当前位置:文档之家› 自适应在功率放大器非线性预失真中的应用

自适应在功率放大器非线性预失真中的应用

自适应在功率放大器非线性预失真中的应用
自适应在功率放大器非线性预失真中的应用

放大器的非线性失真

放大器的非线性失真 非线性失真是模拟电路中影响电路性能的重要因素之一。本章先从非线性的定义入手,确定量化非线性的一个度量标准,然后研究放大器的非线性失真及其差动电路与反馈系统中的非线性,并介绍一些线性化的技术。 12.1 概述 非线性的定义 电路非线性是指输出信号与输入信号之比不为一个常量,体现在输出与输入之间的关系不是一条具有固定斜率的直线,或体现为小信号增益随输入信号电平的变化而变化。 放大器的非线性定义:当输入为正弦信号时,由于放大器(管子)的非线性,使输出波形不是一个理想的正弦信号,输出波形产生了失真,这种由于放大器(管子)参数的非线性所引起的失真称为非线性失真。由于非线性失真会使输出信号中产生高次谐波成分,所以又称为谐波失真。 非线性的度量方法 1 泰勒级数系数表示法: 用泰勒级数展开法对所关心的范围内输入输出特性用泰勒展开来近似: )()()()(33221 +++=t x t x t x t y ααα (12.1) 对于小的x ,y (t)≈α1x ,表明α1是x ≈0附近的小信号增益,而α2,α3等即为非线性的系数,所以确定式(12.1)中的α1,α2等系数就可确定。 2 总谐波失真(THD )度量法: 即输入信号为一个正弦信号,测量其输出端的谐波成分,对谐波成分求和,并以基频分量进行归一化来表示,称为“总谐波失真”(THD )。 把x(t)=Acosωt 代入式(12.1)中,则有: +++ ++ =+++=)]3cos(cos 3[4 )]2cos(1[2 cos cos cos cos )(3 32 213332221t t A t A t A t A t A t A t y ωωαωαωαωαωαωα (12.2) 由上式可看出,高阶项产生了高次谐波,分别称为偶次与奇次谐波,且n 次谐波幅度近似正比于输入振幅的n 次方。例如考虑一个三阶非线性系统,其总谐波失真为: 2 3312 33222) 43()4()2(THD A A A A αααα++= (12.3) 3 采用输入/输出特性曲线与理想曲线(即直线)的最大偏差来度量非线性。 在所关心的电压范围[0 V i,max ]内,画一条通过实际特性曲线二个端点的直线,该直线就为理想的输入/输出特性曲线,求出它与实际的特性曲线间的最大偏差ΔV ,并对最大输出摆幅V o,max 归一化。即在如图12.1所示。

关于放大电路失真现象的研究

模拟电子技术研讨论文放大电路失真现象的研究 学院:电子信息工程学院 专业:通信工程 学号: 学生: 指导教师:侯建军 2013年5月

目录 引言 (3) 1.失真类型及产生原因 (3) 1.1非线性失真 (3) 1.2线性失真 (3) 2.各类失真现象分析 (4) 2.1截止、饱和和双向失真 (4) 2.1.1截止、饱和失真理论分析 (4) 2.1.2饱和失真的Mutisim仿真 (4) 2.1.3双向失真分析及改善方案 (5) 2.2交越失真 (5) 2.2.1交越失真理论分析 (5) 2.2.2传统交越失真改善方案 (6) 2.2.3基于负反馈的改善方案 (6) 2.3不对称失真 (7) 2.3.1不对称失真概念 (7) 2.3.2不对称失真理论分析 (7) 2.3.3传统负反馈改善方案 (8) 2.3.4多级反相放大改善方案 (8) 2.4线性失真 (9) 2.4.1线性失真理论分析 (9) 2.4.2线性失真电路设计及改善方案仿真 (9) 3.用双级反相放大改善不对称失真的电路设计 (10) 4.总结 (11) 【参考文献】 (12)

放大电路失真现象的研究 (北京交通大学电子信息工程学院,北京 100044) 摘要:失真问题是模拟电子技术中的一个重要问题,系统化解决失真问题,能够给放大电路在工程中的设计提供便利。本文简单地介绍了失真的类型,系统地介绍了各类失真现象产生的原因,同时设计了各类失真电路,给出了各类失真的改善方案,对部分失真问题进行了仿真实验。 关键词:非线性失真、线性失真、三极管放大电路、负反馈、Multisim仿真 引言 在放大电路中,其输出信号应当如实的反映输入信号,即他们尽管在幅度上不同,时间上也可能有延迟,但波形应当是相同的。但在实际电路中,由于种种原因,输入信号不可能与输入信号的波形完全相同,这种现象叫做失真。在工程上,电路的失真影响着放大电路的正常使用,在理论上对各种失真现象的原理的研究,有利于工程上快速检测出放大电路失真的原因,从而完善放大电路的设计。Multisim仿真软件支持模拟电路、数字电路及模数混合电路的设计仿真,仿真结果准确直观。利用Multisim进行仿真,方便了放大电路失真现象的理论研究。 1.失真类型及产生原因 放大电路产生失真的主要原因有两个,据此可以将失真分为两大类: ①非线性失真(nonlinear distortion):晶体三极管等元件的工作点进入了特性曲线的非线性区,使输入信号和输出信号不再保持线性关系,这样产生的失真称为非线性失真。 ②线性失真(linear distortion):放大器的频率特性不好,对输入信号中不同频率成分的增益不同或延时不同,这样产生的失真成为线性失真。 1.1非线性失真 非线性失真产生的主要原因来自三方面:第一是晶体三极管等特性曲线的非线性;第二是静态工作点位置设置的不合适;第三是输入信号过大。由于晶体三极管工作在非线性区而产生的非线性失真有5种:饱和失真、截止失真、双向失真、交越失真和不对称失真。 1.2线性失真 通常放大电路的输入信号是多频信号,由于放大电路中有隔直流电容、射极旁路电容、结电容和各种寄生电容,使得放大电路对信号的不同频率分量具有不同的增益幅值或者相对相移发生变化,就使输出波形发生失真,

