当前位置:文档之家› 二次函数求最值方法总结

二次函数求最值方法总结

二次函数求最值方法总结
二次函数求最值方法总结

初三.二次函数知识点总结

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项 系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 结论:a 的绝对值越大,抛物线的开口越小。 总结:

2. 2 =+的性质: y ax c 结论:上加下减。 总结:

3. ()2 =-的性质: y a x h 结论:左加右减。 总结: 4. ()2 =-+的性质: y a x h k

总结: 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法 如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成 ()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧, 左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

《用配方法解二次函数的相关问题》练习教学内容

-1 - 4 资料收集于网络,如有侵权请联系网站删除 用配方法解二次函数的相关问题的导练案一、选择题 1.下列函数中①y=3x+1;②y=4x2-3x;③y=4 x2+x2; ④y=5-2x2,二次函数的 有() A.②B.②③④C.②③D.②④ 2.抛物线y=-3x2-4的开口方向和顶点坐标分别是() A.向下,(0,4)B.向下,(0,-4)C.向上,(0,4)D.向上,(0,-4) 3.抛物线y=-1x2-x的顶点坐标是() 2 A.(1,1) 2B.(-1,)C.(1,1)D.(1,0) 22 4.二次函数y=ax2+x+1的图象必过点() A.(0,a)B.(-1,-a)C.(-1,a)D.(0,-a) 5、已知方程x2-6x+q=0可配方成(x-p)2=7的形式,那么x2-6x+q=2可配方成下列的() A.(x-p)2=5B.(x-p)2=9C.(x-p+2)2=9D.(x-p+2)2=5 6、把方程x2+3x-4=0左边配成一个完全平方式后,所得方程是() 2 A.(x+3)2=-73B.(x+3)2=-15C.(x+3)2=15D.(x+3)2=73 416242416二、填空题 1.把二次函数y=ax2+bx+c(a≠0)配方成y=a(x-h)2+k形式 为,顶点坐标是,对称轴是直线.当x=时,y最值=;当a<0时,x时,y随x增大而减小;x时,y随x 增大而增大.

2.抛物线y=2x2-3x-5的顶点坐标为.当x=时,y有最______值是,与x轴的交点坐标是,与y轴的交点坐标是,当x时,y随x增大而减小,当x时,y随x增大而增大. 3.抛物线y=3-2x-x2的顶点坐标是,它与x轴的交点坐标是,与y轴的交点坐标是. 4.把二次函数y=x2-4x+5配方成y=a(x-h)2+k的形式,得,这个函数的图象有最点,这个点的坐标为. 5.已知二次函数y=x2+4x-3,当x=时,函数y有最值是,当x时,函数y随x的增大而增大,当x=时,y=0.6.抛物线y=ax2+bx+c与y=3-2x2的形状大小完全相同,只是位置不同,则a=. 7.抛物线y=2x2先向平移个单位就得到抛物线y=2(x-3)2,再向平移个单位就得到抛物线y=2(x-3)2+4. 三、解答题 1.已知二次函数y=2x2+4x-6. (1)将其化成y=a(x-h)2+k的形式;

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的面积来得到

二次函数求最值之高级求法 (1)

二次函数求最值之高级求法 问题阐述: 对于二次函数2 y ax bx c =++(0a ≠),我们都知道当0a >时,有最小值2 44ac b a -;当0a <时,有最大值2 44ac b a -。但是,我们真的在求最值过程中很少用这个公式直接计算,因为这里计算量比较大。 因此,大多数人在求解最值过程中用的最多的方法便是配方法求最值,这也是普遍能够接受的方法。那有没有更快的方法来求解二次函数的最值呢?答案是肯定的,今天,我们用一种高级一点的方法来快速求解二次函数的最值。 首先,我们来看一个基本的不等式()2 0a b -≥恒成立,因此得到222a b ab +≥,两边加上一个2ab ,得到()24a b ab +≥,即2 2a b ab +??≤ ???,当a b =时,这里就取到等号。 求二次函数的最值问题时,我们要保证a b +是一个定值,然后就可以利用刚刚证明的一个基本不等式2 2a b ab +??≤ ??? 来求二次函数的最大值或最小值。 【求最大值】 例1:求二次函数246y x x =-++的最大值。 解:原式化为,()46y x x =-+, 因为()44x x +-=是一个定值, 所以原式()2 4646102x x y +-??≤+=+= ???

