当前位置:文档之家› 神经网络预测方法

神经网络预测方法

神经网络预测方法
神经网络预测方法

(4)神经网络的预测方法

神经网络(Neural Network)是由许多并行的、高度相关的计算处理单元组成,这些单元类似生物神经系统的神经元。虽然单个的神经元的结构十分简单,但是,由大量神经元相互连接所构成的神经元系统所实现的行为是十分丰富的。与其它方法相比,神经网络具有并行计算和白适应的学习能力㈤。神经网络系统是一个非线性动力学系统计算系统。神经网络模型有许多种类,经常使用的有BP网络、RBF网络、Hopfield网络、Kohonen网络、BAM网络等等,近年又出现了

神经网络与模糊方法、遗传算法相结合的趋势。浚方法已在交通流预测中得到了应用。在交通流预测中应用最早使用最多的是反传BP网络。

应用神经网络进行交通流预测的步骤如下:

第一步,根据实际情况,选择适当的网络结构作为预测工具,根据已确定的预测因子和被预测量,决定网络的输入和输出,进而决定网络的结构(网络

各层次的节点数)

第二步,准备样本数据和样本的规范化处理,样本分为训练样本和检验样本;第三步,利用训练样本是对网络进行训练和学习;

第四步,利用检验样本对网络训练结构进行检验,验证网络的泛化能力;

第五步,用训练好的网络,根据已知的数据进行实际预测。

与传统的预测方法相比,神经网络的预测方法的预测精度要好一些。这主要

是得益于神经网络自身的特点。神经网络擅长描述具有较强非线性、难于用精确数学模型表达的复杂系统的特性,并且具有自适应能力。由于神经网络算法是离线学习,在线预测,所以几乎没有延时,实时性很好。此外,神经网络对预测因子的选择也较为灵活,任何认为与待预测交通流量有关的数据均可纳入输入向量中。但是,神经网络也有一些弱点,主要表现在以下几个方面:

三、由于使用大量的样本进行训练,所以神经网络的学习训练过程收敛

较慢,容易产生“过度学习”的情况,陷入对样本值的机械记忆而降低了泛化能力。因此,应用神经网络目前很难做到在线学习,只能将学习与预测分离成两个阶段(一个离线、一个在线)来完成。

四、神经网络的训练与学习是基于训练样本所隐含的预测因子与被预测

量的因果关系,这种学习不能反映外部环境的变化及其对预测的影响。因此,当预测对象所处的外部环境发生改变,或以某一路段数据训练好的神经网络去预测其它路段(口)的交通流量时,预测的准确率就会大大降低,错误率明显上升。这是由单一的神经网络的有限学习能力所决定的,表明经过训练的神经网络并不具有良好的“便携性”。

五、截止到目前,各类文献所见的基于神经网络的短期交通流的预测,最小

的预测时间跨度ht.15rain的水平上,对更小的预测周期,神经网络预测的适应性、精度如何,还有待检验。

数学建模神经网络预测模型及程序

年份 (年) 1(1988) 2(1989) 3(1990) 4(1991) 5(1992) 6(1993) 7(1994) 8(1995) 实际值 (ERI) 年份 (年) 9(1996) 10(1997) 11(1998) 12(1999) 13(2000) 14(2001) 15(2002) 16(2003) 实际值 (ERI) BP 神经网络的训练过程为: 先用1988 年到2002 年的指标历史数据作为网络的输入,用1989 年到2003 年的指标历史数据作为网络的输出,组成训练集对网络进行训练,使之误差达到满意的程度,用这样训练好的网络进行预测. 采用滚动预测方法进行预测:滚动预测方法是通过一组历史数据预测未来某一时刻的值,然后把这一预测数据再视为历史数据继续预测下去,依次循环进行,逐步预测未来一段时期的值. 用1989 年到2003 年数据作为网络的输入,2004 年的预测值作为网络的输出. 接着用1990 年到2004 年的数据作为网络的输入,2005 年的预测值作为网络的输出.依次类推,这样就得到2010 年的预测值。 目前在BP 网络的应用中,多采用三层结构. 根据人工神经网络定理可知,只要用三层的BP 网络就可实现任意函数的逼近. 所以训练结果采用三层BP模型进行模拟预测. 模型训练误差为,隐层单元数选取8个,学习速率为,动态参数,Sigmoid参数,最大迭代次数3000.运行3000次后,样本拟合误差等于。 P=[。。。];输入T=[。。。];输出 % 创建一个新的前向神经网络 net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights={1,1} inputbias={1} % 当前网络层权值和阈值 layerWeights={2,1} layerbias={2} % 设置训练参数 = 50; = ; = ; = 10000; = 1e-3;