非线性丙类功率放大器--实验报告

南昌大学实验报告 学生姓名:付文平学号: 6102215151 专业班级:通信154班实验类型:■验证□综合□设计□创新实验日期: 2017.10.31 实验成绩:实验名称:非线性丙类功率放大器实验报告 一、实验目的 1、了解丙类功率放大器的基本工作原理,掌握丙类功率放大器的调谐特性以及负载变化时的动态特性。 2、了解激励信号变化对功率放大器工作状态的影响。 3、比较甲类功率放大器与丙类功率放大器的功率、效率与特点。 二、实验内容 1、观察高频功率放大器丙类工作状态的现象,并分析其特点。 2、测试丙类功放的调谐特性。 3、测试丙类功放的负载特性。 4、观察激励信号变化、负载变化对工作状态的影响。 三、实验仪器 1、信号源模块 1块 2、频率计模块 1块 3、8 号板 1块 4、双踪示波器 1台 四、实验原理 非线性丙类功率放大器的电流导通角θ<90〇效率可达到80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。特点:非线性丙类功率放大

器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小),基极偏置为负值,电流导通角θ<90〇,为了不失真地放大信号,它的负载必须是LC谐振回路。 丙类功率放大器 丙类功率放大器的基极偏置电压V BE 是利用发射极电流的直流分量I EO (≈I CO ) 在射极电阻上产生的压降来提供的,故称为自给偏压电路。当放大器的输入信号为正弦波时,集电极的输出电流i C 为余弦脉冲波。利用谐振回路LC的选频作用 可输出基波谐振电压v c1,电流i c1 。下图画出了丙类功率放大器的基极与集电极间 的电流、电压波形关系。分析可得下列基本关系式: 式中,V c1m 为集电极输出的谐振电压及基波电压的振幅;I c1m 为集电极基波电流振 幅;R 为集电极回路的谐振阻抗 2 1 2 1 1 12 1 2 1 2 1 R V R I I V P m c m c m c m c C = = = 式中,P C 为集电极输出功率. 式中,P D 为电源V CC 供给的直流功率;I CO 为集电极电流脉冲i C 的直流分量。放大器的效率 1 1 R I V m c m c = CO m c CC m c I I V V 1 1 2 1 ? ? = η

非线性丙类功率放大器实验报告讲解

非线性丙类功率放大器实验报告 姓名: 学号: 班级: 日期: 37 38 非线性丙类功率放大器实验 一、实验目的 1. 了解丙类功率放大器的基本工作原理, 掌握丙类放大器的调谐特性以及负载改变时的动态特性。 2. 了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。 3. 比较甲类功率放大器与丙类功率放大器的功率、效率与特点。 二、实验基本原理 非线性丙类功率放大器的电流导通角 o 90<θ, 效率可达到 80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。特点:非线性丙类功率放大器通常用来放大窄带高频信号 (信号的通带宽度只有其中心频率的 1%或更小 ,基极偏置为负值,电流导通角o 90<θ,为了不失真地放大信号,它的负载必须是 LC 谐振回路。 丙类功率放大器

丙类功率放大器的基极偏置电压 V BE 是利用发射极电流的直流分量 I EO (≈ I CO 在射极电阻上产生的压降来提供的,故称为自给偏压电路。当放大器的输入信号 ' i v 为正弦波时,集电极的输出电流 i C 为余弦脉冲波。利用谐振回路 LC 的选频作用可输出基波谐振电压 v c1, 电流 i c1。图 8-3画出了丙类功率放大器的基极与集电极间的电流、电压波形关系。分析可得下列基本关系式: 011R I V m c m c = 式中, m c V 1为集电极输出的谐振电压及基波电压的振幅; m c I 1为集电极基波电流振幅; 0R 为集电极回路的谐振阻抗。 2102111212121R V R I I V P m c m c m c m c C === 39 式中, P C 为集电极输出功率 CO CC D I V P = 式中, P D 为电源 V CC 供给的直流功率; I CO 为集电极电流脉冲 i C 的直流分量。 放大器的效率η为 CO m c CC m c I I V V 1121? ?

