当前位置:文档之家› 使用ANSYS软件模拟地震荷载的方法

使用ANSYS软件模拟地震荷载的方法

使用ANSYS软件模拟地震荷载的方法
使用ANSYS软件模拟地震荷载的方法

使用ANSY S 莫拟地震荷载的方法

选用东营胜利油田CB11B 平台的ANSYS 模型对模态分析和动力分析中的 操作方法进行介绍。渤海 CB11B 平台是一座4腿导管架平台,包括上部甲板模 块、导管架和桩基三部分。甲板面标高为+9.00m ,水深为10.5m 。桩腿的单向斜 度10: 1,入泥1.5m

模拟地震荷载首先需要有地震的加速度数据, 这里采用迁安波,迁安波为渤 海的地震波,见文件eqq1.txt 。其时程图见图1。注:该文件只有一列,即加速 度值。

图1?加速度时程图

第一步要把地震加速度数据输入 ANSYS 软件

下拉菜单中 Parameters-Array Parameters-Define/Edit-Add,在 Par 中输入所定 义数组名称(eqq );输入数组选择Array ;在I 、H 、K No.中输入数组的行数、 列数、维数,所输入的行数应该与 eqq1文件中的加速度数据个数相等,列数与 维数在这里均为 1

下拉菜单中 Parameters-Array Parameters-ReadFrom File, 选择 Array ,点击 pm 度速加

1

2 3 时间/s 4 5

8 a

6 a

4 2 a a

o

■2 4 G - -

OK ;ParR中输入数组名称(eqq);在File, ext, dir Read from file中浏览到地震加速度文件eqq1.txt所在的位置;Ncol Number of columns中输入1;最后一行中输入数据格式后点击OK(G10.4代表加速度数据总共十位,小数点后有四位.例如如:+1.2532,即G7.4)。

下拉菜单中Parameters-Array Parameters-Defi ne/Edit-Ad d,选择数组文件名eqq后点击Edit,可以看到地震的加速度数据文件eqq1.txt已经被输入到数组eqq 中了。点击Close 关闭。

第二步要把地震加速度数据输入结构。

注意首先要把water table清空。要以命令流的方式把地震加速度数据输入结构:

FINISH

/PREP7

NT=500 % 总计算步数

DT=0.01 % 时间步长,NT*D■即卩为总的计算时间

/SOLU

ANTYPE,TRANS %以命令流的方式选择瞬态动力学分析

TRNOPT,FULL

*DO,I,1,NT,1 % 循环开始

TIME,I*DT

KBC,0

NSUB,1

ALPHAD,0.1 % 输入阻尼系数alpha

BETAD,0.0028 % 输入阻尼系数betad

ACEL,EQQ(l),0,0 %输入X、Y、Z向的地震加速度数据,这里只在X方向加了加速度。注意这里要输入的数据名EQ要与前面所定义数组名相同。

ALLS

SOLVE

*ENDDO % 循环终止

第三步,观察结果。

以节点位移为例进行说明, TimeHist postproc——Define Variables——Add——Nodal DOF result ------- 选择节点或者输入节点号 --- 选择方向 --- 在List Variables中可以列出该节点不同时间的位移值 -- Graph Variables可以画出该节

点随时间位移图。

ansys分析混凝土的若干问题

1. 讨论两种Ansys求极限荷载的方法 (1)力加载 可以通过对应的方法(比如说特征值屈曲)估计结构的极限荷载的大致范围,然后给结构施加一个稍大的荷载,打开自动荷载步二分法进行非线性静力分析,最后计算会因不收敛终止,则倒数第二个子步对应的就是结构的极限荷载;另外,也可以选择弧长法,采用足够的子步(弧长法可以一直分析到极限承载力之后的过程)同样可以从绘制的荷载位移曲线或计算结果中找出结构的极限荷载。 (2)位移加载 给结构施加一个比较大的位移,打开自动荷载步二分法进行非线性分析,保证足够的子步数,这样也可以分析到极限荷载以后,通过绘制荷载位移曲线或查看相应结果文件也可知道结构的极限荷载。 希望众高手讨论一下 (1)弧长法求极限荷载的收敛性问题,如何画到荷载位移曲线的下降段? (2)位移法求极限荷载的具体步骤? 2. 需要注意的问题 1. 由于SOLID 65单元本身是基于弥散裂缝模型和最大拉应力开裂判据,因此在很多情况下会因为应力集中而使混凝土提前破坏,从而和试验结果不相吻合,因此,在实际应用过程中应该对单元分划进行有效控制,根据作者经验,当最小单元尺寸大于5cm 时,就可以有效避免应力集中带来的问题; 2. 支座是另一个需要注意的问题。在有限元分析中,很多时候约束是直接加在混凝土节点上,这样很可能在支座位置产生很大的应力集中,从而使支座附近的混凝土突然破坏,造成求解失败。因此,在实际应用过程中,应该适当加大支座附近单元的尺寸或者在支座上加一些弹性垫块,避免支座的应力集中; 3. 六面体的SOLID 65 单元一般比四面体的单元计算要稳定且收敛性好,因此,只要条件允许,应该尽量使用六面体单元; 4. 正确选择收敛标准,一般位移控制加载最好用位移的无穷范数控制收敛,而用力控制加载时可以用残余力的二范数控制收敛。在裂缝刚刚出现和接近破坏的阶段,可以适当放松收敛标准,保证计算的连续性; 3. 关于下降段的问题 1)在实际混凝土中都有下降段,但是在计算的时候要特别小心下降段的问题。 2)下降段很容易导致计算不收敛,有时为了计算的收敛要避免设置下降段,采用rush模型。 3)利用最大压应变准则来判断混凝土是否破坏。 4. Solid65单元中的破坏准则 1)采用Willam&Warnke五参数破坏准则 2)需要参数: 单轴抗拉强度,单轴,双轴抗压强度,围压压力,在围压作用下双轴,单轴抗压强度