BP神经网络预测的matlab代码

BP神经网络预测的matlab代码附录5: BP神经网络预测的matlab代码: P=[ 0 0.1386 0.2197 0.2773 0.3219 0.3584 0.3892 0.4159 0.4394 0.4605 0.4796 0.4970 0.5278 0.5545 0.5991 0.6089 0.6182 0.6271 0.6356 0.6438 0.6516

0.6592 0.6664 0.6735 0.7222 0.7275 0.7327 0.7378 0.7427 0.7475 0.7522 0.7568 0.7613 0.7657 0.7700] T=[0.4455 0.323 0.4116 0.3255 0.4486 0.2999 0.4926 0.2249 0.4893 0.2357 0.4866 0.2249 0.4819 0.2217 0.4997 0.2269 0.5027 0.217 0.5155 0.1918 0.5058 0.2395 0.4541 0.2408 0.4054 0.2701 0.3942 0.3316 0.2197 0.2963 0.5576 0.1061 0.4956 0.267 0.5126 0.2238 0.5314 0.2083 0.5191 0.208 0.5133 0.1848 0.5089 0.242 0.4812 0.2129 0.4927 0.287 0.4832 0.2742 0.5969 0.2403 0.5056 0.2173 0.5364 0.1994 0.5278 0.2015 0.5164 0.2239 0.4489 0.2404 0.4869 0.2963 0.4898 0.1987 0.5075 0.2917 0.4943 0.2902 ] threshold=[0 1] net=newff(threshold,[11,2],{'tansig','logsig'},'trainlm');

(完整word版)模糊神经网络的预测算法在嘉陵江水质评测中的应用2

模糊神经网络的预测算法 ——嘉陵江水质评价 一、案例背景 1、模糊数学简介 模糊数学是用来描述、研究和处理事物所具有的模糊特征的数学,“模糊”是指他的研究对象,而“数学”是指他的研究方法。 模糊数学中最基本的概念是隶属度和模糊隶属度函数。其中,隶属度是指元素μ属于模糊子集f的隶属程度,用μf(u)表示,他是一个在[0,1]之间的数。μf(u)越接近于0,表示μ属于模糊子集f的程度越小;越接近于1,表示μ属于f的程度越大。 模糊隶属度函数是用于定量计算元素隶属度的函数,模糊隶属度函数一般包括三角函数、梯形函数和正态函数。 2、T-S模糊模型 T-S模糊系统是一种自适应能力很强的模糊系统,该模型不仅能自动更新,还能不断修正模糊子集的隶属函数。T-S模糊系统用如下的“if-then”规则形式来定义,在规则为R i 的情况下,模糊推理如下: R i:If x i isA1i,x2isA2i,…x k isA k i then y i =p0i+p1i x+…+p k i x k 其中,A i j为模糊系统的模糊集;P i j(j=1,2,…,k)为模糊参数;y i为根据模糊规则得到的输出,输出部分(即if部分)是模糊的,输出部分(即then部分)是确定的,该模糊推理表示输出为输入的线性组合。 假设对于输入量x=[x1,x2,…,x k],首先根据模糊规则计算各输入变量Xj的隶属度。 μA i j=exp(-(x j-c i j)/b i j)j=1,2,…,k;i=1,2,…,n式中,C i j,b i j分别为隶属度函数的中心和宽度;k为输入参数数;n为模糊子集数。 将各隶属度进行模糊计算,采用模糊算子为连乘算子。 ωi=μA1j(x1)*μA2j(x2)*…*μA k j i=1,2,…,n 根据模糊计算结果计算模糊型的输出值y i。 Y I=∑n i=1ωi(P i0+P i1x1+…+P i k xk)/ ∑n i=1ωi 3、T-S模糊神经网络模型 T-S模糊神经网络分为输入层、模糊化层、模糊规则计划层和输出层四层。输入层与输入向量X I连接,节点数与输入向量的维数相同。模糊化层采用隶属度函数对输入值进行模

基于BP神经网络预测模型指南

基于BP神经网络的国际黄金价格预测模型 公文易文秘资源网顾孟钧张志和陈友2009-1-2 13:35:26我要投稿添加到百度搜藏 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。 [关键词] MATLAB BP神经网络预测模型数据归一化 一、引言 自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20 世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。 二、影响因素 刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。 三、模型构建