非线性失真定义

[编辑本段]非线性失真定义 非线性失真亦称波形失真、非线性畸变,表现为音响系统输出信号与输入信号不成线性关系,由电子元器特性:曲线的非线性所引起,使输出信号中产生新的谐波成分,改变了原信号频谱,包括谐波失真、瞬态互调失真、互调失真等,非线性失真不仅会破坏音质,还有可能由于过量的高频谐波和直流分量烧毁音箱高音扬声器和低音扬声器。 失真对音质的影响极大。当音响设备存在非线性失真时,会造成声音浑浊,发毛、发沙、发破、发炸或者发硬,真实感变差。音响系统的非线性失真包括削波失真、谐波失真、互调失真以及瞬态失真等,音箱过载时,也同样会声音产生非线性失真。非线性失真存在于音响系统的各个环节中,无论采取何种技术措施,想要完全消除它是不可能的。 [编辑本段]非线性失真解析 一个理想的放大器,其输出信号应当如实的反映输入信号,即他们尽管在幅度上不同,时间上也可能有延迟,但波形应当是相同的。但是,在实际放大器中,由于种种原因,输入信号不可能与输入信号的波形完全相同,这种现象叫做失真。放大器产生失真的原因主要有2个: ①放大器件的工作点进入了特性曲线的非线性区,使输入信号和输出信号不再保持线性关系,这样产生的失真称为非线性失真。 ②放大器的频率特性不好,对输入信号中不同频率成分的增益不同或延时不同,这样产生的失真成为线性失真。 非线性失真产生的主要原因来自两个方面: ①晶体管等特性的非线性; ②静态工作等位置设置的不合适或输入信号过大. 由于放大器件工作在非线性区而产生的非线性失真有4 种:饱和失真、截止失真、交越失真和不对称失真。 在共发射极放大电路中,设输入信号V i 为正弦波,并且工作点选择在输入特性曲线的直线部分,这样它的输入电流ib 也将是正弦波。 如果由于电路元件参数选择不当,使静态工作点( Q 点) 电流ICQ比较高,则对输入电流的负半周,基极总电流iB 和集电极总电流iC 都减小,使集电极电压V C 升高,形成输出电压的正半周,这个输出电压仍然是正弦波,没有失真。但是在输入电流的正半周中,当iB 由iBQ = 30μA 增加到40μA 时,iCQ随之由ICQ 增大到iCmax ,这样形成的输出电压的负半周的底部被削,不再是正弦波,产生了失真。这种由于放大器件工作到特性曲线的饱和区产生的失真,成为饱和失真。 相反地,如果静态工作点电流ICQ 选择的比较低,在输入电流正半周时,输出电压无失真。但是,在输入电流的负半周,晶体管将工作到截止区,从而使输出电压的正半周的顶部被削,产生了失真。这种失真是由于放大器工作到特性曲线的截止区产

丙类高频功率放大器课程设计

高频电子线路课程设计报告 题目:丙类功率放大器 院系: 专业:电子信息科学与技术 班级: 姓名: 学号: 指导教师: 报告成绩: 2013年12月20日

目录 一、设计目的 (1) 二、设计思路 (1) 三、设计过程 (2) 3.1、系统方案论证 3.1.1 丙类谐振功率放大器电路 3.2、模块电路设计 3.2.1丙类谐振功率放大器输入端采用自给偏置电路 3.2.2丙类谐振功率放大器输出端采用直流馈电电路 3.2.3匹配网络 3.2.4 VBB 、Vcm、Vbm、VCC对丙类谐振功率放大器性能影响分析 四、整体电路与系统调试及仿真结果 (11) 4.1 电路设计与分析 4.2.仿真与模拟 4.2.1 Multisim 简介 4.2.2 基于Multisim电路仿真用例 五、主要元器件与设备 (14) 5.1 晶体管的选择 5.1.2 判别三极管类型和三个电极的方法 5.2电容的选择 六、课程设计体会与建议 (17) 6.1、设计体会 6.2、设计建议 七、结论 (18) 八、参考文献 (19)

一、设计目的 电子技术迅猛发展。由分立元件发展到集成电路,中小规模集成电路,大规模集成电路和超大规模集成电路。基本放大器是组成各种复杂放大电路的基本单元。弱电控制强电在许多电子设备中需要用到。放大器在当今和未来社会中的作用日益增加。 高频功率放大器是发送设备的重要组成部分之一,通信电路中,为了弥补信号在无线传输过程中的衰耗,要求发射机具有较大的输出功率,而且,通信距离越远,要求输出功率越大。所以,为了获得足够大的高频输出功率,必须采用高频功率放大器。高频功率放大器是无线电发射设备的重要组成部分。丙类谐振功率放大器在人类生活中得到了广泛的应用,而且能高效率的将电源供给的直流能量转换为高频交流输出,研究它具有很高的社会价值。 设计简单丙类谐振功率放大器电路并进行仿真,以及对丙类谐振功率放大器发展的展望。 二、设计思路 丙类谐振功率放大器工作原理 图2-2-1为丙类谐振功率放大器原理图,为实现丙类工作,基极偏置电压V BB 应设置在功率的截止区。 输入回路 由于功率管处于截止状态,基极偏置电压V BB 作为结外电场,无法克服结内电场,没有达到晶体管门坎电压,从而,导致输入电流脉冲严重失真,脉冲宽度小于90o。 由i C ≈βi B 知,i C 也严重失真,且脉宽小于90o。 输出回路 若忽略晶体管的基区宽度调制效应以及结电容影响,在静态转移特性曲线 (i C ~V BE )上画出的集电极电流波形是一串周期重复的脉冲序列,脉冲宽度小于半 个周期。

数字预失真基本原理

17 数字预失真基本原理 马 进 (西安电子科技大学 通信工程学院,陕西 西安 710071) 摘 要 对高功率放大器的失真特性进行了数学分析,介绍了数字预失真的基本原理,总结了常用的几种预失真线性化方法,着重详细介绍了查找表数学模型的建模方法。 关键词 功率放大器;线性化;预失真 中图分类号 TN722.7+ 5 The Principle of Digital Pre-distortion Ma Jin (School of Telecommunications Engineering, Xidian University, Xi ′ an 710071, China) Abstract This paper makes a mathematical analysis of the HPA's distortion characteristic and introduces the principle of digital pre-distortion. It also summarizes some common techniques for linearizing pre-distortion with emphasis on the LUT mathematical model's modeling method. Keywords PA; linearization; pre-distortion; LUT 1 数字预失真的实测图表 数字预失真的目的是改善功放的线性度,而对功放线性度评估是用ACPR 这个指标进行评估的,因此数字预失真目的就是改善功放的ACPR 指标。预失真效果见表1所示。 2 功放的非线性特性分析 功放的各种失真特性[1]如下: (1)AM-AM 失真特性:就是放大器的增益压缩现象,即AM-AM 失真,可以采用非线性的多项式来表征放大器的这种特性,其数值由输入信号的幅度(AM )决定。 在射频增益一定的条件下,在数字域中,可以根据输入基带信号的幅度(功率)通过一个多项式可计算出此种非线性失真分量。常用的多项式表达式如下: 表1 预失真效果 载波 1 2 3 4 备注频率/MHz 870.03 871.26 872.49 873.72 750kHz,Low 47.80 750kHz,Up 45.56 1.98MHz,Low 50.65 预失真前 ACPR/dB 1.98MHz,Up 48.38 9CH 750kHz,Low 60.55 750kHz,Up 63.23 1.98MHz,Low 66.70 预失真后 ACPR/dB 1.98MHz,Up 67.17 9CH 收稿日期:2005-12-21 作者简介:马 进(1979—),男,硕士研究生。研究方向:网络安全、对数字预失真。 ...554433221x a x a x a x a x a y ++++=. (2)AM-PM 失真特性:其数值与AM-AM 失真相似,也是由输入信号的幅度决定。 电子科技 2006年第9期(总第204期)

