当前位置:文档之家› 三角形等高模型练习题

三角形等高模型练习题

三角形等高模型练习题

页眉内容

来源于网络

1. 右图中,四边形ABCD 的面积是320平方厘米,四边形ABED 是个正方形,已知BC 等于CE 的3倍,求三角形E C D 的面积。

2、已知三角形ABC 中,DC =BD,阴影部分的 面积是36平方厘米,求:三角形的面积。

3、如下左图,D 、E 、F 分别是BC 、AD 、BE 的三等分点, 已知S △ABC=27平方厘米,求S △DEF 。

4、如下左图,在平行四边形ABCD 中,E 、F 分别 是AC 、BC 的三等分点,且SABCD=54平方厘米,

求S △BEF 。

5

6 相

小学思维数学讲义:平面五大模型之三角形等高模型与鸟头模型(二)-带详解

三角形等高模型与鸟头模型(二) 板块一 三角形等高模型 我们已经知道三角形面积的计算公式:三角形面积=底?高2÷ 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生 变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1 3 ,则三角形面积与原来的一 样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b = s 2s 1b a D C B A ③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 板块二 鸟头模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =??△△ E D C B A D E C B A 图⑴ 图⑵ 【例 1】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平 方厘米,求ABC △的面积. 例题精讲

小学奥数几何五大模型(鸟头模型)

模型二 鸟头模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上如图 2), 则:():()ABC ADE S S AB AC AD AE =??△△ 图⑴ 图⑵ 【例 1】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方 厘米,求ABC △的面积. 【解析】 连接BE ,::2:5(24):(54)ADE ABE S S AD AB ===??△△, ::4:7(45):(75)ABE ABC S S AE AC ===??△△,所以:(24):(75)ADE ABC S S =??△△,设8ADE S =△份, 则35ABC S =△份,16ADE S =△平方厘米,所以1份是2平方厘米,35份就是70平方厘米,ABC △的 面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 . 【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那 么三角形ABC 的面积是多少? 【解析】 连接BE . ∵3EC AE = ∴3ABC ABE S S =V V 又∵5AB AD = ∴515ADE ABE ABC S S S =÷=÷V V V ,∴1515ABC ADE S S ==V V . 【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面 积是甲部分面积的几倍? 【解析】 连接AD . ∵3BE =,6AE = ∴3AB BE =,3ABD BDE S S =V V 又∵4BD DC ==, 三角形等高模型与鸟头模型

小学奥数-几何五大模型(鸟头模型)-精选.

模型二 鸟头模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上如图 2), 则:():()ABC ADE S S AB AC AD AE =??△△ E D C B A E D C B A 图⑴ 图⑵ 【例 1】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =, 16ADE S =△平方厘米,求ABC △的面积. 三角形等高模型与鸟头模型

E D C B A E D C B A 【解析】 连接BE ,::2:5(24):(54)ADE ABE S S AD AB ===??△△, ::4:7(45):(75) ABE ABC S S AE AC ===??△△,所以:(24):(75)ADE ABC S S =??△△,设 8ADE S =△份,则35ABC S =△份,16ADE S =△平方厘米,所以1份是2平方厘米,35份就是70平方厘米,ABC △的面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 . 【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角 形ADE 的面积等于1,那么三角形ABC 的面积是多少? E D C B A A B C D E 【解析】 连接BE . ∵3EC AE = ∴3ABC ABE S S =V V 又∵5AB AD = ∴515ADE ABE ABC S S S =÷=÷V V V ,∴1515ABC ADE S S ==V V . 【巩固】如图,三角形被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =, 6AE =,乙部分面积是甲部分面积的几倍? 乙 甲 E D C B A A B C D E 甲 乙 【解析】 连接AD . ∵3BE =,6AE = ∴3AB BE =,3ABD BDE S S =V V 又∵4BD DC ==, ∴2ABC ABD S S =V V ,∴6ABC BDE S S =V V ,5S S =乙甲.