用matlab编BP神经网络预测程序

求用matlab编BP神经网络预测程序 求一用matlab编的程序 P=[。。。];输入T=[。。。];输出 % 创建一个新的前向神经网络 net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights=net_1.IW{1,1} inputbias=net_1.b{1} % 当前网络层权值和阈值 layerWeights=net_1.LW{2,1} layerbias=net_1.b{2} % 设置训练参数 net_1.trainParam.show = 50; net_1.trainParam.lr = 0.05; net_1.trainParam.mc = 0.9; net_1.trainParam.epochs = 10000; net_1.trainParam.goal = 1e-3; % 调用 TRAINGDM 算法训练 BP 网络 [net_1,tr]=train(net_1,P,T); % 对 BP 网络进行仿真 A = sim(net_1,P); % 计算仿真误差 E = T - A; MSE=mse(E) x=[。。。]';%测试 sim(net_1,x) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 不可能啊我2009 28

对初学神经网络者的小提示 第二步:掌握如下算法: 2.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第8章的第十节:“最小二乘法”。 3.在第2步的基础上看Hebb学习算法、SOM和K-近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,Simon Haykin著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社,Richard O. Duda等著,中英文都有)、《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)。 4.ART(自适应谐振理论),该算法的最通俗易懂的读物就是《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)的第15和16章。若看理论分析较费劲可直接编程实现一下16.2.7节的ART1算法小节中的算法. 4.BP算法,初学者若对误差反传的分析过程理解吃力可先跳过理论分析和证明的内容,直接利用最后的学习规则编个小程序并测试,建议看《机器学习》(机械工业出版社,Tom M. Mitchell著,中英文都有)的第4章和《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)的第11章。 BP神经网络Matlab实例(1) 分类:Matlab实例 采用Matlab工具箱函数建立神经网络,对一些基本的神经网络参数进行了说明,深入了解参考Matlab帮助文档。 % 例1 采用动量梯度下降算法训练 BP 网络。 % 训练样本定义如下: % 输入矢量为 % p =[-1 -2 3 1 % -1 1 5 -3] % 目标矢量为 t = [-1 -1 1 1] close all clear clc

BP神经网络实验 Matlab

计算智能实验报告 实验名称:BP神经网络算法实验 班级名称: 2010级软工三班 专业:软件工程 姓名:李XX 学号: XXXXXX2010090

一、实验目的 1)编程实现BP神经网络算法; 2)探究BP算法中学习因子算法收敛趋势、收敛速度之间的关系; 3)修改训练后BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果,理解神经网络分布存储等特点。 二、实验要求 按照下面的要求操作,然后分析不同操作后网络输出结果。 1)可修改学习因子 2)可任意指定隐单元层数 3)可任意指定输入层、隐含层、输出层的单元数 4)可指定最大允许误差ε 5)可输入学习样本(增加样本) 6)可存储训练后的网络各神经元之间的连接权值矩阵; 7)修改训练后的BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果。 三、实验原理 1 明确BP神经网络算法的基本思想如下: 在BPNN中,后向传播是一种学习算法,体现为BPNN的训练过程,该过程是需要教师指导的;前馈型网络是一种结构,体现为BPNN的网络构架 反向传播算法通过迭代处理的方式,不断地调整连接神经元的网络权重,使得最终输出结果和预期结果的误差最小 BPNN是一种典型的神经网络,广泛应用于各种分类系统,它也包括了训练和使用两个阶段。由于训练阶段是BPNN能够投入使用的基础和前提,而使用阶段本身是一个非常简单的过程,也就是给出输入,BPNN会根据已经训练好的参数进行运算,得到输出结果 2 明确BP神经网络算法步骤和流程如下: 1初始化网络权值 2由给定的输入输出模式对计算隐层、输出层各单元输出 3计算新的连接权及阀值, 4选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。

bp神经网络及matlab实现讲解学习

b p神经网络及m a t l a b实现

图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为: 图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ]

则神经元的输出可以表示为向量相乘的形式: 若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。 图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。 2. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。 (1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold Function ) 以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。 (4) S形函数 ( Sigmoid Function ) 该函数的导函数:

BP神经网络matlab源程序代码

close all clear echo on clc % NEWFF——生成一个新的前向神经网络 % TRAIN——对 BP 神经网络进行训练 % SIM——对 BP 神经网络进行仿真 % 定义训练样本 % P为输入矢量 P=[0.7317 0.6790 0.5710 0.5673 0.5948;0.6790 0.5710 0.5673 0.5948 0.6292; ... 0.5710 0.5673 0.5948 0.6292 0.6488;0.5673 0.5948 0.6292 0.6488 0.6130; ... 0.5948 0.6292 0.6488 0.6130 0.5654; 0.6292 0.6488 0.6130 0.5654 0.5567; ... 0.6488 0.6130 0.5654 0.5567 0.5673;0.6130 0.5654 0.5567 0.5673 0.5976; ... 0.5654 0.5567 0.5673 0.5976 0.6269;0.5567 0.5673 0.5976 0.6269 0.6274; ... 0.5673 0.5976 0.6269 0.6274 0.6301;0.5976 0.6269 0.6274 0.6301 0.5803; ... 0.6269 0.6274 0.6301 0.5803 0.6668;0.6274 0.6301 0.5803 0.6668 0.6896; ... 0.6301 0.5803 0.6668 0.6896 0.7497]; % T为目标矢量 T=[0.6292 0.6488 0.6130 0.5654 0.5567 0.5673 0.5976 ... 0.6269 0.6274 0.6301 0.5803 0.6668 0.6896 0.7497 0.8094]; % Ptest为测试输入矢量 Ptest=[0.5803 0.6668 0.6896 0.7497 0.8094;0.6668 0.6896 0.7497 0.8094 0.8722; ... 0.6896 0.7497 0.8094 0.8722 0.9096]; % Ttest为测试目标矢量 Ttest=[0.8722 0.9096 1.0000]; % 创建一个新的前向神经网络 net=newff(minmax(P'),[12,1],{'logsig','purelin'},'traingdm'); % 设置训练参数 net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9; net.trainParam.epochs = 5000; net.trainParam.goal = 0.001; % 调用TRAINGDM算法训练 BP 网络 [net,tr]=train(net,P',T); % 对BP网络进行仿真 A=sim(net,P'); figure; plot((1993:2007),T,'-*',(1993:2007),A,'-o'); title('网络的实际输出和仿真输出结果,*为真实值,o为预测值'); xlabel('年份'); ylabel('客运量'); % 对BP网络进行测试 A1=sim(net,Ptest');

BP神经网络的预测理论的及程序 学习

12、智能算法 12.1 人工神经网络 1、人工神经网络的原理假如我们只知道一些输入和相应的输出,但是不清楚这些输入和输出之间的具体关系是什么,我们可以把输入和输出之间的未知过程看成是一个“网络”,通过不断的网络输入和相应的输出进行“训练”(学习),网络根据输入和对应输出不断调整连接网络的权值,直到满足我们的目标要求,这样就训练好了一个神经网络,当我们给定一个输入, 网络就会计算出一个相应的输出。 2、网络结构神经网络一般有一个输入层,多个隐层,和一个输出层。隐层并非越多越好。如下图所示: 神经网络工具箱几乎 MATLAB 12.2 Matlab 神经网络工具箱 BP 网络和涵盖了所有的神经网络的基本常用模型,如感知器、nntool nftool,nctool,nprtool,nntraintool 和等。它由RBFNN 函数逼近和数据拟合、信息处理和预测、神经网组成。主要应用于

在实际应用中,针对具体的问题,首先络控制和故障诊断等领域。.需要分析利用神经网络来解决问题的性质,然后依据问题的特点,提取训练和测试数据样本,确定网络模型,最后通过对网络进行训练、仿真等检验网络的性能是否满足要求。具体过程如下: (1)确定信息表达的方式,主要包括数据样本已知;数据样本之间相互关系不明确;输入/输出模式为连续的或离散的;数据样本的预处理;将数据样本分成训练样本和测试样本。 (2)网络模型的确定。确定选择何种神经网络以及网络层数。 (3)网络参数的选择,如输入输出神经元个数的确定,隐层神经元的个数等。 (4)训练模式的确定,包括选择合理的训练算法、确定合适的训练步数、指定适当的训练目标误差等 (5)网络测试,选择合理的样本对网络进行测试。 简单来讲就是三个步骤:建立网络(newXX)—训练网络(trainXX)—仿真网络(sim) 12.3 BP 神经网络的 Matlab 相关函数 BP 算法的基本思想:学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望输出(教师信号)不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号作为修正各单元权