放大电路失真现象及改善失真地研究

模拟电子技术研讨论文放大电路失真现象及改善失真的研究

学院:电子信息工程学院专业:通信工程 组长:南海蛟 组员:达川宇涵 指导教师:颖

目录 一、引言 3 二、放大电路失真类型 3 2.1线性失真 3 2.1.1幅度失真 4 2.1.2相位失真 4 2.1.3改善线性失真的方法 4 2.2非线性失真 6 2.2.1饱和失真 6 2.2.2截止失真 6 2.2.3双向失真7 2.2.4交越失真7

2.2.5谐波失真8 2.2.6互调失真8 2.2.7不对称失真 8 2.2.8瞬态互调失真9 2.2.9改善非线性失真的方法9 2.3负反馈对失真现象的影响11 三、失真电路仿真13 总结15 参考文献15 放大电路失真现象及改善失真的研究 南海蛟 (交通大学电子信息工程学院100044)

摘要:本文介绍了不同种类的放大电路失真类型,并分别提出了改善失真的方法,另外还分析了负反馈对线性失真和非线性失真的改善原理。 关键词:三极管放大电路线性失真非线性失真负反馈 一、引言 运算放大器广泛应用在各种电路中.不仅可以实现加法和乘法等线性运算电路功能,而且还能构成限幅电路和函数发生电路等非线性电路,不同的连接方式就 能实现不同的电路功能。集成运放将运算放大器和一些外围电路集成在一块硅片 上,组合成了具有特定功能的电子电路。集成运放体积小.使用方便灵活,适合 应用在移动通信和数码产品等便携设备中。但在实际工程应用中,由于种种原因, 总是会出现输入波形不能正常放大,这就是放大电路的失真现象。失真现象主要 有两大种类型:线性失真和非线性失真。造成线性失真的主要原因是放大器的频 率特性不够好。而造成非线性失真的原因有晶体管等特性的非线性和静态工作点 位置设置的不合适或输入信号过大。而在集成电路中经常用来改善失真的方法就 是负反馈,下面将就每一种失真现象和如何改善失真以及加入负反馈之后对失真 电路的影响进行具体分析讨论。 二、放大电路失真类型 2.1线性失真 又称为频率失真,在放大电路的输入信号是多频信号时,如果放大电路对信号的不同频率分量具有不同的增益幅值,就会使输出波形发生失真,称为幅度失 真;如果相对相移发生变化,称为相位失真,两者统称为频率失真。频率失真是

实验二 丙类功率放大器汇总

实验二非线性丙类功率放大器实验 一、实验目的 1、了解丙类功率放大器的基本工作原理,掌握丙类放大器的调谐特性以及负载改变时 的动态特性。 2、了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状 态的影响。 二、实验内容 1、观察高频功率放大器丙类工作状态的现象,并分析其特点 2、测试丙类功放的调谐特性 3、测试丙类功放的负载特性 4、观察激励信号变化、负载变化对工作状态的影响 三、实验仪器 1、信号源模块1块 2、频率计模块1块 3、8 号板1块 4、双踪示波器1台 5、频率特性测试仪(可选)1台 6、万用表1块 四、实验基本原理 放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。功率放大器电流导通角θ越小,放大器的效率η越高。 1、丙类功率放大器 1)基本关系式 丙类功率放大器的基极偏置电压V BE是利用发射极电流的直流分量I EO(≈I CO)在射极电 v为正弦波时,集阻上产生的压降来提供的,故称为自给偏压电路。当放大器的输入信号' i

电极的输出电流i C 为余弦脉冲波。利用谐振回路LC 的选频作用可输出基波谐振电压v c1,电流i c1。图2-1画出了丙类功率放大器的基极与集电极间的电流、电压波形关系。分析可得下列基本关系式: 011R I V m c m c = 式中,m c V 1为集电极输出的谐振电压及基波电压的振幅;m c I 1为集电极基波电流振幅; 0R 为集电极回路的谐振阻抗。 2102111212121R V R I I V P m c m c m c m c C = == 式中,P C 为集电极输出功率 CO CC D I V P = 式中,P D 为电源V CC 供给的直流功率;I CO 为集电极电流脉冲i C 的直流分量。 放大器的效率η为 CO m c CC m c I I V V 1121??= η