第八章水平地震作用下的内力和位移计算

第8章 水平地震作用下的内力和位移计算 8.1 重力荷载代表值计算 顶层重力荷载代表值包括:屋面恒载:纵、横梁自重,半层柱自重,女儿墙自重,半层墙体自重。其他层重力荷载代表值包括:楼面恒载,50%楼面活荷载,纵、横梁自重,楼面上、下各半层柱及纵、横墙体自重。 8.1.1第五层重力荷载代表值计算 层高H=3.9m ,屋面板厚h=120mm 8.1.1.1 半层柱自重 (b ×h=500mm ×500mm ):4×25×0.5×0.5×3.9/2=48.75KN 柱自重:48.75KN 8.1.1.2 屋面梁自重 ()()kN m m m kN m m m kN m m m kN 16.1472 )25.06.6(/495.145.06.616.3)3.03(/495.123.06.7/16.3=?-?+?-?+ +?+?-? 屋面梁自重:147.16KN 8.1.1.3 半层墙自重 顶层无窗墙(190厚):()KN 25.316.66.029.3202.02019.025.14=??? ? ??-???+? 带窗墙(190厚): ()()KN 98.82345.002.02019.025.1428.15.16.66.029.3202.02019.025.14=??? ??? ???????-?+???-???? ??-???+? 墙自重:114.23 KN 女儿墙:()KN 04.376.66.1202.02019.025.14=????+? 8.1.1.4 屋面板自重 kN m m m m kN 78.780)326.7(6.6/5.62=+???

8.1.1.5 第五层重量 48.75+147.16+114.23+37.04+780.78=1127.96 KN 8.1.1.6 顶层重力荷载代表值 G 5 =1127.96 KN 8.1.2 第二至四层重力荷载代表值计算 层高H=3.9m ,楼面板厚h=100mm 8.1.2.1半层柱自重:同第五层,为48.75 KN 则整层为48.75×2=97.5 KN 8.1.2.2 楼面梁自重: ()()kN m m m kN m m m kN m m m kN 3.1542)25.06.6(/6.145.06.63.3)3.03(/6.123.06.7/3.3=?-?+?-?+ +?+?-? 8.1.2.3半墙自重:同第五层,为27.66KN 则整层为2×27.66×4=221.28 KN 8.1.2.4楼面板自重:4×6.6×(7.6+3+7.6)=480.48 KN 8.1.2.5第二至四层各层重量=97.5+154.3+221.28+480.48=953.56 KN 8.1.2.6第二至四层各层重力荷载代表值为: ()KN G 61.111336.65.326.76.65.2%5056.9534-2=??+????+= 活载:Q 2-4=KN 05.160%5036.65.326.76.65.2=???+???)( 8.1.3 第一层重力荷载代表值计算 层高H=4.2m ,柱高H 2=4.2+0.45+0.55=5.2m ,楼面板厚h=100mm 8.1.3.1半层柱自重: (b ×h=500mm ×500mm ):4×25×0.5×0.5×5.2/2=65 KN 则柱自重:65+48.75=113.75 KN 8.1.3.2楼面梁自重:同第2层,为154.3 KN 8.1.3.3半层墙自重(190mm ): ()()KN 14.3145.002.02019.025.142 8 .15.16.66.02 2.4202.02019.025.14=-?+???-??? ? ??-???+? 二层半墙自重(190mm ):27.66 KN 则墙自重为:(31.14+27.66)×4=235.2 KN

ANSYS_使用经验

ANSYS 查询函数(Inquiry Function) 在ANSYS操作过程或条件语句中,常常需要知道有关模型的许多参数值,如选择集中的单元数、节点数,最大节点号等。此时,一般可通过*GET命令来获得这些参数。现在,对于此类问题,我们有了一个更为方便的选择,那就是查询函数— Inquiry Function。 Inquiry Function类似于ANSYS的 *GET 命令,它访问ANSYS数据库并返回要查询的数值,方便后续使用。ANSYS每执行一次查询函数,便查询一次数据库,并用查询值替代该查询函数。 假如你想获得当前所选择的单元数,并把它作为*DO循环的上界。传统的方法是使用*GET命令来获得所选择的单元数并把它赋给一个变量,则此变量可以作为*DO循环的上界来确定循环的次数 *get, ELMAX,elem,,count *do, I, 1, ELMAX … … *enddo 现在你可以使用查询函数来完成这件事,把查询函数直接放在*DO循环内,它就可以提供所选择的单元数*do, I, ELMIQR(0,13) … … *enddo 这里的ELMIQR并不是一个数组,而是一个查询函数,它返回的是现在所选择的单元数。括弧内的数是用来确定查询函数的返回值的。第一个数是用来标识你所想查询的特定实体(如单元、节点、线、面号等等),括弧内的第二个数是用来确定查询函数返回值的类型的(如选择状态、实体数量等)。 同本例一样,通常查询函数有两个变量,但也有一些查询函数只有一个变量,而有的却有三个变量。 查询函数的种类和数量很多,下面是一些常用、方便而快速快捷的查询函数 1 AREA—arinqr(areaid,key) areaid—查询的面,对于key=12,13,14可取为0; key—标识关于areaidr的返回信息 =1,选择状态 =12,定义的数目 =13,选择的数目 =14,定义的最大数 =-1,材料号 =-2,单元类型 =-3,实常数 =-4,节点数 =-6,单元数 … arinqr(areaid,key)的返回值 对于key=1 =0, areaid未定义 =-1,areaid未被选择 =1, areaid被选择 … 2 KEYPOINTS—kpinqr(kpid,key)

