程) 用ANSYS 分析平面刚架 1.设定分析模块 选择菜单路径:MainMenu—preference 弹出“PRreferences for GUI Filtering”对话框,如图示,在对话框中选取:Structural”,单击[OK]按钮,完成选择。 2.选择单元类型并定义单元的实常数 (1)新建单元类型并定 (2)定义单元的实常数在”Real Constants for BEAM3”对话框的AREA中输入“0。0072”在IZZ 中输入“0。0002108”,在HEIGHT中输入“0.42”。其他的3个常数不定义。单击[OK]按 钮,完成选择 3.定义材料属性 在”Define Material Model Behavier”对话框的”Material Models Available”中,依次双击“Structural→Linear→Elastic→Isotropic”如图

非线性有限元分析

非线性有限元分析 1 概述 在科学技术领域,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。 已经发展的数值分析方法可以分为两大类。一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。 另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。 1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。有限单元法的基本思想是将连续的求解区域离散为一组有限个,且按一定方式相互联接在一起的单元的组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。并且可以利用在每一个单元假设的近似函数来分片地表示全求解域上待求的未知场函数,从而使一个连续的无限自由度问题变成离散的有限自由度问题。 现已证明,有限单元法是基于变分原理的里兹法的另一种形式,从而使里兹法分析的所有理论基础都适用于有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法。利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,而且事先不要求满足任何边界条件,因此可以用来处理很复杂的连续介质问题。 在短短四十余年的时间里,有限单元的分析方法已经迅速地发展为适合于使用各种类型计算机解决复杂工程问题的一种相当普及的方法。如今,有限元广泛地应用于各个学科门类,已经成为工程师和科研人员用于解决实际工程问题,进行科学研究不可或缺的有力工具。有限单元法的应用围已由弹性力学平面问题扩展到空间问题,板壳问题,由静力平衡问题扩展到稳定问题,动力问题和波动问题。分析的对象从弹性材料扩展到塑性,粘弹性,粘塑性和复合材料等,从固体

ansys有限元分析大作业

ansys有限元分析大作业

有限元大作业 设计题目: 单车的设计及ansys有限元分析 专业班级: 姓名: 学号: 指导老师: 完成日期: 2016.11.23

单车的设计及ansys模拟分析 一、单车实体设计与建模 1、总体设计 单车的总体设计三维图如下,采用pro-e进行实体建模。 在建模时修改proe默认单位为国际主单位(米千克秒 mks) Proe》文件》属性》修改

2、车架 车架是构成单车的基体,联接着单车的其余各个部件并承受骑者的体重及单车在行驶时经受各种震动和冲击力量,因此除了强度以外还应有足够的刚度,这是为了在各种行驶条件下,使固定在车架上的各机构的相对位置应保持不变,充分发挥各部位的功能。车架分为前部和后部,前部为转向部分,后部为驱动部分,由于受力较大,所有要对后半部分进行加固。

二、单车有限元模型 1、材料的选择 单车的车身选用铝合金(6061-T6)T6标志表示经过热处理、时效。 其属性如下: 弹性模量:) .6+ 90E (2 N/m 10 泊松比:0.33 质量密度:) 3 2.70E+ N/m (2 抗剪模量:) 60E .2+ N/m (2 10 屈服强度:) .2+ (2 75E 8 N/m 2、单车模型的简化 为了方便单车的模拟分析,提高电脑的运算

效率,可对单车进行初步的简化;单车受到的力的主要由车架承受,因此必须保证车架能够有足够的强度、刚度,抗振的能力,故分析的时候主要对车架进行分析。简化后的车架如下图所示。 3、单元体的选择 单车车架为实体故定义车架的单元类型为实体单元(solid)。查资料可以知道3D实体常用结构实体单元有下表。 单元名称说明 Solid45 三维结构实体单元,单元由8个节点定义,具有塑性、蠕变、应力刚化、 大变形、大应变功能,其高阶单元是 solid95