实验七非线性丙类功率放大器实验报告

实验七 非线性丙类功率放大器实验 一、 实验目的 1、 了解丙类功率放大器的基本工作原理,掌握丙类放大器的调谐特性以及负载改变时 的动态特性。 2、 了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状 态的影响。 3、 比较甲类功率放大器与丙类功率放大器的特点 4、 掌握丙类放大器的计算与设计方法。 二、实验内容 1、 观察高频功率放大器丙类工作状态的现象,并分析其特点 2、 测试丙类功放的调谐特性 3、 测试丙类功放的负载特性 4、 观察激励信号变化、负载变化对工作状态的影响 三、 实验仪器 1、 信号源模块 1块 2、 频率计模块 1块 3、 8 号板 1块 4、 双踪示波器 1台 5、 频率特性测试仪(可选) 1台 6、 万用表 1块 四、实验基本原理 放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。功率放大器电流导通角θ越小,放大器的效率η越高。 甲类功率放大器的o 180= θ,效率η最高只能达到50%,适用于小信号低功率放大,一般作为中间级或输出功率较小的末级功率放大器。

非线性丙类功率放大器的电流导通角o 90<θ,效率可达到80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小),基极偏置为负值,电流导通角 o 90<θ,为了不失真地放大信号,它的负载必须是LC 谐振回路。 电路原理图如图7-1(见P.48)所示,该实验电路由两级功率放大器组成。其中N 4、T 5组成甲类功率放大器,工作在线性放大状态,其中R 14、R 15、R 16组成静态偏置电阻。N 4、T 6组成丙类功率放大器。R 18为射极反馈电阻,T 6为谐振回路,甲类功放的输出信号通过R 17送到N 4基极作为丙放的输入信号,此时只有当甲放输出信号大于丙放管N 4基极-射极间的负偏压值时,Q 4才导通工作。与拨码开关相连的电阻为负载回路外接电阻,改变S 1拨码开关的位置可改变并联电阻值,即改变回路Q 值。 下面介绍甲类功放和丙类功放的工作原理及基本关系式。 1、甲类功率放大器 1) 静态工作点 如图7-1所示,甲类功率放大器工作在线性状态,电路的静态工作点由下列关系式确定: 15R I v EQ EQ = BQ CQ I I β= V v v EQ BQ 7.0+= 15R I V v CQ CC CEQ -= 2) 负载特性 如图7-1所示,甲类功率放大器的输出负载由丙类功放的输入阻抗决定,两级间通过变压器进行耦合,因此甲类功放的交流输出功率P 0可表示为: B H P P η' 0= 式中,' H P 为输出负载上的实际功率,B η为变压器的传输效率,一般为B η=0.75~0.85 图7-2为甲类功放的负载特性。为获得最大不失真输出功率,静态工作点Q 应选在交流负载线AB 的中点,此时集电极的负载电阻R H 称为最佳负载电阻。集电极的输出功率P C 的表达式为:

放大器的非线性失真

放大器的非线性失真The document was prepared on January 2, 2021

放大器的非线性失真 非线性失真是模拟电路中影响电路性能的重要因素之一。本章先从非线性的定义入手,确定量化非线性的一个度量标准,然后研究放大器的非线性失真及其差动电路与反馈系统中的非线性,并介绍一些线性化的技术。 概述 非线性的定义 电路非线性是指输出信号与输入信号之比不为一个常量,体现在输出与输入之间的关系不是一条具有固定斜率的直线,或体现为小信号增益随输入信号电平的变化而变化。 放大器的非线性定义:当输入为正弦信号时,由于放大器(管子)的非线性,使输出波形不是一个理想的正弦信号,输出波形产生了失真,这种由于放大器(管子)参数的非线性所引起的失真称为非线性失真。由于非线性失真会使输出信号中产生高次谐波成分,所以又称为谐波失真。 非线性的度量方法 1 泰勒级数系数表示法: 用泰勒级数展开法对所关心的范围内输入输出特性用泰勒展开来近似: )()()()(33221 +++=t x t x t x t y ααα () 对于小的x ,y (t)≈α1x ,表明α1是x ≈0附近的小信号增益,而α2,α3 等即为非线性的系数,所以确定式中的α1,α2等系数就可确定。 2 总谐波失真(THD )度量法: 即输入信号为一个正弦信号,测量其输出端的谐波成分,对谐波成分求和,并以基频分量进行归一化来表示,称为“总谐波失真”(THD )。 把x(t)=Acosωt 代入式中,则有: +++ ++ =+++=)]3cos(cos 3[4 )]2cos(1[2 cos cos cos cos )(3 32 213332221t t A t A t A t A t A t A t y ωωαωαωαωαωαωα () 由上式可看出,高阶项产生了高次谐波,分别称为偶次与奇次谐波,且n 次谐波幅度近似正比于输入振幅的n 次方。例如考虑一个三阶非线性系统,其总谐波失真为: 2 3312 33222) 43()4()2(THD A A A A αααα++= () 3 采用输入/输出特性曲线与理想曲线(即直线)的最大偏差来度量非线性。