基于Bp神经网络的股票预测

基于神经网络的股票预测 【摘要】: 股票分析和预测是一个复杂的研究领域,本论文将股票技术分析理论与人工神经网络相结合,针对股票市场这一非线性系统,运用BP神经网络,研究基于历史数据分析的股票预测模型,同时,对单只股票短期收盘价格的预测进行深入的理论分析和实证研究。本文探讨了BP神经网络的模型与结构、BP算法的学习规则、权值和阈值等,构建了基于BP神经网络的股票短期预测模型,研究了神经网络的模式、泛化能力等问题。并且,利用搭建起的BP神经网络预测模型,采用多输入单输出、单隐含层的系统,用前五天的价格来预测第六天的价格。对于网络的训练,选用学习率可变的动量BP算法,同时,对网络结构进行了隐含层节点的优化,多次尝试,确定最为合理、可行的隐含层节点数,从而有效地解决了神经网络隐含层节点的选取问题。 【abstract] Stock analysis and forecasting is a complex field of study. The paper will make research on stock prediction model based on the analysis of historical data, using BP neural network and technical analysis theory. At the same time, making in-depth theoretical analysis and empirical studies on the short-term closing price forecasts of single stock. Secondly, making research on the model and structure of BP neural network, learning rules, weights of BP algorithm and so on, building a stock short-term forecasting model based on the BP neural network, related with the model of neural network and the ability of generalization. Moreover, using system of multiple-input single-output and single hidden layer, to forecast the sixth day price by BP neural network forecasting model structured. The network of training is chosen BP algorithm of traingdx, while making optimization on the node numbers of the hidden layer by several attempts. Thereby resolve effectively the problem of it. 【关键词】BP神经网络股票预测分析 1.引言 股票市场是一个不稳定的非线性动态变化的复杂系统,股价的变动受众多因素的影响。影响股价的因素可简单地分为两类,一类是公司基本面的因素,另一类是股票技术面的因素,虽然股票的价值是公司未来现金流的折现,由公司的基本面所决定,但是由于公司基本面的数据更新时间慢,且很多时候并不能客观反映公司的实际状况,采用适当数学模型就能在一定

(完整版)bp神经网络算法.doc

BP 神经网络算法 三层 BP 神经网络如图: 目标输出向量 传递函数 g 输出层,输出向量 权值为 w jk 传递函数 f 隐含层,隐含层 输出向量 输 入 层 , 输 入 向量 设网络的输入模式为 x (x 1 , x 2 ,...x n )T ,隐含层有 h 个单元,隐含层的输出为 y ( y 1 , y 2 ,...y h )T ,输出 层有 m 个单元,他们的输出为 z (z 1 , z 2 ,...z m )T ,目标输出为 t (t 1 ,t 2 ,..., t m )T 设隐含层到输出层的传 递函数为 f ,输出层的传递函数为 g n n 于是: y j f ( w ij x i ) f ( w ij x i ) :隐含层第 j 个神经元的输出;其中 w 0 j , x 0 1 i 1 i 0 h z k g( w jk y j ) :输出层第 k 个神经元的输出 j 此时网络输出与目标输出的误差为 1 m (t k z k ) 2 ,显然,它是 w ij 和 w jk 的函数。 2 k 1 下面的步骤就是想办法调整权值,使 减小。 由高等数学的知识知道:负梯度方向是函数值减小最快的方向 因此,可以设定一个步长 ,每次沿负梯度方向调整 个单位,即每次权值的调整为: w pq w pq , 在神经网络中称为学习速率 可以证明:按这个方法调整,误差会逐渐减小。