有限元分析报告

有限元仿真分析实验 一、实验目的 通过刚性球与薄板的碰撞仿真实验,学习有限元方法的基本思想与建模仿真的实现过程,并以此实践相关有限元软件的使用方法。本实验使用HyperMesh 软件进行建模、网格划分和建立约束及载荷条件,然后使用LS-DYNA软件进行求解计算和结果后处理,计算出钢球与金属板相撞时的运动和受力情况,并对结果进行可视化。 二、实验软件 HyperMesh、LS-DYNA 三、实验基本原理 本实验模拟刚性球撞击薄板的运动和受力情况。仿真分析主要可分为数据前处理、求解计算和结果后处理三个过程。前处理阶段任务包括:建立分析结构的几何模型,划分网格、建立计算模型,确定并施加边界条件。 四、实验步骤 1、按照点-线-面的顺序创建球和板的几何模型 (1)建立球的模型:在坐标(0,0,0)建立临时节点,以临时节点为圆心,画半径为5mm的球体。 (2)建立板的模型:在tool-translate面板下node选择临时节点,选择Y-axis,magnitude输入5.5,然后点击translate+,return;再在2D-planes-square 面板上选择Y-axis,B选择上一步移下来的那个节点,surface only ,size=30。 2、画网格

(1)画球的网格:以球模型为当前part,在2D-atuomesh面板下,surfs 选择前面建好的球面,element size设为0.5mm,mesh type选择quads,选择elems to current comp,first order,interactive。 (2)画板的网格:做法和设置同上。 3、对球和板赋材料和截面属性 (1)给球赋材料属性:在materials面板内选择20号刚体,设置Rho为2.000e-08,E为200000,NU为0.30。 (2)给球赋截面属性:属性选择SectShll,thickness设置为0.1,QR设为0。 (3)给板赋材料属性:材料选择MATL1,其他参数:Rho为2.000e-08,E 为100000,Nu为0.30,选择Do Not Export。 (4)给板赋截面属性:截面选择SectShll,thickness设为0.2。其他参数:SHRE为8.333-01,QR为0,T1为0.2。 (5)给板设置沙漏控制:在Properties-Create面板下Card image选择HourGlass,IHQ为4,QM为0.100。更新平板。 4、加载边界条件 (1)将板上最外面的四行节点分别建成4个set。 (2)建立一个load collector。 (3)Analysis-constraints面板中,设置SIZE为1,nodes通过by sets 选择set_1、set_2、set_3、set_4,然后点击creat即可,边界条件加载完毕。 5、建立载荷条件(给球一个3mm的位移) (1)建立一个plot: post-xy plots-plots-creat plot,然后点击return;

三维有限元法计算过程

三维有限元法计算过程 三维有限元法的计算过程: 1)网格单元剖分; 2)线性插值; 3)单元分析; 4)总体刚度矩阵合成; 5)求解线性方程组等部分组成。 一、偏微分方程对应泛函的极值问题 矿井稳恒电流场分布示意图 主要任务是分析在给定边界条件下,求解稳定电流场的Laplace 方程或Poisson方程的数值解,即三维椭圆型微分方程的边值问题:

) ()((0)(0 )()()(000z z y y x x I F u n u n u F z u z y u y x u x Lu w D ---=???? ?????=+??=??=????+????+????≡ΓΓ+Γδδδγσσσ 上述微分方程边值问题等价于下面泛函的极小值问题: dS U dxdydz fU z U y U x U U J w D ?????Γ+Γ+ΓΩ +-??+??+??=222221 }])()()[(2{][γσσ 二、网格剖分 ∞1 ρi i h ρ......... ... 1、网格单元的类型 图2-5 网格单元类型 2、网格单元剖分原则及其步长选择 因此,网格内的单元剖分应按以下剖分原则 1)、各单元节点(顶点)只能与相邻单元节点(顶点)重合,而

不能成为其它单元内点; 2)、如果求解区域对称,那么单元剖分也应该对称; 3)、在场变化剧烈的区域网格剖分单元要密一些,在场变化平缓 的区域单元密度应小。 4)、网格单元体的大小变化应逐步过渡。 根据上述剖分原则,以x 、y 、z 坐标轴原点o 为中心,分别向x 、y 、z 方向的两侧作对称变步长剖分,距o 越远,步长应越大。常用的变步长方法有: c i x x i i )1(1+=?-?+ c x x i i =??+/1(i ≠0) c x x i i =?-?+1 1 1(i ≠0) 以上各式中c 为常数,1+?i x 、i x ?为同一坐标轴上相邻步长值。以x 方向为例,可知,x 正方向与负方向对称,只相差一负号。若令00=?x ,只要给出距原点最近节点的坐标1x ?,由上式即可求出其它相应的步长i x ?。同理可求得y 、 z 方向上的变步长i y ?、i z ?。 3、网格剖分方法 图2-6 平面内节点编号示意图