集成运放的非线性失真分析及电路应用

集成运放的非线性失真分析及电路应用 0 引言运算放大器广泛应用在各种电路中,不仅可以实现加法和乘法等线性运算电路功能,而且还能构成限幅电路和函数发生电路等非线性电路,不同的连接方式就能实现不同的电路功能。集成运放将运算放大器和一些外围电路集成在一块硅片上,组合成了具有特定功能的电子电路。集成运放体积小,使用方便灵活,适合应用在移动通信和数码产品等便携设备中。线性特性是考查具有放大功能的集成运放和接收射频前端电路的一个重要参数,并且线性范围对集成运放的连接方式也有很大影响。集成运放的线性范围太小,就会造成输出信号产生多次谐波和较大的谐波功率,严重地影响整个电路的功能。基于集成运放的非线性分析,可以发现造成电路非线性失真的原因,并且在不改变电路设计的前提下,通过改变集成运放的连接方式,达到实现集成运放正常工作的目的。本文设计优化的集成运放电路应用于定位系统射频前端电路,完成对基带扫频信号的放大输出,能有效抑制了集成运放谐波的产生,实现射频接收前端电路的高增益,提高对后端电路设计部分的驱动能力。l 差分电路的接入方法和集成运放的非线性参数通用集成运放电路由:偏置电路、输入级、中间级和输出级等组成。其输入级部分由差分电路构成。差分电路有双端输入和单端输入两种信号输入方法;偏置电路可以采用单电源和双电源两种供电方式。在移动通信或便携设备中,一般采用单电源供电方式,单电源供电的集成运放要求输入信号采用单极性形式,即输入信号始终是正值或是负值,差分输入级可以用来保证输入中间级电路的信号极性,同时差分输入级放大电路可以有效抑制共模信号,增强集成运放的共模抑制比。但是,当共模输入信号较大时,差分对管就会进入非线性工作状态,放大器将失去共模抑制能力,严重影响到集成运放的共模抑制比。集成运放的非线性特性参数除了最大共模输入

功率放大器非线性测量和设计的新范例

功率放大器非线性测量和设计的新范例— NVNA非线性矢量网络仪和ADS基于X参数的功放设计 非线性测量和设计的创新技术— X参数 频率覆盖10MHz-13.5/26.5/43.5/50GHz

我很清楚我所设计的放大器增益随着负载的变化而变化,但是 传统的“Hot S22”在非线性条件下并不能帮我解决问题。 当我将各级功率放大器级联时,总的输出结果并没有像我所想 象的那样。不知道到底是怎么回事? 因此我需要新的工具,能让我 深入了解器件的非线性特性。 如果我能够获得器件基波及谐波的幅度和相位信息,将大大节 省我花在功率合成放大器的匹配电路设计上的时间。 半导体厂家提供的管芯的小信号S参数对我设计放大器几乎没 有作用,我需要大信号激励下管芯的非线性参数。我真希望有一种 测量工具能让我提取出完全表征器件非线性特性的参数。 传统的负载牵引系统并不能帮我解决大信号模型问题,因此我 需要新方法帮我快速提取出器件的大信号模型,从而让我使用ADS 软件有效而且快速地设计出满足指标的功率放大器。 安捷伦科技非线性矢量网络分析仪 (NVNA)荣获《电子产品世界》2008 年度产品奖, 2008年EDN创新奖, 并被选为射频和微波年度最佳产品 2

众所周知,功率放大器是每个发射机系统的核心部件,随着雷达应用、卫概述 星通信及无线通信的迅速发展,要求研发工程师和科学家们不断地研究和设计 出具有更高的输出功率、更高的功率附加效率以及更高的线性度等指标的功率 放大器,以满足更快的数据通信、更宽的雷达信号等需求。这就需要不断提高 半导体功率管的性能,并把对半导体功率管的应用扩展到其性能的极限,经常 使其进入到半导体功率管的非线性工作区域甚至饱和状态。器件的非线性特性 非常容易给雷达系统、卫星系统及通信系统造成严重问题,往往是信息之间互 相干扰、系统有效带宽下降的最主要原因。如何更深刻地了解并掌握器件与电 路的非线性特性是每个射频工程师每天所面临的棘手难题,急需解决。而现有 的工具和手段并不能有效地帮助工程师解决这些 问题。因此,处理非线性问题需要使用超越今天 我们测试线性参数范畴的新工具,这种全新的 工具能够让工程师快速地获得完全表征功率管 非线性行为的非线性参数,从而能够进行 快速建模、仿真并且彻底改善新技术 产品的设计流程。 当今,雷达系统、卫星系统及 当前的问题 无线通信系统的研发工程师和科学家 的目标很明确: 高效和精确地仿真设计 功率放大器。仿真和设计必然需要功率管的大信号模型,但是很多半导体厂家 并不提供设计功放所需要的功率管的大信号模型。有些客户自己曾经试图使用 直流信号分析仪结合网络仪测量S参数提取Spice物理模型,最后通过数学运 算拟合出大信号模型,但是这个过程很漫长而且往往不准确。另外,由于在非 线性器件和系统的设计过程中一直没有一个集建模、仿真和测试于一体的方 案,工程师们只能依赖信息量很有限的小信号S参数并根据各自的经验,花费 大量时间和成本做大量的设计迭代实验,使得整个设计过程变得既费时又昂 贵。为改变目前困境,就需要工程师能够精确快速地提取功率管的大信号模 型,使其掌握器件的线性和非线性行为性特性,同时还需要在ADS软件中准 确地仿真出功率管的非线性行为。 现在也有部分客户逐渐接受负载牵引系统的概念,但是单纯的负载牵引系 统不能够满足客户快速高效地设计高性能功放的需求,原因在于负载牵引系统 存在一些不足: ●负载牵引系统特别消耗时间,不能够在扫频、扫功率及扫直流偏置模式下测 量等高线。 ●不能提供完整的大信号模型,因此不能让设计师有效地使用EDA工具进行 功放的设计和仿真。 ●没有考虑谐波分量及谐波分量对基波的影响,无法测量出谐波的相位信息, 但是功放非线性设计必须考虑谐波成分。 ●即使可以把负载牵引测试数据导入EDA工具,但是由于只有功率信息,没 有直流信息、谐波信息等。因此只能仿真功率等高线,不能仿真谐波的幅度 相位、功率效率等高线、交调失真及ACPR等。 现在安捷伦推出了全新的解决方案使工程师在对有源器件建模、仿真及设 计时,显著减少花费在设计迭代上的时间,从而让我们加快新产品推向市场的 速度。 3