32解:原式化为,71623y x x ??=-+ ???,到此,我们发现现在不能用基本不等式求出最大值,因为x 与7123 x -的和并不是定值,因此我们陷入了困境。实际上我们可以换一个角度思考,既然要出现和为定值,那么我们就只需要配出一个和为定值的形式即可。 因此,原式可以这样变形:17136323y x x ????=?-+ ??????? , 这里就有1717=3232 x x ??+- ???为定值了, 那么我们就可以利用基本不等式求解二次函数的最大值了, 所以原式2 171492433233636=21616x x y ????+- ? ??? ?≤+=?+ ? ??? 【求最小值】 例3:求二次函数246y x x =++的最小值。 解:原式化为,()46y x x =++,因为()442x x x ++=+并不是一个定值,那么我们就不能够直接运用基本不等式求最值,那么我们就得从例2的求解方法中采用的配凑思想,因为()44x x -++=是定值. 因此原式()()46y x x =--++, 由基本不等式22a b ab +??≤ ??? ,两边添一个负号, 不等号改变方向,即2 2a b ab +??-≥- ??? 。 所以原式()2464622x x y -++??≥-+=-+= ???

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数, 0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

二次函数动点问题解答方法技巧(含例解答案)33935

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为 顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M 为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平 分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方 法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

二次函数的几何最值问题

二次函数与几何图形结合 ---探究面积最值问题 〖方法总结〗: 在解答面积最值存在性问题时,具体方法如下: ①根据题意,结合函数关系式设出所求点的坐标,用其表示出所求图形的线段长; ②观察所求图形的面积能不能直接利用面积公式求出,若能,根据几何图形面积公式得到点的坐标或线段长关于面积的二次函数关系式,若所求图形的面积不能直接利用面积公式求出时,则需将所求图形分割成几个可直接利用面积公式计算的图形,进行求解; ③结合已知条件和函数图象性质求出面积取最大值时的点坐标或字母范围。 (2014?达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式. (2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标. (3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

(2014自贡)如图,已知抛物线c x ax y +- =232与x 轴相交于A 、B 两点,并与直线221-=x y 交于B 、C 两点,其中点C 是直线22 1-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.

(2014黔西南州)(16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

(完整word版)初中二次函数知识点总结(全面)

二次函数知识点 二次函数概念: 1.二次函数的概念:一般地,形如y=ax 2+bx+c (a b c ,,是常数,a ≠0)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域是全体实数。<<>≤≥ 2. 二次函数y=ax 2+bx+c 的性质 1)当a >0时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. (三)、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可 以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 练习 1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D. 2. 函数y=x 2-2x+3的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在( ) A. 第一象限 B. 第二象限 C. x 轴上 D. y 轴上

二次函数配方法练习

二次函数配方法练习 The latest revision on November 22, 2020

1.抛物线y =2x 2-3x -5配方后的解析式为顶点坐标为______.当x =______时,y 有最______值是______,与x 轴的交点是______,与y 轴的交点是______,当x ______时,y 随x 增大而减小,当x ______时,y 随x 增大而增大 . 2.抛物线y =3-2x -x 2的顶点坐标是______,配方后为 它与x 轴的交点坐标是______,与y 轴的交点坐标是______. 3.把二次函数y =x 2-4x +5配方成y =a (x -h )2+k 的形式,得______,这个函数的图象有最______点,这个点的坐标为______. 4.已知二次函数y =x 2+4x -3,配方后为当x =______时,函数y 有最值______,当x ______时,函数y 随x 的增大而增大,当x =______时,y =0. 5.抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______. 6.抛物线y =2x 2如何变化得到抛物线y =2(x -3)2+4.请用两种方法变换。 7.抛物线y =-3x 2-4的开口方向和顶点坐标分别是() A .向下,(0,4) B .向下,(0,-4) C .向上,(0,4) D .向上,(0,-4) 8.抛物线x x y --=221 的顶点坐标是() A .)21,1(- B .)21,1(- C .)1,21 (- D .(1,0)