钢筋混凝土梁的ansys分析

摘要 本文介绍ANSYS 模拟钢筋混凝土梁的过程,讨论了有限元模型的建立以及在 ANSYS 中的实现,给出了用分离式配筋方法对混凝土梁的分析的一般过程。并给出了详细的命令流过程。并在此基础上对混凝土梁进行了分析,讨论了在力的作用下混凝土梁的塑形变形和裂缝的发展过程。 关键词 Ansys 混凝土梁 分离式配筋 The analysis of mechanics of a reinforced concrete based on ANSYS Abstract This paper introduces ANSYS simulation of the reinforced concrete beam process, discusses the establishment of the finite element model and the realization, and gives the ANSYS reinforcement method with separate the analysis of concrete beams of the general process. And gives the detailed command flow process. Based on the analysis of concrete beams, and discussed the concrete beam under the action of forces of the body deformation and fracture process. Keywords Ansys concrete beams reinforced separated 1 引言 由于钢筋混凝上材料性质复杂,使其表现出明显的非线性行为[1]。长期以来采用线弹性理论的设计方法来研究钢筋混凝上结构的应力或内力,显然不太合理,尽管有此理论是基于人量试验数据上的经验公式,还是不能准确反映混凝上的力学性能,特别是受力复杂的重要结构,必须采用三维钢筋混凝上非线性有限元方法才能很好地掌握其力学性能。利用ANSYS 对钢筋混凝上结构弹塑性的仿真分析,可以对结构自开始受荷载直到破坏的全过程进行分析,获得不同阶段的受力性能。本文将以混凝土梁的弹塑性分析为例,介绍在Ansys 中分析材料非线性问题的具体实现方法。 2 问题介绍 如图所示的钢筋混凝土梁[2],横截面尺寸为200400b h mm mm ?=?,梁的跨度为3.0L m =,支座宽度为250mm 采用C20混凝土,梁内受拉纵筋3φ20,架立筋采用2φ12, 箍筋采用φ6@150,钢筋保护层厚度为25mm 。如图一。 图一 对于梁中所采用的所有钢筋,弹性模量为5 2.110MPa ?,抗拉强度设计值210MPa , 密度33 7.810/kg m ?,泊松比为0.3。

一、荷载与地震作用

附件:“PKPM上部结构设计软件常见问题释疑”研讨班授课大纲 一、荷载与地震作用 1、现浇板、悬挑板、组合楼板、斜板等在确定面荷载时有哪些注意事项?05与08版在处理上 有何不同?荷载方向如何确定,可否输入负值? 2、08版新增梁上的荷载类型“无截面设计”是何意,如何正确应用? 3、哪些节点上可以加节点荷载?对于一根梁上任加一点后,在此节点上加节点荷载05与08版 软件在处理上有何不同? 4、楼面梁是如何进行活荷载折减的,程序的处理与规范有何不同? 5、对于“柱、墙及基础活荷载折减”程序的处理05版及08版有哪些不同,结果如何查询? 6、活荷载的输入对人防荷载的计算有何影响?08版有何改动? 7、PK、SATWE进行活荷载不利布置计算时有何不同?应注意哪些相关参数? 8、何为“互斥活荷载”?怎样通过此功能来实现规范中的相应条款? 9、05及08版程序是如何进行“普通风荷载”计算的,其中与风荷载计算相关的参数该如何确定, 受风面面积及荷载作用点如何确定?“普通风荷载”计算后荷载如何分配,它作用的效应程序做了怎样的处理? 10、05版特殊风荷载是如何计算的,有哪些不足?08版特殊风荷载是如何计算的,如何灵活应 用? 11、广义层方式建立的模型是否均可以直接用软件自动计算的风荷载? 12、05、08版吊车荷载输入方法有哪些异同? 13、对于排架柱计算长度系数的计算不同模块有何不同,该如何选用? 14、近期多层人防的计算程序做了哪些重大调整?不同版本为何结果会相差如此悬殊? 15、局部有人防荷载时如何处理? 16、如何确定地下室外墙平面外的受力?如何计算地下室外墙平面外的配筋?不同版本输出结果 有何不同?程序对于地下室外墙能否正确识别? 17、如何实现人防构件的弹塑性设计? 18、何时需要考虑“双向地震”及“偶然偏心”?如果两项同时选择程序如何处理? 19、如何正确确定与地震力计算相关的一些参数?如:计算振型个数、周期折减系数。 20、如何理解“水平力与整体坐标夹角”与“斜交抗侧力构件方向附加地震数,相应角度”? 21、“按中震(或大震)不屈服做结构设计”如何应用? 22、0。2Q0调整,不同时期版本,程度处理有何不同,原来有哪些局限?如何解决? 23、08版地下室信息中“土层水平抗力系数的比例系数”是何意,该如何取值? 二、构件设计 1、对于层间的支撑在计算时05、08版软件的处理有何不同? 2、越层支撑在与梁墙相交时05、08版在处理上有何不同? 3、08版对于柱被层间支撑打断后是如何进行内力及配筋计算的? 4、如何人为指定支撑是否参与导荷,它的导荷原则是如何定的? 5、08版支撑的计算长度系数如何确定? 6、支撑对于楼层指标的贡献05与08版在计算上有何异同? 7、刚性梁有哪些具体应用? 8、如何用两种方法输入连梁模型?两种方式输入的连梁在计算上有哪些不同? 9、如何合理填取与连梁计算相关的参数信息,如连梁刚度折减系数、墙梁转框架梁控制跨高比? 10、程序是如何实现“《抗震规范》(2008局部修订版)第3.6.6.1条” 的? 11、在输入楼梯构件时应注意的事项有哪些? 12、按主梁或次梁不同的方式输入时,在导荷、计算、施工图处理上有何不同?