非线性丙类功率放大器--实验报告

南昌大学实验报告 学生姓名:班星卓玛 学号:6102214097 专业班级:通信工程143班 实验类型:□ 验证 □ 综合 □ 设计□ 创新 实验日期:实验成绩: 实验名称:非线性丙类功率放大器实验报告 一、实验目的 1)、了解丙类功率放大器的基本工作原理,掌握丙类功率放大器的调谐特性以及负载变化时的动态特性。 2)、了解激励信号变化对功率放大器工作状态的影响。 3)、比较甲类功率放大器与丙类功率放大器的功率、效率与特点。 二、实验原理 非线性丙类功率放大器的电流导通角θ<90〇效率可达到80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小),基极偏置为负值,电流导通角θ<90〇,为了不失真地放大信号,它的负载必须是LC 谐振回路。 丙类功率放大器 丙类功率放大器的基极偏置电压V BE 是利用发射极电流的直流分量I EO (≈I CO )在射极电阻上产生的压降来提供的,故称为自给偏压电路。当放大器的输入信号为正弦波时,集电极的输出电流i C 为余弦脉冲波。利用谐振回路LC 的选频作用可输出基波谐振电压v c1,电流i c1。下图画出了丙类功率放大器的基极与集电极间的电流、电压波形关系。分析可得下列基本关系式: 式中,V c1m 为集电极输出的谐振电压及基波电压的振幅;I c1m 为集电极基波电流振幅;R 0为集电极回路的谐振阻抗 02102111212121R V R I I V P m c m c m c m c C = == 式中,P C 为集电极输出功率. 式中,P D 为电源V CC 供给的直流功率;I CO 为集电极电流脉冲i C 的直流分量。 放大器的效率 负载特性 当放大器的电源电压+V CC ,基极偏压v b ,输入电压(或称激励电压)v sm 确定后,如果电流导通脚选定,则放大器的工作状态只取决于集电极回路的等效负载电阻R q 。谐振功率放大器的交流负载特性如下图所示 : 11R I V m c m c =CO m c CC m c I I V V 1121??=η

非线性电路 功率放大器练习题

非线性电路 功率放大器练习题 一、选择题 1、为获得良好的调幅特性,集电极调幅电路应工作于 状态。 A .临界 B .欠压 C .过压 D .弱过压 2、丙类谐振功放其谐振回路调谐于 分量 A .基波 B .二次谐波 C .其它高次谐波 D .直流分量 3、利用非线性器件相乘作用来实现频率变换其有用项为 。 A 、一次方项 B 、二次方项 C 、高次方项 D 、全部项 4、影响丙类谐振功率放大器性能的主要参数不包括 A 、 V CC B 、 V BB C 、 V bm D 、R i 5、要求本振信号功率大,相互影响小,放大倍数大,宜采用 混频电路。 A 、基极输入,发射极注入 B 、基极输入,基极注入 C 、发射极输入,基极注入 D 、发射极输入,发射极注入 6、在保持调制规律不变的情况下,将输入的已调波的载波频率s f 变换成固定的中频I f 的过程称为 。 A. 调制 B. 解调 C. 倍频 D. 变频 7、有一超外差接收机,中频在KHz f f f s L I 465=-=,当接收KHz f s 580=的信号时,产生中频干扰的电台的频率是 ,而产生镜频干扰的电台的频率是 。 A. 1510KHz B.1045KHz C. 465KHz D. 930 kHz 8、下面的几种频率变换电路中, 不是频谱的线性搬移。 A .调幅 B 包络检波 C .调频 D .混频 9、某电路的输入频谱为Ω±S ω;输出频谱为Ω±I ω,则电路功能为 。 A. 检波 B. 变频 C. 调幅 D. 调频 10、能够实现双向混频的电路是 。 A .二极管混频器 B . 三极管混频器 C . 场效应管混频器 D .以上三种都能实现 11、功率放大电路根据以下哪种说法可分为甲类、甲乙类、乙类、丙类等 ( ) A .电路特点 B .功率放大倍数 C .电流大小 D .功放管静态工作点选择情况 12、关于通角θ的说法正确的是 ( ) A . θ是指一个信号周期内集电极电流导通角度

预失真技术综述

预失真技术综述 1.1 数据预失真技术 数据预失真技术[i][ii]是一种最为简单的预失真补偿技术,该技术是针对信号星座经过非线性卫星信道后发生扭曲变形这一现象,通过在成型滤波之前直接修改发送信号的映射星座图,使接收端尽可能接收到理想的星座,从而减小卫星信道非线性对整个系统的性能影响。根据预失真值与输入数据的前后码元是否有关,数据预失真分为无记忆数据预失真和有记忆数据预失真[iii]两种。目前这两种技术都是基于无记忆非线性卫星信道进行研究,还没有针对高速的有记忆非线性卫星信道的研究。无记忆数据预失真方法简单,易于实现,但对于有记忆的非线性信道,其补偿性能已经不能满足要求。有记忆的数据预失真可以有效降低码间串扰,提高补偿性能,但随着调制阶数和记忆长度的增加,其存储空间和计算复杂度将迅速增加,实现复杂度过大。 1.2 信号预失真技术 信号预失真是在发送滤波器之后,通过修改发送信号的波形来补偿非线性失真的一种技术,其实现方法分为查询表和工作函数法两种。 查询表预失真技术产生于上世纪80年代,其实现方式是把高功放的输入功率(或幅度)作为查询表的索引指针,把高功放的复增益预调整值作为指针对应内容存储在RAM表中,工作时根据输入信号的功率或幅度信息查找其对应预调整值,并将其输出给后继电路,达到线性化的目的。目前国内外已有许多学者对查询表预失真技术进行了研究。日本sony Ericsson移动通信公司提出了一种适用于手持终端的查询表自适应预失真技术,并在窄带CDMA系统中进行实验,使功放模块的功率效率增加了48%[iv]。浙江大学的毛文杰等提出了一种基于双查询表的自适应预失真结构,可使邻道干扰降低约25dB[v]。但由于常规的查询表不能有效的表示记忆特性,使得传统的查询表只能对无记忆的窄带信号进行补偿。文献[vi]采用多维表形式表示记忆非线性特性,但存在结构复杂,收敛慢的问题。 工作函数预失真技术是指在非线性信道之前采用数学模型描述其逆特性,从而使整个信道呈现出线性特性。 (1)基于W-H模型的自适应预失真技术 W-H模型的记忆预失真技术首先利用Wiener模型对记忆高功放进行辨识,得到LTI和无记忆非线性模型的参数,然后根据高功放的输出和系统期望输出的误差,实现对Hammerstein预失真器的自适应调整。但由于Hammerstein预失真器是