BP 神经网络(反向传播)的调整顺序为:1)先调整隐含层到输出层的权值 h 设 v k为输出层第k个神经元的输入v k w jk y j j 0 ------- 复合函数偏导公式 1 g'(u k ) e v k 1 (1 1 ) z k (1 z k ) 若取 g ( x) f (x) 1 e x,则(1e v k) 2 1e v k 1e v k 于是隐含层到输出层的权值调整迭代公式为:2)从输入层到隐含层的权值调整迭代公式为: n 其中 u j为隐含层第j个神经元的输入: u j w ij x i i 0 注意:隐含层第j 个神经元与输出层的各个神经元都有连接,即涉及所有的权值w ij,因此 y j m (t k z k )2 z k u k m y j k 0 z k u k y j (t k z k ) f '(u k )w jk k 0 于是: 因此从输入层到隐含层的权值调整迭代为公式为: 例: 下表给出了某地区公路运力的历史统计数据,请建立相应的预测模型,并对给出的 2010 和 2011 年的数据,预测相应的公路客运量和货运量。 人数 ( 单位:机动车数公路面积 ( 单公路客运量公路货运量 时间( 单位:万位:万平方公( 单位:万( 单位:万万人 ) 辆 ) 里) 人 ) 吨 ) 1990 20.55 0.6 0.09 5126 1237 1991 22.44 0.75 0.11 6217 1379 1992 25.37 0.85 0.11 7730 1385 1993 27.13 0.9 0.14 9145 1399 1994 29.45 1.05 0.2 10460 1663 1995 30.1 1.35 0.23 11387 1714 1996 30.96 1.45 0.23 12353 1834 1997 34.06 1.6 0.32 15750 4322 1998 36.42 1.7 0.32 18304 8132 1999 38.09 1.85 0.34 19836 8936 2000 39.13 2.15 0.36 21024 11099 2001 39.99 2.2 0.36 19490 11203 2002 41.93 2.25 0.38 20433 10524 2003 44.59 2.35 0.49 22598 11115 2004 47.3 2.5 0.56 25107 13320 2005 52.89 2.6 0.59 33442 16762 2006 55.73 2.7 0.59 36836 18673

BP神经网络MATLAB代码

BP神经网络matlab代码 p=[284528334488;283344884554;448845542928;455429283497;29283497 2261;... 349722616921;226169211391;692113913580;139135804451;35804451 2636;... 445126363471;263634713854;347138543556;385435562659;35562659 4335;... 265943352882;433528824084;433528821999;288219992889;19992889 2175;... 288921752510;217525103409;251034093729;340937293489;37293489 3172;... 348931724568;317245684015;]'; %====期望输出======= t=[4554292834972261692113913580445126363471385435562659... 4335288240841999288921752510340937293489317245684015... 3666]; ptest=[284528334488;283344884554;448845542928;455429283497;29283497 2261;... 349722616921;226169211391;692113913580;139135804451;35804451 2636;... 445126363471;263634713854;347138543556;385435562659;35562659 4335;... 265943352882;433528824084;433528821999;288219992889;19992889 2175;... 288921752510;217525103409;251034093729;340937293489;37293489 3172;... 348931724568;317245684015;456840153666]'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);%将数据归一化 NodeNum1=20;%隐层第一层节点数 NodeNum2=40;%隐层第二层节点数 TypeNum=1;%输出维数 TF1='tansig'; TF2='tansig'; TF3='tansig'; net=newff(minmax(pn),[NodeNum1,NodeNum2,TypeNum],{TF1TF2 TF3},'traingdx');

BP神经网络算法预测模型

BP神经网络结构及算法 1986年,Rumelhart和McCelland领导的科学家小组在《Parallel Distributed Processing》一书中,对具有非线性连续转移函数的多层前馈网络的误差反向传播算法(Error Back Proragation,简称BP)进行了详尽的分析,实现了Minsky关于多层网络的设想。由于多层前馈网络的训练经常釆用误差反向传播算法,人们也常把多层前馈网络直接称为BP网。釆用BP算法的多层前馈网络是目前应用最多的神经网络。 BP神经网络的结构 BP网络有三部分构成,即输入层、隐含层(又称为中间层)和输出层,其中可以有多个隐含层。各层之间实现完全连接,且各层神经元的作用是不同的:输入层接受外界信息;输出层对输入层信息进行判别和决策;中间隐层用来表示或存贮信息。通常典型的BP网络有三层构成,即只有一个隐层。三层BP神经网络的结构可用图1表示。 图1 三层BP神经网络机构图 BP神经网络的学习算法 BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐含层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐含层向输入层逐层反传、并将误差分摊给各层的所有神经元,从而获得各层神经元的误差信号,此误差信号即作为修正各神经元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的,权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出误差减少到可接受的程度,或进行到预先设定的学习次数为止,标准BP算法流程见图2。