【免费下载】ansys中荷载步的讲解

1.荷载步中荷载的处理方式 无论是线性分析或非线性分析处理方式是一样的。 ①对施加在几何模型上的荷载(如 fk,sfa 等):到当前荷载步所保留的荷载都有效。如果 前面 荷载步某个自由度处有荷载,而本步又在此自由度处施加了荷载,则后面的替代前面的;如 果不是在同一自由度处施加的荷载,则施加的所有荷载都在本步有效(删除除外!)。 ② 对施加在有限元模型上的荷载(如 f,sf,sfe,sfbeam 等):ansys 缺省的荷载处理是替代方式, 可用 fcum,sfcum 命令修改,可选择三种方式:替代(repl)、累加(add)、忽略(igno)。当采用缺 省时,对于同一自由度处的荷载,后面施加的荷载替代了前面施加的荷载(或覆盖);而对于 不是同一自由度的荷载(包括集中或分布荷载), 前面的和本步的都有效。 当采用累加方式时, 施加的所有荷载都在本步有效。 特别注意的是,fcum 只对在有限元模型上施加的荷载有效。 2.线性分析的荷载步 从荷载步文件(file.snn)中可以看到,本步的约束条件和荷载情况, 而其处理与上述是相同 的。由于线性分析叠加原理是成立的,或者讲每步计算是以结构的初始构形为基础的,因此 似乎可有两种理解。 ①每个荷载步都是独立的:你可以根据你本步的约束和荷载直接求解(荷载步是可以任意 求解的,例如可以直接求解第二个荷载步,而不理睬第一个荷载步:lssolve,2,2,1),其结构对 应的是你的约束和荷载情况,与前后荷载步均无关! (事实上,你本步可能施加了一点荷载, 而前步的荷载继续有效,形成你本步的荷载情况) ② 后续荷载步是在前步的基础上计算的(形式上!)。以荷载的施加先后出发,由于本步 没有删除前面荷载步的荷载, 你在本步仅仅施加了一部分荷载, 而结构效应是前后荷载共同 作用的结果。 不管你怎样理解,但计算结果是一样的。(Ansys 是怎样求解的,得不到证实。是每次对 每个荷载步进行求解,即[K]不变,而[P]是变化的,且[P]对应该荷载步的所有荷载向量呢? 或是[P]对应一个增量呢?不用去管他,反正结果一样) 也有先生问,想在第 N 步的位移和应力的基础上,施加第 N+1 步的荷载,如何?对线性 分析是没有必要的,一是线性分析的效应是可以叠加的,二是变形很小(变形大时不能采用 线性分析)。 总之,线性分析是可以理解为后续步是在前步的基础上计算的(当然都基于初始构形)。 3.非线性分析时的荷载步 如下两点是要明确的: ①对于保守系统(无能量耗散),最后结果与荷载的施加顺序(或荷载历史、或加载路径)无关。 ②后续荷载步计算是在前步的基础上(以前步的构形和应力为基础)计算的。 关于①:设置荷载步,并顺序求解;设置荷载步,直接求解荷载步 2;不用荷载步,直接同 时施加所有荷载;使用重启动,不设荷载步,顺序求解;使用生死单元等方法,其求解结果 相同。 通过计算证明了荷载顺序不影响最终结果, 从这里也证明了保守系统的计算结果与荷 载路径无关。 关于②:虽然从 file.snn 比较看,除了非线性分析的设置外,几乎与线性分析的荷载步文件 没有什么差别, 但如果顺序求解,则后续荷载步中用于每个子步计算的荷载=前步荷载不变+本步新施加的 荷载按子步内插值。而不是在本步有效的所有荷载点点施加。 举例 1:重力和预应力分为两个荷载步,在求预应力作用时,重力不变,而将预应力按子步要求施加; 所以这样计算即为考虑了重力的先作用, 而预应力则在重力作用的基础上计 算的。即第二荷载步中的每个子步所对应的荷载=重力+预应力总荷载/nsubst ,而不是=(重力 +预应力总荷载)/nsubst. 举例 2:设一悬臂梁,先在 1/2 处作用 2000 为第一荷载步,且设 nsubst=10,time=1;然后 悬臂端再作用 3000,且 nsubst=20,time=2,为第二荷载步。顺序求解,则 3000 即在 2000 先 作用的基础上计算的, 即当 time=1.6 时, 这时子步的荷载=2000+3000/20*(1.6-1.0)*20=3800, 而不是(2000+3000) *0.6=3000。 但小弟还有一点疑问,“对于保守系统(无能量耗散),最后结果与荷载的施加顺序(或荷载历 断习题电源,线缆敷设完毕,要进出具高中资料试卷试验报告与相关部电源高中资料试卷切除从而采用