放大电路的失真研究

国家电工电子实验教学中心 模拟电子技术 实验报告 实验题目:放大电路的失真研究 学院:电子信息工程学院 专业: 学生姓名: 学号: 任课教师: 2016 年 6 月 1 日

目录 1.实验内容与要求 (1)实验目的 (2)基本要求 2.实验方案比较及论证 (1)任务分析 查找资料信息及过程 文字说明及理论计算 (2)方案比较 基本原理阐述 至少两种解决方案 (3)具体电路设计 完整的电路原理图及文字说明 3.电路制作及测试 (1)制作过程 (2)测试方法 (3)测试数据(表格) (4)数据分析 (5)遇到的问题与解决方法 (6)对电路的改造与创新 4.总结 (1)本人所做工作及组员之间合作情况 (2)收获与体会 (3)对本课程的建议 5.参考文献

1实验内容与要求 (1)实验目的 1. 掌握失真放大电路的设计和解决电路的失真问题——针对工程问题,收集信息、查阅文献、分析现有技术的特点与局限性,提高系统地构思问题和解决问题的能力 2. 掌握消除放大电路各种失真技术——依据解决方案,实现系统或模块,在设计实现环节上体现创造性。系统地归纳模拟电子技术中失真现象。 3. 具备通过现象分析电路结构特点——对设计系统进行功能和性能测试,进行必要的方案改进,提高改善电路的能力。 (2)基本要求 (1)输入一标准正弦波,频率2kHz,幅度50mV,输出正弦波频率2kHz,幅度1V。(2)输入一标准正弦波,输出波形失真且失真的种类有顶部失真,底部失真,双向失真。(3)输入一标准正弦波,其输出波形为交越失真。 (4)输入一标准正弦波,其输出波形为非对称失真。 2.实验方案比较及论证 对于第一个电路 (1)任务分析 首先设计第一个电路,即射极偏置电路,我们用的是npn三极管,通过改变滑动变阻器的阻值从而改变电路的静态工作点,当静态工作点过低处在截止区时会出现顶部失真,当静态工作点过高出于饱和区时会出现底部失真,当静态工作点在正常范围内会输出正常波形。双向失真是指即在三极管输出特性曲线的饱和区失真又在截止区失真,三极管有饱和状态又有截止状态,向上达到饱和状态,向下到达截止状态,出现这种非线性失真不是由于电路中某个电路元件选择的不合适,而是由于信号源输入的信号过大导致三极管在放大时出现了双向失真。所以同一个电路只要扩大输入电压幅值就可以输出双向失真波形。

湖南大学非线性丙类功率放大器实验报告

实验七非线性丙类功率放大器实验 一、实验目的 1、了解丙类功率放大器的基本工作原理,掌握丙类放大器的调谐特性以及负载改变时的动态特性。 2、了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。 3、比较甲类功率放大器与丙类功率放大器的特点 4、掌握丙类放大器的计算与设计方法。 二、实验内容 1、观察高频功率放大器丙类工作状态的现象,并分析其特点 2、测试丙类功放的调谐特性 3、测试丙类功放的负载特性 4、观察激励信号变化、负载变化对工作状态的影响 三、实验仪器 1、信号源模块1块 2、频率计模块1块 3、8 号板1块 4、双踪示波器1台 5、频率特性测试仪(可选)1台 6、万用表1块 四、实验基本原理 放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。功率放大器电流导通角越小,放大器的效率越高。 甲类功率放大器的,效率最高只能达到50%,适用于小信号低功率放大,一般作为中间级或输出功率较小的末级功率放大器。 非线性丙类功率放大器的电流导通角,效率可达到80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小),基极偏置为负值,电流导通角,为了不失真地放大信号,它的负载必须是LC谐振回路。 电路原理图如图7-1(见P.48)所示,该实验电路由两级功率放大器组成。其中N4、T5 组成甲类功率放大器,工作在线性放大状态,其中R14、R15、R16 组成静态偏置电阻。N4、T6 组成丙类功率放大器。R18 为射极反馈电阻,T6 为谐振回路,甲类功放的输出信号通过R17 送到N4 基极作为丙放的输入信号,此时只有当甲放输出信号大于丙放管N4 基极-射极间的负偏压值时,Q4 才导通工作。与拨码开关相连的电阻为负载回路外接电阻,改变S1 拨码开关的位置可改变并联电阻值,即改变回路Q 值。 下面介绍甲类功放和丙类功放的工作原理及基本关系式。 1、甲类功率放大器 1) 静态工作点 如图7-1 所示,甲类功率放大器工作在线性状态,电路的静态工作点由下列关系式确定

相关主题
文本预览
相关文档 最新文档