第9章 非线性问题的有限单元法

第9章非线性问题的有限单元法 9.1 非线性问题概述 前面章节讨论的都是线性问题,但在很多实际问题中,线弹性力学中的基本方程已不能满足,需要用非线性有限单元法。非线性问题的基本特征是变化的结构刚度,它可以分为三大类:材料非线性、几何非线性、状态非线性。 1. 材料非线性(塑性, 超弹性, 蠕变) 材料非线性指的是材料的物理定律是非线性的。它又可分为非线性弹性问题和非线性弹塑性问题两大类。例如在结构的形状有不连续变化(如缺口、裂纹等)的部位存在应力集中,当外载荷到达一定数值时该部位首先进入塑性,这时在该部位线弹性的应力应变关系不再适用,虽然结构的其他大部分区域仍保持弹性。 2. 几何非线性(大应变, 大挠度, 应力刚化) 几何非线性是有结构变形的大位移引起的。例如钓鱼杆,在轻微的垂向载荷作用下,会产生很大的变形。随着垂向载荷的增加,杆不断的弯曲,以至于动力臂明显减少,结构刚度增加。 3. 状态非线性(接触, 单元死活) 状态非线性是一种与状态相关的非线性行为。例如,只承受张力的电缆的松弛与张紧;轴承与轴承套的接触与脱开;冻土的冻结与融化。这些系统的刚度随着它们状态的变化而发生显著变化。 9.2 非线性有限元问题的求解方法 对于线性方程组,由于刚度方程是常数矩阵,可以直接求解,但对于非线性方程组,由于刚度方程是某个未知量的函数则不能直接求解。以下将简要介绍借助于重复求解线性方程组以得到非线性方程组解答的一些常用方法。 1.迭代法 迭代法与直接法不同,它不是求方程组的直接解,而是用某一近似值代人,逐步迭代,使近似值逐渐逼近,当达到允许的规定误差时,就取这些近似值为方程组的解。 与直接法相比,迭代法的计算程序较简单,但迭代法耗用的机时较直接法长。它不必存贮带宽以内的零元素,因此存贮量大大减少,且计算中舍入误差的积累也较小。以平面问题 为例,迭代法的存贮量一般只需直接法的14左右。在求解非线性方程组时,一般采用迭代 法。 2. 牛顿—拉斐逊方法 ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。然而,非线性结构的行为不能直接用这样一系列的线性方程表示。需要一系列的带校正的线性近似来求解非线性问题。 一种近似的非线性救求解是将载荷分成一系列的载荷增量,即逐步递增载荷和平衡迭代。它可以在几个载荷步内或者在一个载荷步的几个子步内施加载荷增量。在每一个增量的

重庆大学研究生有限元大作业教学内容

重庆大学研究生有限 元大作业

课程研究报告 科目:有限元分析技术教师:阎春平姓名:色学号: 2 专业:机械工程类别:学术 上课时间: 2015 年 11 月至 2016 年 1 月 考生成绩: 阅卷评语: 阅卷教师 (签名)

有限元分析技术作业 姓名: 色序号: 是学号: 2 一、题目描述及要求 钢结构的主梁为高160宽100厚14的方钢管,次梁为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间。主梁和次梁之间是固接。试对在垂直于玻璃平面方向的2kPa 的面载荷(包括玻璃自重、钢结构自重、活载荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析。 二、题目分析 根据序号为069,换算得钢结构框架为11列13行。由于每个格子的大小为1×1(单位米),因此框架的外边框应为11000×13000(单位毫米)。 三、具体操作及分析求解 1、准备工作 执行Utility Menu:File → Clear&start new 清除当前数据库并开始新的分析,更改文件名和文件标题,如图1.1。选择GUI filter,执行 Main Menu: Preferences → Structural → OK,如图1.2所示

图1.1清除当前数据库并开始新的分析 图1.2 设置GUI filter 2、选择单元类型。 执行Main Menu: Preprocessor →Element Type →Add/Edit/Delete →Add→ select→ BEAM188,如图2.1。之后点击OK(回到Element Types window) →Close