BP神经网络模型预测未来

BP神经网络模型预测未来 BP神经网络算法概述: 简介与原理 BP神经网络是一种多层前馈神经网络,该网络的主要特点是:信号前向传递,误差反向传播。在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层,每一层的神经元状态只影响下一层神经元状态。如果输出层得不到期望输出,则转入反向传播,根据预测误差调整网络权值和阈值,从而使BP神经网络预测输出不断逼近期望输出。 BP神经网络的拓扑结构如下图所示: 输入层隐含层输出层 BP神经网络结构图 图中是BP神经网络的输入值,是BP神经网络的预测值, 为BP神经网络权值。 BP神经网络预测前首先要训练网络,通过训练使网络具有联想记忆和预测能力。BP神经网络的训练过程包括一下几个步骤。 步骤一:网络初始化。根据系统输入输出序列(,) X Y确定网络输入层节点数,n隐含层节点数l、输出层节点数m、初始化输入层、隐含层和输出层神经元之间的连接权值,, ωω初始化隐含层阈值a,给 ij jk

定输出层阈值b,给定学习速率和神经元激励函数。 步骤二:隐含层输出计算。根据输入向量,输入层和隐含层间连接权值,以及隐含层阈值,计算隐含层输出。 步骤三:输出层输出计算。根据隐含层输出,连接权值和阈值,计算BP神经网络预测输出。 步骤四:误差计算根据网络输出和预期输出,计算网络预测误差。 步骤五:权值更新。根据网络预测更新网络连接权值 步骤六:阈值更新。根据网络预测误差更新网络节点阈值。 步骤七:判断算法迭代是否结束,若没有结束,返回步骤二。 下面是基本BP算法的流程图。 BP神经网络的拓扑结构如下图所示: 输入层隐含层输出层 BP神经网络预测的算法流程如下: 步骤一:对初始数据进行标准化。 步骤二:利用原始数据对网络进行训练。 步骤三:对未来第t年第i类污染程度的河流长度比例进行预测。 步骤四:利用第年预测得到的数据作为样本再对网络进行训练。 步骤五:然后令1 t t t=。 =+,回到Step2,直到10 2.建模步骤: Step 1 建立如下网络拓扑结构 表3 网络结构

神经网络预测控制综述

神经网络预测控制综述 摘要:近年来,神经网络预测控制在工业过程控制中不仅得到广泛的应用,而且其理论研究也取得了很大进展。对当前各种神经刚络预测控制方法的现状及其工业应用进行了较深入地分析,并对其存在的问题和今后可能的发展趋势作了进一步探讨。 关键词:神经网络;预测控制:非线性系统;工业过程控制 Abstract: In recent years, neural network predictive control has not only been widely used in industrial process control, but also has made great progress in theoretical research. The current status of various neural network prediction control methods and their industrial applications are analyzed in depth, and the existing question and possible future development trends are further discussed. Keywords: neural network; predictive control: nonlinear system; industrial process control

20世纪70年代以来,人们从工业过程的特点出发,寻找对模型精度要去不高而同样能实现高质量控制性能的方法,预测控制就是在这种背景下发展起的[1]。预测控制技术最初山Richalet和Cutler提出[2],具有多步预测、滚动优化、反馈校正等机理,因此能够克服过程模型的不确定性,体现出优良的控制性能,在工业过程控制中取得了成功的应用。如Shell公司、Honeywell公司、Centum 公司,都在它们的分布式控制系统DCS上装备了商业化的预测控制软件包.并广泛地将其应用于石油、化工、冶金等工业过程中[3]。但是,预测函数控制是以被控对象的基函数的输出响应可以叠加为前提的,因而只适用于线性动态系统控制。对于实际中大量的复杂的非线性工业过程。不能取得理想的控制效果。而神经网络具有分布存储、并行处理、联想记忆、自组织和自学习等功能,以神经元组成的神经网络可以逼近任意的:线性系统。使控制系统具有智能化、鲁棒性和适应性,能处理高维数、非线性、干扰强、难建模的复杂工业过程。因此,将神经网络应用于预测控制,既是实际应用的需要,同时也为预测控制理论的发展开辟了广阔的前景。本文对基于神经网络的预测控制的研究现状进行总结,并展望未来的发展趋势。 l神经网络预测控制的基本算法的发展[4] 实际中的控制对象都带有一定的菲线性,大多数具有弱非线性的对象可用线性化模型近似,并应用已有的线性控制理论的研究成果来获得较好的控制效果。而对具有强非线性的系统的控制则一直是控制界研究的热点和难点。 就预测控制的基本原理而言,只要从被控对象能够抽取出满足要求的预测模型,它便可以应用于任何类型的系统,包括线性和非线性系统。 由于神经网络理论在求解非线性方面的巨大优势,很快被应用于非线性预测控制中。其主要设计思想是:利用一个或多个神经刚络,对非线性系统的过程信息进行前向多步预测,然后通过优化一个含有这些预测信息的多步优化目标函数,获得非线性预测控制律。在实际应用与理论研究中形成了许多不同的算法。如神经网络的内模控制、神经网络的增量型模型算法控制等,近来一些学者对有约束神经网络的预测控制也作了相应的研究。文献[5]设计了多层前馈神经网络,使控制律离线求解。文献[6]采用两个网络进行预测,但结构复杂,距离实际应用还有一定的距离,文献[7]利用递阶遗传算法,经训练得出离线神经网络模型.经多步预测得出对象的预测模型,给出了具有时延的非线性系统的优化预测控制。将神经网络用于GPC的研究成果有利用Tank.Hopfield网络处理GPC矩阵求逆的算法,基于神经网络误差修正的GPC算法、利用小脑模型进行提前计算的GPC 算法、基于GPC的对角递归神经网络控制方法以及用神经网络处理约束情形的预