全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

1二次函数的最值问题总结

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 二次函数求最值(一般范围类) 例1. 当22x -≤≤时,求函数2 23y x x =--的最大值和最小值. 例2. 当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 例3. 当0x ≥时,求函数(2)y x x =--的取值范围. 例4. 当1t x t ≤≤+时,求函数215 22 y x x =--的最小值(其中t 为常数). 在实际生活中,我们也会遇到一些与二次函数有关的问题: 二次函数求最值(经济类问题) 例1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系. (1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元? (2)在政府补贴政策实施后,分别求出该商场销售彩电台数y 和每台家电的收益Z 与政府补贴款额x 之间的函数关系式; (3)要使该商场销售彩电的总收益w (元)最大,政府应将每台补贴款额x 定为多少?并求出总收益w 的最大值. 例2.凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去. (1)设每间包房收费提高x (元),则每间包房的收入为y 1(元),但会减少y 2间包房租出,请分别写出y 1、y 2与x 之间的函数关系式. (2)为了投资少而利润大,每间包房提高 x (元)后,设酒店老板每天晚餐包房总收入为y (元),请写出y 与x 之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.

二次函数最值知识点总结典型例题及习题

必修一二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

二次函数知识点总结59889

二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 3. ()2 y a x h =-的性质: 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移

1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成c m x b m x a y ++++=)()(2 (或 c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x , (若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而

最新二次函数最值问题类型题总结

二次函数 y = ax 2 bx c(a = 0)的最大值或最小值问题 知识点:1、配方法:将二次函数的一般式 y =ax 2 ? bx c(a =O,a,b,c 都是常数)化为顶 点式 y=a(x+m$+k (1 )若a 0,y 有最小值?当x - _m 时,y 取得最小值k (2)若a :::0,y 有最大值?当x 二_m 时,y 取得最大值k (2)若a ::: 0,y 有最大值,没有最小值,当 考察方向:一、1、已知二次函数的图像确定二次函数的最值 2 例1、二次函数y =ax ? bx ? c(a =0)的部分图象如图1.3-3所示,则该函数有最 __________________ 值, 最值为 __________________ . ;①在函数整个定义域内求 函数最值 〔②在给定定义域区间范围内求函 数最值 ①在函数整个定义域内求函数最值 2、公式法:直接利用二次函数图像的顶点坐标 (1 )若a 0,y 有最小值,没有最大值,当 b 2a 4ac-b 2 4a x =「b 时, 2a 求解. 4ac-b 2 y 最小值二 ■ 4a 4ac-b 2 y 最大值- ■ 4a 2、已知二次函数表达式求函数最值

例2、二次函数2 y =X 2X -5有() A.最大值-5 B. 最小值-5 C.最大值-6 D. 最小值-6 ② 在给定定义域区间范围内求函数最值 二次函数在自变量m乞x空n的给定范围内,对应的图象是抛物线上的一段?那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量x的范围的图象形状各异. 下面给出些常见情况: 2 例3、当」2乞x^2时,求函数y = x -2x-3的最大值和最小值

二次函数之配方法求顶点式以及与一元二次方程的关系

§6.2二次函数的图像与性质⑸ 【课前自习】 1. 根据y 2 2.抛物线y =2(x +2)2+1的开口向 ,对称轴是 ;顶点坐标是 , 说明当x = 时,y 有最 值是 ;无论x 取任何实数,y 的取值范围是 . 3.抛物线y =-2(x -2)2-1的开口向 ,对称轴是 ;顶点坐标是 , 说明当x = 时,y 有最 值是 ;无论x 取任何实数,y 的取值范围是 . 4.抛物线y =-1 2(x +1)2-3与抛物线 关于x 轴成轴对称; 抛物线y =-1 2(x +1)2-3 与抛物线 关于y 轴成轴对称; 抛物线y =-1 2(x +1)2-3与抛物线 关于原点对称. 5. y =a (x +m )2+n 被我们称为二次函数的 式. 一、探索归纳: 1.问题:你能直接说出函数y =x 2+2x +2 的图像的对称轴和顶点坐标吗? . 2.你有办法解决问题①吗? y =x 2+2x +2的对称轴是 ,顶点坐标是 . 3.像这样我们可以把一个一般形式的二次函数用 的方法转化为 式,从而直接得到它的图像性质. 练习1.用配方法把下列二次函数化成顶点式: ①y =x 2-2x -2 ②y =x 2+3x +2 ③y =2x 2+2x +2

④y =ax 2+bx +c (a ≠0) 4.归纳:二次函数的一般形式y =ax 2+bx +c (a ≠0)可以被整理成顶点式: , 说明它的对称轴是 ,顶点坐标公式是 . 练习2.用公式法把下列二次函数化成顶点式: ①y =2x 2-3x +4 ②y =-3x 2+x +2 ③y =-x 2-2x 二、典型例题: 例1、用描点法画出y =1 2x 2+2x -1的图像. ⑴用 法求顶点坐标: ⑶在下列平面直角坐标系中描出表中各点,并把这些点连成平滑的曲线: ⑷观察图像,该抛物线与y 轴交与点 ,与x 轴有 个交点. 例2、已知抛物线y =x 2-4x +c 的顶点A 在直线y =-4x -1上 ,求抛物线的顶点坐标.