ANSYS实体建模有限元分析-课程设计报告

南京理工大学 课程设计说明书(论文) 作者:学号: 学院(系):理学院 专业:工程力学 题目:ANSYS实体建模有限元分析 指导者: (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 20 年月日

练习题一 要求: 照图利用ANSYS软件建立实体模型和有限元离散模型,说明所用单元种类、单元总数和节点数。 操作步骤: 拟采用自底向上建模方式建模。 1.定义工作文件名和工作标题 1)选择Utility Menu>File>Change Jobname命令,出现Change Jobname对话框,在[/FILNAM ] Enter new jobname文本框中输入工作文件名learning1,单击OK按钮关闭该对话框。 2)选择Utility Menu>File>Change Title命令,出现Change Title对话框,在[/TITLE] Enter new title文本框中输入08dp,单击OK按钮关闭该对话框。 2.定义单元类型 1)选择Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,出现Element Types对话框,单击Add按钮,出现 Library of Element Types 对话框。在Library of Element Types 列表框中选择 Structural Solid, Tet 10node 92,在Element type reference number文本框中输入1,单击OK按钮关闭该对话框。 2)单击Element Types对话框上的Close按钮,关闭该对话框。 3.创建几何模型 1)选择Utility Menu>P1otCtrls>Style>Colors>Reverse Video命令,设置显示颜色。 2)选择Utility Menu>P1otCtrls>View Settings>Viewing Direction命令,出现Viewing Direction对话框,在XV,YV,ZV Coords of view point文本框中分别输入1, 1, 1,其余选项采用默认设置,单击OK按钮关闭该对话框。 3)建立支座底块 选择Main Menu>Preprocessor> Modeling>Create>volumes>Block>By Demensios 命令,出现Create Block by Demensios对话框,在X1,X2 X-coor dinates文本框

有限元分析及应用大作业

有限元分析及应用大作业 作业要求: 1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 也可根据自己科研工作给出计算实例。 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方案、载荷及边界 条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单元改变对精度的 影响分析、不同网格划分方案对结果的影响分析等) 题一:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(注意ANSYS中用四边形单元退化为三节点三角形单元) 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 解:1.建模: 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作

用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况P=98000-9800*Y;建立几何模型,进行求解;假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3; 2:有限元建模过程: 2.1 进入ANSYS : 程序→ANSYS APDL 15.0 2.2设置计算类型: ANSYS Main Menu: Preferences →select Structural →OK 2.3选择单元类型: ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 182(三节点常应变单元选择Solid Quad 4node 182,六节点三角形单元选择Solid Quad 8node 183)→OK (back to Element Types window) →Option →select K3: Plane Strain →OK→Close (the Element Type window) 2.4定义材料参数: ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 →OK 2.5生成几何模型: 生成特征点: ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints→In Active CS →依次输入四个点的坐标:input:1(0,0),2(10,0),3(1,5),4(0.45,5) →OK 生成坝体截面: ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS →依次连接四个特征点,1(0,0),2(6,0),3(0,10) →OK 2.6 网格划分: ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) lines: Set →依次拾取两条直角边:OK→input NDIV: 15 →Apply→依次拾取斜边:OK →input NDIV: 20 →OK →(back to the mesh tool window)Mesh:Areas, Shape: tri, Mapped →Mesh →Pick All (in Picking Menu) →Close( the Mesh Tool window) 2.7 模型施加约束: 给底边施加x和y方向的约束: ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement →On lines →pick the lines →OK →select Lab2:UX, UY →OK 给竖直边施加y方向的分布载荷: ANSYS 命令菜单栏: Parameters →Functions →Define/Edit →1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result窗口中出现{X},写入所施加的载荷函数: 98000-9800*{Y};3) File>Save(文件扩展名:func) →返回:Parameters →Functions →Read from file:将需要的.func文件打开,参数名取meng,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Lines →拾取竖直边;OK →在下拉列表框中,选择:Existing table →OK →选择需要的载荷为meng参数名→OK 2.8 分析计算: ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load