ansys Workbench15.0从入门到精通

第1章初识ANSYS Workbench 1.1 ANSYS Workbench 15.0 概述 经过多年的潜心开发,ANSYS公司在2002年发布ANSYS 7.0的同时正式推出了前后处理和软件集成环境ANSYS Workbench Environment(AWE)。到ANSYS 11.0版本发布时,已提升了ANSYS软件的易用性、集成性、客户化定制开发的方便性,深获客户喜爱。 Workbench在2014年发布的ANSYS 15.0版本中,在继承第一代Workbench的各种优势特征的基础上发生了革命性的变化,连同ANSYS 15.0版本可视为第二代Workbench(Workbench 2.0),其最大的变化是提供了全新的项目视图(Project Schematic View)功能,将整个仿真流程更加紧密地组合在一起,通过简单的拖曳操作即可完成复杂的多物理场分析流程。 Workbench所提供的CAD双向参数链接互动、项目数据自动更新机制、全面的参数管理、无缝集成的优化设计工具等,使ANSYS在仿真驱动产品设计(Simulation Driven Product Development)方面达到了前所未有的高度。 本节内容主要介绍ANSYS Workbench 15.0的相关软件知识,如果对其有所了解,可以 跳过本节的学习。 1.1.1 关于ANSYS Workbench 在ANSYS 15.0版本中,ANSYS对Workbench架构进行了全新设计,全新的项目视图(Project Schematic View)功能改变了用户使用Workbench仿真环境(Simulation)的方式。

ANSYS中混凝土的本构关系

一、关于模型 钢筋混凝土有限元模型根据钢筋的处理方式主要分为三种,即分离式、分布式和组合式模型。考虑钢筋和混凝土之间的粘结和滑移,则采用引入粘结单元的分离式模型;假定混凝土和钢筋粘结很好,不考虑二者之间的滑移,则三种模型都可以;分离式和分布式模型适用于二维和三维结构分析,后者对杆系结构分析比较适用。裂缝的处理方式有离散裂缝模型、分布裂缝模型和断裂力学模型,后者目前尚处研究之中,主要应用的是前两种。离散裂缝模型和分布裂缝模型各有特点,可根据不同的分析目的选择使用。随着计算速度和网格自动划分的快速实现,离散裂缝模型又有被推广使用的趋势。 就ANSYS而言,她可以考虑分离式模型(solid65+link8,认为混凝土和钢筋粘结很好,如要考虑粘结和滑移,则可引入弹簧单元进行模拟,比较困难!),也可采用分布式模型(带筋的solid65)。而其裂缝的处理方式则为分布裂缝模型。 二、关于本构关系 混凝土的本构关系可以分为线弹性、非线性弹性、弹塑性及其它力学理论等四类,其中研究最多的是非线性弹性和弹塑性本构关系,其中不乏实用者。混凝土破坏准则从单参数到五参数模型达数十个模型,或借用古典强度理论或基于试验结果等,各个破坏准则的表达方式和繁简程度各异,适用范围和计算精度差别也比较大,给使用带来了一定的困难。 就ANSYS而言,其问题比较复杂些。 1 ANSYS混凝土的破坏准则与屈服准则是如何定义的? 采用tb,concr,matnum则定义了W-W破坏准则(failure criterion),而非屈服准则(yield criterion)。W-W破坏准则是用于检查混凝土开裂和压碎用的,而混凝土的塑性可以另外考虑(当然是在开裂和压碎之前)。理论上破坏准则(failure criterion)和屈服准则(yield criterion)是不同的,例如在高静水压力下会发生相当的塑性变形,表现为屈服,但没有破坏。而工程上又常将二者等同,其原因是工程结构不容许有很大的塑性变形,且混凝土等材料的屈服点不够明确,但破坏点非常明确。 定义tb,concr matnum后仅仅是定义了混凝土的破坏准则和缺省的本构关系,即W—W破坏准则、混凝土开裂和压碎前均为线性的应力应变关系,而开裂和压碎后采用其给出的本构关系。但屈服准则尚可另外定义(随材料的应力应变关系,如tb,MKIN,则定义的屈服准则是Von Mises,流动法则、硬化法则也就确定了)。 2 定义tb,concr后可否定义其它的应力应变关系 当然是可以的,并且只有在定义tb,concr后,有些问题才好解决。例如可以定义tb,miso,输入混凝土的应力应变关系曲线(多折线实现),这样也就将屈服准则、流动法则、硬化法则等确定了。 这里可能存在一点疑问,即ANSYS中的应力应变关系是拉压相等的,而混凝土材料显然不是这样的。是的,因为混凝土受拉段非常短,认为拉压相同影响很小,且由于定义的tb,concr 中确定了开裂强度,所以尽管定义的是一条大曲线,但应用于受拉部分的很小。 三、具体的系数及公式 1 定义tb,concr时候的两个系数如何确定? 一般的参考书中,其值建议先取为0.3~0.5(江见鲸),原话是“在没有更仔细的数据时,不妨先取0.3~0.5进行计算”,足见此0.3~0.5值的可用程度。根据我的经验和理由,建议此值取大些,即开裂的剪力传递系数取0.5,(定要>0.2)闭合的剪力传递系数取1.0。支持此说法的还有 现行铁路桥规的抗剪计算理论,以及原公路桥规的容许应力法的抗计剪计算。