三角形等高模型 例题+巩固+答案

三角形的等高模型 例题精讲 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b = b a S 2S 1 D C B A ③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 【例题1】你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶6个面积相等的三角形. 【解析】⑴ 如下图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点,答案不唯一: C E D B A F C D B A G D B A ⑵ 如下图,答案不唯一,以下仅供参考: ⑸ ⑷⑶⑵⑴ ⑶如下图,答案不唯一,以下仅供参考: 【例题2】如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上. ⑴ 求三角形ABC 的面积是三角形ABD 面积的多少倍? ⑵ 求三角形ABD 的面积是三角形ADC 面积的多少倍? C D B A

【解析】因为三角形ABD 、三角形ABC 和三角形ADC 在分别以BD 、BC 和DC 为底时, 它们的高都是从A 点向BC 边上所作的垂线,也就是说三个三角形的高相等. 于是:三角形ABD 的面积=12高÷2=6×高 三角形ABC 的面积=(12+4)×高÷2=8×高 三角形ADC 的面积=4×高÷2=2×高 所以,三角形ABC 的面积是三角形ABD 面积的4/3倍; 三角形ABD 的面积是三角形ADC 面积的3倍. 【例题3】如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是 平方厘米. 【解析】图中阴影部分的面积等于长方形ABCD 面积的一半, 即4×3÷2=6(平方厘米). 【巩固1】如图所示,平行四边形的面积是50平方厘米,则阴影部分的面积是 平方厘米. 【解析】根据面积比例模型,可知图中空白三角形面积等于 平行四边形面积的一半,所以阴影部分的面积也等于 平行四边形面积的一半,为50÷2=25平方厘米. 【巩固2】如下图,长方形AFEB 和长方形FDCE 拼成了长方形ABCD ,长方形ABCD 的长是20,宽是12,则它 内部阴影部分的面积是 . F E C B A 【解析】 根据面积比例模型可知阴影部分面积等于长方形面积的一半, 为20×12÷120. 【例题4】如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积. E B A E B A 【解析】本题是等底等高的两个三角形面积相等的应用. 连接BH 、CH .

小学奥数-三角形等高模型与鸟头模型.题库学生版

板块一 三角形等高模型 我们已经知道三角形面积的计算公式:三角形面积=底?高2÷ 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生 变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1 3 ,则三角形面积与原来的一 样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b = b a S 2S 1 D C B A ③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶ 6个面积相等的三角形. 【例 2】 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上. 例题精讲 三角形等高模型与鸟头模型 (学生版)

2018四年级奥数.几何.三角形等高模型和鸟头模型(B级).学生版

知识框架 板块一三角形等高模型 我们已经知道三角形面积的计算公式:三角形面积=底?高2 ÷ 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发 生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的 1 3,则三角形面积与原来的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12 :: S S a b = ③夹在一组平行线之间的等积变形,如右上图 ACD BCD S S= △△ ; 反之,如果 ACD BCD S S= △△ ,则可知直线AB平行于CD. ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 三角形等高模型和鸟头模型

板块二鸟头模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图⑴(或D 在BA 的延长线上,E 在AC 上),则:():() ABC ADE S S AB AC AD AE =??△ △例题精讲 【例1】如右图,E 在AD 上,AD 垂直BC,12AD =厘米,3DE =厘米.求三角形ABC 的面积是三角形 EBC 面积的几倍?欢迎关注:奥数轻松学 余老师薇芯:69039270 E D C B A 【巩固】如图30-5,设正方形ABCD 的面积为1,E,F 分别为边AB,AD 的中点,FC=3GC,则阴影部分的面 积是多少?

小学奥数_几何五大模型(等高模型)

模型一三角形等高模型 已经知道三角形面积的计算公式 : 三角形面积二底高2 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积 ? 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时 ,它的底和高之中至少有一个要发生变化 ?但是,当三角形的底和高同时 发生变化时,三角形的面积不一定变化?比如当高变为原来的 3倍,底变为原来的-,则三角形面积与原来 3 的一样?这就是说:一个三角形的面积变化与否取决于它的高和底的乘积 ,而不仅仅取决于高或底的变 化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状 ? 在实际问题的研究中,我们还会常常用到以下结论 ① 等底等高的两个三角形面积相等 ; ② 两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如 图 S :S 2 二a: b ④ 等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形 ); ⑤ 三角形面积等于与它等底等高的平行四边形面积的一半 ; ⑥ 两个平行四边形高相等,面积比等于它们的底之比; 两个平行四边形底相等 ,面积比等于它们的高之比 ③夹在一组平行线之间的等积变形 反之,如果 ACD = BCD , ,如右上图 ACD = S A BCD ; 则 可知直线AB 平行于CD ?