二次函数中面积最值问题

课题:二次函数中面积最值问题(复习课) 教学目标:利用二次函数的最值求面积最值问题 教学重点:利用二次函数的顶点公式或者配方法求解面积的最值 教学难点:利用二次函数的性质和自变量取值范围求面积的最值 教学过程:复习巩固:小题热身:1.二次函数 142--=x x y 的顶点是_________ 2.当x= 时, y=3(x-5)2+6 有最___值为________ . 3.当x= 时,y=-2x2+8x-7有最___值为_______ . 引入: 王爷爷要用60米长的竹篱笆围矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成, 如何围才能使养鸡场的面积最大?最大面积是多少? 变一变 王爷爷要用60米长的竹篱笆围矩形养鸡场,养鸡场一面用砖砌成,(墙长10米)另三面用竹篱笆围成, 如何围才能使养鸡场的面积最大?最大面积是多少? 巩固:(2016?绍兴) 课本中有一个例题: 有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m ,如何设计这个窗户,使透光面积最大? 1.这个例题的答案是:当窗户半圆的半径约为0.35m 时,透光面积最大值约为1.05m2. 2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m ,利用图3,解答下列问题: (1)若AB 为1m ,求此时窗户的透光面积? (2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大? 请通过计算说明. 归纳总结:运用二次函数求几何图形面积最值一般步骤 1.审题 2.引入自变量 3.用含自变量的代数式分别表示与所求几何图形相关的量 4.根据几何图形的特征,列出其面积的计算公式,并且用函数表示这个面积,并求得自变量的取值范围. 5.根据函数关系式,求出最值及取得最值时自变量的值. 6.检验结果的合理性

初中二次函数知识点总结全面

二次函数知识点 二次函数概念: 1.二次函数的概念:一般地,形如y=ax 2+bx+c (a b c ,,是常数,a ≠0)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域是全体实数。<<>≤≥ 2. 二次函数y=ax 2+bx+c 的性质 1)当a >0时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -. (三)、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可 以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 练习 1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D. 2. 函数y=x 2-2x+3的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在( )

二次函数和最值问题总结

二次函数的最值问题 二次函数y ax2bx c ( a 0) 是初中函数的主要内容,也是高中学习的重要基 础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情 况(当 a 时, 函数在 x b处取得最小值4ac b2,无最大值;当 a 0时,函数在 x b处取得 2a 4a 2a 4ac b2,无最小 值. 最大值 4a 本节我们将在这个基础上继续学习当自变 量x 在某个范围内取值时,函数的最值问 题.同时还将学习二次函数的最值问题在实际生活中的简单应 用. 二次函数求最值(一般范围类) 例 1.当 2 x 2 时,求函数 y x22x 3 的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草 图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变 量x 的值. 解:作出函数的图象.当x 1时, y min 4 ,当 x 2 时, y max 5. 例 2.当 1 x 2 时,求函数yx2x 1的最大值和最小值. 解:作出函数的图象.当 x 1 时, y min1,当 x 2 时, y max5 . 由上述两例可以看到,二次函数在自变量 x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量 x 的范围的图象形状各异.下面给出一些常见情况: 例 3.当 x 0 时,求函数y x(2 x) 的取值范围.