ansys载荷步

实际工况=载荷步(时间步)+载荷步(时间步)+...... 载荷步=载荷子步(时间增量)+载荷子步(时间增量)+...... 实体加载和有限元模型加载的区别: 实体加载是不能利用叠加,所以实体加载要手工叠加。对实体是覆盖,有限元模型加载是可以设置的。有限元加载可以利用fcum进行叠加。 比如, 第一个荷载步,对关键点1施加10kn,第二荷载步也对关键点1施加10kn,则这两个荷载步结果是完全一致的。 第一个荷载步,对节点1施加10kn,第二荷载步也对节点1施加10kn,而且用命令fcum,add则第二荷载步是20kn的结果。 加载与载荷步、子步及平衡迭代次数的说明 加载与载荷步、子步及平衡迭代次数的说明: 一、加载方式的区别 实体加载和有限元模型加载的区别: 实体加载是不能利用叠加,所以实体加载要手工叠加。对实体是覆盖,有限元模型加载是可以设置的。有限元加载可以利用fcum进行叠加。 比如, 第一个荷载步,对关键点1施加10kn,第二荷载步也对关键点1施加10kn,则这两个荷载步结果是完全一致的。 第一个荷载步,对节点1施加10kn,第二荷载步也对节点1施加10kn,而且用命令fcum,add则第二荷载步是20kn的结果。 实体加载方法的优点: a、几何模型加载独立于有限元网格,重新划分网格或局部网格修改不影响载荷; b、加载的操作更加容易,尤其是在图形中直接拾取时;无论采取何种加载方式,ANSYS求解前都将载荷转化到有限元模型,因此加载到实体的载荷将自动转化到其所属的节点或单元上; 二、载荷步及子步 这些概念主要用于非线性分析或载荷随时间变化的问题。根据问题的特点,可以

ANSYS 钢筋混凝土建模

ANSYS 钢筋混凝土建模 一、简介 钢筋混凝土有限元建模的方法与结果评价(前后处理),是对钢筋混凝土结构进行数值模拟的重要步骤,能否把握模型的可行性、合理性,如何从计算结果中寻找规律,是有限元理论应用于实际工程的关键一环。Blackeage以自己做过的一组钢筋混凝土暗支撑剪力墙的数值模拟为例,从若干方面提出一些经验与建议。希望大家一起讨论、批评指正(wang.jian@https://www.doczj.com/doc/6d12609121.html,)。 程序:ANSYS 单元:SOLID65、BEAM188 建模方式:分离 暗支撑剪力墙结构由北京工业大学曹万林所提出,简言之就是一种在普通钢筋配筋情况下,加配斜向钢筋的剪力墙结构。 二、单元选择 以前经常采用的钢筋混凝土建模方法是通过SOLID65模拟混凝土,通过SOLID65的实常数指定钢筋配筋率,后来发现这种整体式的模型并不理想,而且将钢筋周围的SOLID65单元选择出来,再换算一个等效的配筋率,工作量也并不小。最关键的是采用整体式模型之后,得不出什么有意义的结论,弄一个荷载-位移曲线出来又和实验值差距比较大。只有计算的开裂荷载与实验还算是比较接近,但这个手算也算得出来的东西费劲去装模作样的建个模型又有什么意义? 所以,这次我尝试采用分离式的模型,钢筋与混凝土单元分别建模,采用节点共享的方式。建模时发现,只要充分、灵活地运用APDL的技巧,处理好钢筋与混凝土单元节点的位置,效率还是很高的。 暗支撑剪力墙数值模型 看过很多的资料,分离式模型是用LINK8与SOLID65的组合方式,这样做到是非常直观,因为LINK8是spar类型的单元,每个节点有3个自由度,这与SOLID65单元单节点自由度数量是一致的。但是问题也就由此产生,当周围的混凝土开裂或是压碎时,SOLID65将不能对LINK8的节点提供足够地约束(如

Ansys多载荷步的理解

关于多载荷步的理解 1. 荷载步中荷载的处理方式 无论是线性分析或非线性分析处理方式是一样的。 ①对施加在几何模型上的荷载(如fk,sfa等):到当前荷载步所保留 的荷载都有效。 如果前面荷载步某个自由度处有荷载,而本步又在此自由度处施加了荷载,则后面的替代前面的;如果不是在同一自由度处施加的荷载,则施加的所有荷载都在本步有效(删除除外!)。 ②对施加在有限元模型上的荷载(如f,sf,sfe,sfbeam等):ansys缺 省的荷载处理是替代方式,可用fcum,sfcum命令修改,可选择三种方式:替代(repl)、累加(add)、忽略(igno)。 当采用缺省时,对于同一自由度处的荷载,后面施加的荷载替代了前面施加的荷载(或覆盖);而对于不是同一自由度的荷载(包括集中或分布荷载),前面的和本步的都有效。当采用累加方式时,施加的所有荷载都在本步有效。 特别注意的是,fcum只对在有限元模型上施加的荷载有效。