厚壁圆筒有限元分析报告

有限元与CAE分析报告 专业: 班级: 学号: 姓名: 指导教师: 实习时间: 年月日

平面问题的厚壁圆筒问题 一、问题提出 如图所示为一厚壁圆筒,其内半径为r1=50mm,外半径为r2=100mm,作用在内孔上的压力p=10 Mpa,无轴向压力,轴向长度很长可视为无穷,要求对其进行结构静力分析,并计算厚壁圆筒径向应力和切向应力沿半径r方向的分布。弹性模量E=200 Gpa,泊松比μ=0.3。 图1 厚壁圆筒 二、建模步骤 1 定义工作文件名 依次单击Utility Menu>File>Change Jobname,在文本框中输入:1245523229,在“New Log and error files”处选中“yes”,单击“OK”。 2 定义工作标题 依次单击Utility Menu>File>Change Title ,在文本框中输入:1245523229,单击“OK”。依次单击Plot>Replot, 3 定义单元类型 1)依次单击Main Menu>Prefrences,选中“Structural”,单击“OK”。

2)依次单击Main Menu>Preprocessor>Element type>Add/Edit/Delete,出现对话框,单击“Add”,出现一个“Library of Element Type”对话框,。在“Library of Element Type”左面的列表栏中选择“Structural Solid”,在右面的列表栏中选择“Quard 4node 182”,单击“OK”。 2) 单击对话框中的“Options”,在弹出的单元属性对话框中,选择K3关键字element behavior为“Plane strain”,再单击“Close”,完成单元的设置。

王 惠_HyperMesh在子午线轮胎三维非线性有限元分析的应用

HyperMesh在子午线轮胎三维非线性 有限元分析中的应用 王惠 丁峻宏 韩轩 上海超级计算中心

HyperMesh 在子午线轮胎三维非线性 有限元分析中的应用 HyperMesh Application in Radial Tire 3D Non-Linear Finite Element Analysis 王惠 丁峻宏 韩轩 (上海超级计算中心 上海 201203) 摘要:在HyperMesh中建立子午线轮胎的三维非线性有限元模型,用ABAQUS软件的非线性 分析技术对子午线轮胎进行了有限元分析。考虑了轮胎的几何非线性,材料非线性,橡胶-帘线等复合材料的各向异性以及轮胎与地面的接触非线性,,给出了轮胎与地面接触过程中轮胎的变形情况,接触区域形状以及带束层应力分布情况。对子午线轮胎的设计和改进具有一定的指导意义。 关键字:HyperMesh,子午线轮胎,非线性,有限元分析 Abstract: A 3D non-linear finite element model of radial tire with contact with pavement is established using HyperMesh, radial tire’s finite element analysis is carried out using ABAQUS. With considerations of tire’s geometry non-linearity, material non-linearity, anisotropy of rubber-cord composite material and nonlinear contact of tire-pavement, deformation of the tire and tire belt layer’s effective stress are calculated and contact region contour are also described which gives helpful reference to radial tire structural design and improvement. Key word: HyperMesh, radial tire, non-linear, finite element analysis 1引言 轮胎是汽车和路面间传递力和力矩作用的唯一部件,具有优良的变形恢复能力和地面贴附能力,可以分散汽车对路面的压应力,降低汽车运动的能量损失,缓和行驶冲击,改善载荷条件等。轮胎的力学特征在在车辆动力学特性的研究中具有极其重要的地位。 随着轮胎力学和计算机技术的发展,有限元分析方法已经广泛应用于轮胎研究和设计中。轮胎有限元分析的关键是轮胎力学模型的建立,包括轮胎材料、变形、接触条件和结构的准确模拟。在建立轮胎有限元结构分析模型时,要考虑轮胎工作时存在的几何、材料和边界条件的非线性等。 子午线轮胎是由橡胶与橡胶基复合材料组成的柔性层合结构。本文在HyperMesh中建立子午线轮胎的三维非线性有限元模型,用ABAQUS软件的非线性分析技术对子午线轮胎进行了有限元分析。考虑了子午轮胎材料的非线性和不可压缩性,带束层-橡胶复合材料的各向异性,轮胎大变形导致的几何非线性以及轮胎和路面接触的非线性边界条件,建立子午线轮胎与地面接触的三维非线性有限元计算模型,得出了轮胎各部分的变形和应力情况以及接地印痕分布情况,为进一步研究子午线轮胎动态接触分析和结构优化设计奠定了基础。 2 子午线轮胎模型的建立

相关主题
文本预览
相关文档 最新文档