【例1】你有多少种方法将任意一个三角形分成:⑴3个面积相等的三角形:⑵4个面积相等的三角形 ⑶6个面积相等的三角形。 【解析】⑴ 如下图,D、E是BC的三等分点,F、G分别是对应线段的中点,答案不唯一: ⑵如下图,答案不唯一,以下仅供参考 【例2】如图,BD长12厘米,DC长4厘米,B、C和D在同一条直线上。 ⑴求三角形ABC的面积是三角形ABD面积的多少倍? ⑵求三角形ABD的面积是三角形ADC面积的多少倍? 【解析】因为三角形ABD、三角形ABC和三角形ADC在分别以BD、BC和DC为底时,它们的高都是从A 点向BC 边上所作的垂线,也就是说三个三角形的高相等。 于是:三角形ABD的面积=12高<2-6高 三角形ABC的面积(12 4)高"2=8高三角形ADC的面积=4高“2=2高 所以,三角形ABC的面积是三角形ABD面积的4倍; 3 三角形ABD的面积是三角形ADC面积的3倍。 【例3】如右图,ABFE和CDEF都是矩形,AB的长是4厘米,BC的长是3厘米,那么图中阴影部分的面积是_______ 平方厘米。 【解析】图中阴影部分的面积等于长方形ABCD面积的一半,即4 3一:一2=6(平方厘米)。

小学奥数 几何五大模型 等高模型

模型一 三角形等 高模型 已经知道三角形面积 的计算公式: 三角形面积=底?高2÷ 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时 发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1 3 ,则三角形面积与原来 的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如图 12::S S a b = ③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比; 两个平行四边形底相等,面积比等于它们的高之比. 【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶ 6个面积相等的三角形。 【解析】 ⑴ 如下图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点,答案不唯一: ⑵ 如下图,答案不唯一,以下仅供参考: ⑶如下图,答案不唯一,以下仅供参考: 【例 2】 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上。 ⑴ 求三角形ABC 的面积是三角形ABD 面积的多少倍? ⑵ 求三角形ABD 的面积是三角形ADC 面积的多少倍? 【解析】 因为三角形ABD 、三角形ABC 和三角形ADC 在分别以BD 、BC 和DC 为底时,它们的高都是从A 点向BC 边上所作的垂线,也就是说三个三角形的高相等。 于是:三角形ABD 的面积12=?高26÷=?高 三角形ABC 的面积124=+?()高28÷=?高 三角形ADC 的面积4=?高22÷=?高 所以,三角形ABC 的面积是三角形ABD 面积的 4 3 倍; 三角形ABD 的面积是三角形ADC 面积的3倍。 【例 3】 如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面 积是 平方厘米。 三角形等高模型与鸟头模型

小学奥数-几何五大模型(等高模型)知识分享

小学奥数-几何五大模型(等高模型)

模型一 三角形等高模型 已经知道三角形面积的计算公式: 三角形面积=底?高2÷ 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的13 ,则三角形面积与原来的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如图 12::S S a b = b a S 2S 1 D C B A ③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比; 三角形等高模型与鸟头模型

两个平行四边形底相等,面积比等于它们的高之比.

【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等 的三角形;⑶6个面积相等的三角形。 【解析】 ⑴ 如下图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点,答案不唯一: C E D B A F C D B A G D B A ⑵ 如下图,答案不唯一,以下仅供参考: ⑸ ⑷⑶⑵⑴ ⑶如下图,答案不唯一,以下仅供参考: 【例 2】 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上。 ⑴ 求三角形ABC 的面积是三角形ABD 面积的多少倍? ⑵ 求三角形ABD 的面积是三角形ADC 面积的多少倍? 【解析】 因为三角形ABD 、三角形ABC 和三角形ADC 在分别以BD 、 BC 和DC 为底时,它们的高都是从A 点向BC 边上所作的垂 线,也就是说三个三角形的高相等。 于是:三角形ABD 的面积12=?高26÷=?高 三角形ABC 的面积124=+?()高28÷=?高 三角形ADC 的面积4=?高22÷=?高 所以,三角形ABC 的面积是三角形ABD 面积的4 3 倍; 三角形ABD 的面积是三角形ADC 面积的3倍。 【例 3】 如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影 部分的面积是 平方厘米。 【解析】 图中阴影部分的面积等于长方形ABCD 面积的一半,即4326?÷=(平方厘米)。 C D B A