2.线性分析的荷载步 从荷载步文件(file.snn)中可以看到,本步的约束条件和荷载情况,而其处理与上述是相同的。由于线性分析叠加原理是成立的,或者讲每步计算是以结构的初始构形为基础的,因此似乎可有两种理解。 1、每个荷载步都是独立的:你可以根据你本步的约束和荷载直接求解(荷载步是可以任意求解的,例如可以直接求解第二个荷载步,而不理睬第一个荷载步:lssolve,2,2,1),其结构对应的是你的约束和荷载情况,与前后荷载步均无关!(事实上,你本步可能施加了一点荷载,而前步的荷载继续有效,形成你本步的荷载情况) 2、后续荷载步是在前步的基础上计算的(形式上!)。以荷载的施加先后出发,由于本步没有删除前面荷载步的荷载,你在本步仅仅施加了一部分荷载, 而结构效应是前后荷载共同作用的结果。 不管你怎样理解,但计算结果是一样的。(Ansys是怎样求解的,得不到证实。是每次对每个荷载步进行求解,即[K]不变,而[P]是变化的,且[P]对应该荷载步的所有荷载向量呢?或是[P]对应一个增量呢?不用去管他,反正结果一样) 也有先生问,想在第N步的位移和应力的基础上,施加第N+1步的荷载,如何?对线性分析是没有必要的,一是线性分析的效应是可以叠加的,二是变形很小(变形大时不能采用线性分析)。

ANSYS中混凝土的计算问题

ANSYS中混凝土的计算问题【精华】 最近做了点计算分析,结合各论坛关于这方面的讨论,就一些问题探讨如下,不当之处敬请指正。 一、关于模型 钢筋混凝土有限元模型根据钢筋的处理方式主要分为三种,即分离式、分布式和组合式模型。考虑钢筋和混凝土之间的粘结和滑移,则采用引入粘结单元的分离式模型;假定混凝土和钢筋粘结很好,不考虑二者之间的滑移,则三种模型都可以;分离式和分布式模型适用于二维和三维结构分析,后者对杆系结构分析比较适用。裂缝的处理方式有离散裂缝模型、分布裂缝模型和断裂力学模型,后者目前尚处研究之中,主要应用的是前两种。离散裂缝模型和分布裂缝模型各有特点,可根据不同的分析目的选择使用。随着计算速度和网格自动划分的快速实现,离散裂缝模型又有被推广使用的趋势。 就ANSYS而言,她可以考虑分离式模型(solid65+link8,认为混凝土和钢筋粘结很好,如要考虑粘结和滑移,则可引入弹簧单元进行模拟,比较困难!),也可采用分布式模型(带筋的solid65)。而其裂缝的处理方式则为分布裂缝模型。 二、关于本构关系 混凝土的本构关系可以分为线弹性、非线性弹性、弹塑性及其它力学理论等四类,其中研究最多的是非线性弹性和弹塑性本构关系,其中不乏实用者。混凝土破坏准则从单参数到五参数模型达数十个模型,或借用古典强度理论或基于试验结果等,各个破坏准则的表达方式和繁简程度各异,适用范围和计算精度差别也比较大,给使用带来了一定的困难。 就ANSYS而言,其问题比较复杂些。 1 ANSYS混凝土的破坏准则与屈服准则是如何定义的? 采用tb,concr,matnum则定义了W-W破坏准则(failure criterion),而非屈服准则(yield criterion)。W-W破坏准则是用于检查混凝土开裂和压碎用的,而混凝土的塑性可以另外考虑(当然是在开裂和压碎之前)。理论上破坏准则(failure criterion)和屈服准则(yield criterion)是不同的,例如在高静水压力下会发生相当的塑性变形,表现为屈服,但没有破坏。而工程上又常将二者等同,其原因是工程结构不容许有很大的塑性变形,且混凝土等材料的屈服点不够明确,但破坏点非常明确。 定义tb,concr matnum后仅仅是定义了混凝土的破坏准则和缺省的本构关系,即W—W破坏准则、混凝土开裂和压碎前均为线性的应力应变关系,而开裂和压碎后采用其给出的本构关系。但屈服准则尚可另外定义(随材料的应力应变关系,如tb,MKIN,则定义的屈服准则是V on Mises,流动法则、硬化法则也就确定了)。

雪风和地震荷载计算方法

雪、风和地震荷载的计算方法 1 雪荷载 1.1 文献[2]中国《建筑结构荷载规范GB 50009-2001》 文献[2]我国《建筑结构荷载规范GB 50009-2001》第6.1.1条规定,屋面水平投影面上的雪荷载标准值,应按下式计算: s k=μr s o(1-1) 式中:s k为雪荷载标准值,[kN/m2];μ r为屋面积雪分布系数;s o为基本雪压,[kN/m2]。 规范第6.1.2条规定,基本雪压应按该规范附录D.4中附表D.4给出的50年一遇的雪压采用。高于1989年同名规范30年一遇的标准。第6.1.3是对规范没有给出基本雪压的地点取值方法的规定。第6.1.4条是对山区基本雪压的规定。屋面积雪分布系数μ r根据屋面形状按表6.2.1确定。 1.2 文献[7]美国《建筑及其它结构最小设计荷载》1994年版 文献[7]美国《建筑及其它结构最小设计荷载》1994年版7.3规定,斜度小于1/12的平屋面的雪荷载按下式计算: p f=αC e C t I p g (1-2) 式中:p f为雪荷载,[lb/ft2];α系数,美国本土为0.7,阿拉斯加为0.6;C e为暴露系数;C t为热力系数;I为重要性系数,根据表1及表20,一般公用发电厂I=1.0;p g为地面雪荷载。据规范解释对7.2的说明,地面雪荷载系基于雪荷载超过的年概率为2%(即平均重现期50年)的数值。 1.3 文献[12]《火力发电厂烟风煤粉管道设计技术规程DL/T5121-2000》 从上可见,文献[7]考虑的系数更多。 为了考虑与文献[12]《火力发电厂烟风煤粉管道设计技术规程DL/T5121-2000》一致,采用文献[2]的标准。因矩形烟风道为平顶,根据后者的表6.2.1第1项取μ r =1.0。 Page 1 of 8