资料

解: 作出函数 y x(2 x ) x 2 2x 在 x 0 内的图 象. 可以看出: 当 x 1 时, y min 1,无最大值. 所以,当 x 0 时,函数的取值范围 是 y 1 . 例 4. 当 t x t 1 时,求函数 y 1 x 2 x 5 的最小值 (其中 t 为常 数 ). 2 2 分析: 由于 x 所给的范围随着 t 的变化而变化,所以需要比较对称轴与其范围的相 对位 置. 解: 函数 y 1 x 2 x 5 的对称轴为 x 1 .画出其草图. 2 2 1 5 (1 ) 当对称轴在所给范围左侧.即 t 1 时: 当 x t 时, y min t 2 t ; t 1 t 1 0 t 1 2 2 (2 ) 当对称轴在所给范围之间.即 时: 当 x 1时, y min 1 12 1 5 3; 2 2 (3 ) 当对称轴在所给范围右侧.即 t 1 1 t 0 时: 当 x t 1 时, y min 1 (t 1)2 (t 1) 5 1 t 2 3. 2 2 2 1 t 2 3, t 0 2 综上所述: y3,0 t 1 1 t 2 t 5 , t 1 2 2 在实际生活中,我们也会遇到一些与二次函数有关的问题: 二次函数求最值 ( 经济类问题 ) 例 1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定 对购买彩电的农户实行政府补贴. 规定每购买一台彩电, 政府补贴若干元, 经调查某商场销售彩电台数 y (台)与补贴款额 x (元)之间大致满足如图①所示的一次函数关系.随着补 贴款额 x 的不断增大, 销售量也不断增加, 但每台彩电的收益 Z (元)会相应降低且 Z 与 x 之间也大致满足如图②所示的一次函数关系.

二次函数—配方法

二次函数图像和性质(5) 学习目标: 1.配方法求二次函数一般式y =ax 2+bx +c 的顶点坐标、对称轴; 2.熟记二次函数y =ax 2+bx +c 的顶点坐标公式; 3.会画二次函数一般式y =ax 2+bx +c 的图象. 学习重点:配方法或公式法求二次函数一般式y =ax 2+bx +c 的顶点坐标、对称轴; 学习难点:配方法求二次函数一般式y =ax 2+bx +c 的顶点坐标、对称轴; 学习过程: 一、复习引入 1、()k h x a y +-=2 的图像和性质填表: 2.抛物线()1222 ++=x y 的开口向 ,对称轴是 ;顶点坐标是 , 当x = 时,y 有最 值是 ;无论x 取任何实数,y 的取值范围是 . 是由抛物线2 2x y =先向 平移 个单位,再向 平移 个单位得到的。 二、自主探究 探究一:配方法求顶点坐标、对称轴 (1)问题:你能直接说出函数222++=x x y 的图像的对称轴和顶点坐标吗? (2)你有办法解决问题①吗? 222++=x x y 222++=x x y 的对称轴是 ,顶点坐标是 . (3)像这样我们可以把一个一般形式的二次函数用 的方法转化为 式, 从而直接得到它的图像性质. (4)用配方法把下列二次函数化成顶点式: ①222+-=x x y ②232 ++=x x y ③ y =12 x 2-6x +21 对称轴 对称轴 对称轴 顶点 顶点 顶点 ④4322 +-=x x y ⑤232 ++-=x x y ⑥x x y 22 --= 对称轴 对称轴 对称轴 顶点 顶点 顶点

探究二:用公式法求顶点坐标、对称轴 c bx ax y ++=2 = 对称轴 顶点坐标 用公式法把下列二次函数的顶点坐标、对称轴: ①4322 +-=x x y ②232 ++-=x x y ③x x y 22 --= 三、合作交流 根据c bx ax y ++=2的图象和性质填表: 四、精讲点拨 1、抛物线2 2()y x m n =++(m n ,是常数)的顶点坐标是( ) A .()m n , B .()m n -, C .()m n -, D .()m n --, 2、二次函数2 365y x x =--+的图象的顶点坐标是( ) A .(18)-, B .(18), C .(12)-, D .(14)-, 3、在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为 A .222-=x y B .222+=x y C .2)2(2-=x y D .2)2(2+=x y 4、抛物线3)2(2+-=x y 的顶点坐标是( ) A .(2,3) B .(-2,3) C .(2,-3) D .(-2,-3) 5、二次函数2(1)2y x =++的最小值是( ). A .2 B .1 C .-3 D . 2 3 6、将抛物线22y x =向下平移1个单位,得到的抛物线是( ) A .22(1)y x =+ B .22(1)y x =- C .221y x =+ D .221y x =- 7、抛物线1822-+-=x x y 的顶点坐标为 (A )(-2,7) (B )(-2,-25) (C )(2,7) (D )(2,-9) 8、把二次函数3412+--=x x y 用配方法化成()k h x a y +-=2的形式 A.()22412+--=x y B. ()42412+-=x y C.()42412++-=x y D. 3212 12 +??? ??-=x y 9、把抛物线2 y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为 A .2 (1)3y x =--- B .2 (1)3y x =-+- C .2(1)3y x =--+ D .2 (1)3y x =-++

相关主题
文本预览