(完整)爱提分几何第01讲等高模型

知识图谱 几何第01讲_等高模型-一、等高模型(比例关系)三角形中的等高梯形中的等高 一:等高模型(比例关系) 知识精讲 一.三角形中的面积比例关系 直线形计算中,最重要的就是找到两个三角形面积与边长之间的关系. 当两个三角形同高或等高的时候,它们面积的比等于对应底之比.如图所示: 二.梯形中的面积比例关系 在梯形中,对角线把梯形分成两个分别以上底、下底为底边的等高三角形,则它们的面积比与对应上下底之比.如图所示: 三点剖析 重难点:三角形等高模型与梯形中的等高模型 题模精讲 题模一三角形中的等高 例1.1.1、

如图,,.已知△ABC的面积是10,阴影部分的面积是__________. 答案: 2.4 解析: △ABD和△ACD是等高,它们的面积比是,所以△ACD的面积是.同理△CDE和△ADE是等高,它们的面积比是 ,所以阴影部分的面积是. 例1.1.2、 如图所示,已知△ABC的面积为1,且,,,则△DEF的面积是多少?

答案: 解析: 易知,,. 故. 例1.1.3、 如图,在△ABC中,已知△ADE、△DCE、△BCD的面积分别是89,26,28,那么△DBE的面积是_______ 答案: 解析: ,故, . 例1.1.4、

如图7,已知,,,,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51,则△ABC与△DEF的面积和是__________. 答案: 23 解析: △ABC、△BCG、△CDG的面积比等于底边比,即,所以设它们的面积分别是2x、3x、9x;同理设△AGF、△EFG、△DEF的面积分 别是5y、4y、5y.根据条件,可列方程,所以△ABC 与△DEF的面积和是. 题模二梯形中的等高 例1.2.1、 如图,梯形ABCD的面积是10,E为CD中点,求三角形ABE的面积是 ___________.

小学奥数精讲 三角形等高模型与鸟头模型(二).教师版

板块一 三角形等高模型 我们已经知道三角形面积的计算公式:三角形面积=底?高2÷ 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生 变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1 3 ,则三角形面积与原来的一 样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b = s 2s 1b a D C B A ③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 板块二 鸟头模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =??△△ E D C B A D E C B A 图⑴ 图⑵ 【例 1】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平 方厘米,求ABC △的面积. 例题精讲 4-3-2.三角形等高模型与鸟头模型

小学奥数-几何五大模型(等高模型)

模型一三角形等高模型 已经知道三角形面积的计算公式: 三角形面积底高2 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化?但是,当三角形的底和高同时 1 发生变化时,三角形的面积不一定变化?比如当高变为原来的3倍,底变为原来的1,则三角形面积与原来 3 的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化. 同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如图S i :S2 a:b ③夹在一组平行线之间的等积变形,如右上图S A ACD S A BCD ; 反之,如果S A ACD S A BCD,则可知直线AB平行于CD ? ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比; 两个平行四边形底相等,面积比等于它们的高之比.

你有多少种方法将任意一个三角形分成: ⑴3个面积相等的三角形; ⑵4个面积相等的三角形; ⑶ 6个面积相等的三角形。 ⑴ 如下图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点,答案不唯一: ⑵ 如下图,答案不唯一,以下仅供参考: 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上。 ⑴ 求三角形ABC 的面积是三角形 ABD 面积的多少倍? ⑵求三角形ABD 的面积是三角形 ADC 面积的多少倍? 因为三角形 ABD 、三角形 ABC 和三角形ADC 在分别以BD 、BC 和DC 为底时,它们的高都是从 A 点向BC 边上所作的垂线,也就是说三个三角形的高相等。 于是:三角形ABD 的面积 12高2 6高 三角形ABC 的面积 (12 4)高2 8高 三角形ADC 的面积 4高2 2高 4 所以,三角形 ABC 的面积是三角形 ABD 面积的-倍; 3 三角形ABD 的面积是三角形 ADC 面积的3倍。 如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面 积是 平方厘米。 D C 图中阴影部分的面积等于长方形 ABCD 面积的一半,即4 3 2 6(平方厘米)。 (2009年四中小升初入学测试题)如图所示,平行四边形的面积是 50平方厘米,则阴影部分的面积 是 平方厘米。 【例1】 【解 【例2】 【解析】 【例3】 【解析】 ⑶如下图,答案不唯一,以下仅供参考:

小学奥数-几何五大模型(等高模型)讲课教案

模型一 三角形等高模型 已经知道三角形面积的计算公式: 三角形面积=底?高2÷ 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时 发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1 3 ,则三角形面积与原来 的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如图 12::S S a b = b a S 2S 1 D C B A ③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比; 两个平行四边形底相等,面积比等于它们的高之比. 三角形等高模型与鸟头模型

【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶ 6个面积相等的三角形。 【解析】 ⑴ 如下图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点,答案不唯一: C E D B A F C D B A G D B A ⑵ 如下图,答案不唯一,以下仅供参考: ⑸ ⑷⑶⑵⑴ ⑶如下图,答案不唯一,以下仅供参考: 【例 2】 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上。 ⑴ 求三角形ABC 的面积是三角形ABD 面积的多少倍? ⑵ 求三角形ABD 的面积是三角形ADC 面积的多少倍? 【解析】 因为三角形ABD 、三角形ABC 和三角形ADC 在分别以BD 、BC 和DC 为底时,它们的高都是从A 点向BC 边上所作的垂线,也就是说三个三角形的高相等。 于是:三角形ABD 的面积12=?高26÷=?高 三角形ABC 的面积124=+?()高28÷=?高 三角形ADC 的面积4=?高22÷=?高 所以,三角形ABC 的面积是三角形ABD 面积的 4 3 倍; 三角形ABD 的面积是三角形ADC 面积的3倍。 【例 3】 如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面 积是 平方厘米。 【解析】 图中阴影部分的面积等于长方形ABCD 面积的一半,即4326?÷=(平方厘米)。 【巩固】(2009年四中小升初入学测试题)如图所示,平行四边形的面积是50平方厘米,则阴影部分的面积 是 平方厘米。 C D B A

四年级三角形等高模型和鸟头模型

三角形等高模型和鸟头模型 知识框架 板块一 三角形等高模型 我们已经知道三角形面积的计算公式:三角形面积=底?高2÷ 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1 3 ,则三角形面积与 原来的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: (1) 等底等高的两个三角形面积相等; (2) 两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b = b a S 2S 1 D C B A (3) 夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . (4) 等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); (5) 三角形面积等于与它等底等高的平行四边形面积的一半; (6) 两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的 高之比. 板块二 鸟头模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =??△△

小学奥数 几何五大模型(等高模型)

模型一 三角形等高模型 已经知道三角形面积的计算公式: 三角形面积=底?高2÷ 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时 发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1 3 ,则三角形面积与原来 的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如图 12::S S a b = b a S 2S 1 D C B A ③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比; 两个平行四边形底相等,面积比等于它们的高之比. 三角形等高模型与鸟头模型

【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶ 6个面积相等的三角形。 【解析】 ⑴ 如下图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点,答案不唯一: C E D B A F C D B A G D C B A ⑵ 如下图,答案不唯一,以下仅供参考: ⑸ ⑷⑶⑵⑴ ⑶如下图,答案不唯一,以下仅供参考: 【例 2】 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上。 ⑴ 求三角形ABC 的面积是三角形ABD 面积的多少倍? ⑵ 求三角形ABD 的面积是三角形ADC 面积的多少倍? 【解析】 因为三角形ABD 、三角形ABC 和三角形ADC 在分别以BD 、BC 和DC 为底时,它们的高都是从A 点向BC 边上所作的垂线,也就是说三个三角形的高相等。 于是:三角形ABD 的面积12=?高26÷=?高 三角形ABC 的面积124=+?()高28÷=?高 三角形ADC 的面积4=?高22÷=?高 所以,三角形ABC 的面积是三角形ABD 面积的 4 3 倍; 三角形ABD 的面积是三角形ADC 面积的3倍。 【例 3】 如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面 积是 平方厘米。 【解析】 图中阴影部分的面积等于长方形ABCD 面积的一半,即4326?÷=(平方厘米)。 【巩固】(2009年四中小升初入学测试题)如图所示,平行四边形的面积是50平方厘米,则阴影部分的面积 是 平方厘米。 C D B A

等底等高模型-小学奥数

等底等高模型-小学奥数

等高(等底)模型

3? 拓展结论: 拓展1: 图(1): 四边形ABCD为正方形,E、FM是各边中点,H是是AD上任意一点,则S展-;S正证明;连按BH、CH,樵扌思等髙等底知;SB=S少S fS)=S^ S⑥=SQ 餅以S W=-S jE 2 图(2):四边形ABCD为正方杉,E. F. G是各边三等分点.H是是AD上任意一 (证明方法同 上) 图(3):四边形ABCD为长方彫,ES F、G是各边中点,H是是AD上任意一点, 则*?=*S怅(证四方法同上) 拓展2: 图(2):SdSr卜正,证明同上(辅助线如图) 图(3): ?=∣?正,证明同上(轴助线如图) 图(4): S H = ISφz,证明:辅助线如图,极据^nS JLarA=S^ SWC=Sgw