BP神经网络matlab实例

神经网络Matlab p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络 net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01; net.trainParam.epochs=100000; net.trainParam.goal=1e-5; [net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn); %对BP网络进行仿真 anew=postmnmx(anewn,mint,maxt); %还原数据 y=anew'; 1、BP网络构建 (1)生成BP网络 = net newff PR S S SNl TF TF TFNl BTF BLF PF (,[1 2...],{ 1 2...},,,) R?维矩阵。 PR:由R维的输入样本最小最大值构成的2

S S SNl:各层的神经元个数。 [1 2...] TF TF TFNl:各层的神经元传递函数。 { 1 2...} BTF:训练用函数的名称。 (2)网络训练 = [,,,,,] (,,,,,,) net tr Y E Pf Af train net P T Pi Ai VV TV (3)网络仿真 = [,,,,] (,,,,) Y Pf Af E perf sim net P Pi Ai T {'tansig','purelin'},'trainrp' BP网络的训练函数 训练方法训练函数 梯度下降法traingd 有动量的梯度下降法traingdm 自适应lr梯度下降法traingda 自适应lr动量梯度下降法traingdx 弹性梯度下降法trainrp Fletcher-Reeves共轭梯度法traincgf Ploak-Ribiere共轭梯度法traincgp Powell-Beale共轭梯度法traincgb 量化共轭梯度法trainscg 拟牛顿算法trainbfg 一步正割算法trainoss Levenberg-Marquardt trainlm

(完整版)基于神经网络的中国人口预测算法研究毕业论文

毕业论文(设 计) 题目基于神经网络的中国人口预测 算法研究

所在院(系)数学与计算机科学学院 专业班级信息与计算科学1102班 指导教师赵晖 完成地点陕西理工学院 2015年5 月25日

基于神经网络的中国人口预测算法研究 作者:宋波 (陕理工学院数学与计算机科学学院信息与计算科学专业1102班,陕西汉中 723000) 指导教师:赵晖 [摘要]我国现正处于全面建成小康社会时期,人口发展面临着巨大的挑战,经济社会发展与资源环境的矛盾日益尖锐。我国是个人口大国、资源小国,这对矛盾将长期制约我国经济社会的发展。准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和实用意义。本文介绍了人口预测的概念及发展规律等。 首先,本文考虑到人口预测具有大量冗余、流动范围和数量扩大的特性,又为提高人口预测的效果,因此,使用归一化对人口数据进行了处理,该方法不需要离散化原数据,这样就保证了人口预测的准确性和原始数据的信息完整性。其次,本文提出了一种基于神经网络预测的优化算法,该算法避免了人们在预测中参数选择的主观性而带来的精度的风险,增强了人口预测的准确性。同时,为说明该算法的有效性,又设计了几种人们通常所用的人口模型和灰色预测模型算法,并用相同的数据进行实验,得到了良好的效果,即本文算法的人口预测最为准确,其预测性能明显优于其他算法,而这主要是参数的选择对于增强预测性方面的影响,最终导致人口预测精确度。同时,在算法的稳定性和扩展性方面,该算法也明显优于其他算法。 考虑出生率、死亡率、人口增长率等因素的影响,重建神经网络模型预测人口数量。 [关键词] 神经网络人口模型灰色预测模型软件

相关主题
文本预览
相关文档 最新文档