【典型例题】 W 1:如右團,E亦AD上,AD更直BC. JLD = I2屁耒,DE = 3区笊?求三角 形ABC的五积只三环形EBC面枳的几佞? 例2:长方形ABCD的面积为36, E、F、G为各边中点,H为AD边上任意一点? 问阴影部分面枳是多少? 例3:(第6届走羡杯5年圾**第8題)央如图,A. B、C部是正方形边的中 点,ZkCOD比2XA0B大15平方厘來。ΔA0B的面*只为多少平方厘来? D

例4:如图?大长方形由面枳定12平方星来、24平方厘耒、36平方厘米、48 ÷方厘米的四个小长方形俎合而成.求阴影部分的面积? 例5:如右图,正方形ABCD的面积是12 ,正三角形BPC的面积是5.求阴彭

练一练 1. 如图,E 在AD 上,AD 垂直BC 于D,AD 12 厘米,DE 3 厘米.求三角形ABC 的面积是三角形EBC 面积的几倍? A B D C 2.如图所示,在平行四边形ABCD 中,E 为AB 的中 点,AF CF ,三角形AFE (图中阴影部分)的面积为8 平方厘米.平行四边形ABCD 的面积是多少平方厘米? 3. 如图,在长方形ABCD 中,Y 是BD 的中点,Z 是 DY 的中点,如果AB=24 厘米,BC 8 厘米,求三角形

三角形等高模型与鸟头模型例题精讲

板块一 三角形等高模型 我们已经知道三角形面积的计算公式:三角形面积=底?高2÷ 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生 变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的13 ,则三角形面积与原来的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b = ③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶ 6个面积相等的三角形. 【例 2】 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上. ⑴ 求三角形ABC 的面积是三角形ABD 面积的多少倍 ⑵ 求三角形ABD 的面积是三角形ADC 面积的多少倍 【例 3】 如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面 积是 平方厘米. 【例 4】 如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积. 【例 5】 长方形ABCD 的面积为362cm ,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积 是多少 【例 6】 长方形ABCD 的面积为36,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是 多少 【例 7】 如右图,E 在AD 上,AD 垂直BC ,12AD =厘米,3DE =厘米.求三角形ABC 的面积是三角形EBC 面积的几倍 【例 8】 如图,在平行四边形ABCD 中,EF 平行AC ,连结BE 、AE 、CF 、BF 那么与V BEC 等积的三角形一 共有哪几个三角形 【解析】 V AEC 、V AFC 、V ABF . 【例 9】 (第四届”迎春杯”试题)如图,三角形ABC 的面积为1,其中3AE AB =,2BD BC =,三角形BDE 的面积是多少 【例 10】 (2008年四中考题)如右图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC ?的面积是 平方厘米. 【例 11】 如图ABCD 是一个长方形,点E 、F 和G 分别是它们所在边的中点.如果长方形的面积是36 个平方单位,求三角形EFG 的面积是多少个平方单位. 【例 12】 如图,大长方形由面积是12平方厘米、24平方厘米、36平方厘米、48平方厘米的四个小长方 形组合而成.求阴影部分的面积. 【例 13】 如图,三角形ABC 中,2DC BD =,3CE AE =, 三角形ADE 的面积是20平方厘米,三角形ABC 的面积是多少 【例 14】 (2009年第七届”希望杯”二试六年级)如图,在三角形ABC 中,已知三角形ADE 、三角形DCE 、 三角形BCD 的面积分别是89,28,26.那么三角形DBE 的面积是 . 【例 15】 (第四届《小数报》数学竞赛)如图,梯形ABCD 被它的一条对角线BD 分成了两部分.三角形 BDC 的面积比三角形ABD 的面积大10平方分米.已知梯形的上底与下底的长度之和是15分米,它们的差是5分米.求梯形ABCD 的面积. 【例 16】 图中V AOB 的面积为215cm ,线段OB 的长度为OD 的3倍,求梯形ABCD 的面积.

相关主题
文本预览
相关文档 最新文档