ansys中荷载步的讲解

1.荷载步中荷载的处理方式 无论是线性分析或非线性分析处理方式是一样的。 ①对施加在几何模型上的荷载(如fk,sfa等):到当前荷载步所保留的荷载都有效。如果前面荷载步某个自由度处有荷载,而本步又在此自由度处施加了荷载,则后面的替代前面的;如果不是在同一自由度处施加的荷载,则施加的所有荷载都在本步有效(删除除外!)。 ②对施加在有限元模型上的荷载(如f,sf,sfe,sfbeam等):ansys缺省的荷载处理是替代方式,可用fcum,sfcum命令修改,可选择三种方式:替代(repl)、累加(add)、忽略(igno)。当采用缺省时,对于同一自由度处的荷载,后面施加的荷载替代了前面施加的荷载(或覆盖);而对于不是同一自由度的荷载(包括集中或分布荷载),前面的和本步的都有效。当采用累加方式时,施加的所有荷载都在本步有效。 特别注意的是,fcum只对在有限元模型上施加的荷载有效。 2.线性分析的荷载步 从荷载步文件(file.snn)中可以看到,本步的约束条件和荷载情况,而其处理与上述是相同的。由于线性分析叠加原理是成立的,或者讲每步计算是以结构的初始构形为基础的,因此似乎可有两种理解。 ①每个荷载步都是独立的:你可以根据你本步的约束和荷载直接求解(荷载步是可以任意求解的,例如可以直接求解第二个荷载步,而不理睬第一个荷载步:lssolve,2,2,1),其结构对应的是你的约束和荷载情况,与前后荷载步均无关!(事实上,你本步可能施加了一点荷载,而前步的荷载继续有效,形成你本步的荷载情况) ②后续荷载步是在前步的基础上计算的(形式上!)。以荷载的施加先后出发,由于本步没有删除前面荷载步的荷载,你在本步仅仅施加了一部分荷载, 而结构效应是前后荷载共同作用的结果。 不管你怎样理解,但计算结果是一样的。(Ansys是怎样求解的,得不到证实。是每次对每个荷载步进行求解,即[K]不变,而[P]是变化的,且[P]对应该荷载步的所有荷载向量呢?或是[P]对应一个增量呢?不用去管他,反正结果一样) 也有先生问,想在第N步的位移和应力的基础上,施加第N+1步的荷载,如何?对线性分析是没有必要的,一是线性分析的效应是可以叠加的,二是变形很小(变形大时不能采用线性分析)。 总之,线性分析是可以理解为后续步是在前步的基础上计算的(当然都基于初始构形)。 3.非线性分析时的荷载步 如下两点是要明确的: ①对于保守系统(无能量耗散),最后结果与荷载的施加顺序(或荷载历史、或加载路径)无关。 ②后续荷载步计算是在前步的基础上(以前步的构形和应力为基础)计算的。 关于①:设置荷载步,并顺序求解;设置荷载步,直接求解荷载步2;不用荷载步,直接同时施加所有荷载;使用重启动,不设荷载步,顺序求解;使用生死单元等方法,其求解结果相同。通过计算证明了荷载顺序不影响最终结果,从这里也证明了保守系统的计算结果与荷载路径无关。 关于②:虽然从file.snn比较看,除了非线性分析的设置外,几乎与线性分析的荷载步文件没有什么差别, 但如果顺序求解,则后续荷载步中用于每个子步计算的荷载=前步荷载不变+本步新施加的荷载按子步内插值。而不是在本步有效的所有荷载点点施加。 举例1:重力和预应力分为两个荷载步,在求预应力作用时,重力不变,而将预应力按

用ANSYS对钢筋混凝土梁进行计算模拟

一、用钢筋混凝土简支梁的数值模拟为实例,对ANSYS的使用方法进行说明 钢筋混凝土简支梁,尺寸为长2000mm,宽150mm,高300mm。混凝土采用C30,钢筋全部采用HRB335,跨中集中荷载P作用于一刚性垫板上,垫板尺寸为长150mm,宽100mm。 建立分离式有限元模型,混凝土采用SOLID65单元,钢筋采用LINK8单元,不考虑钢筋和混凝土之间的粘结滑移。创建分离式模型时,将几何实体以钢筋位置切开,划分网格时将实体的边线定义为钢筋即可。加载点以均布荷载近似代替钢垫板,支座处则采用线约束和点约束相结合。单元尺寸以50mm左右为宜。 二、命令流 !钢筋混凝土简支梁数值分析 !分离式模型 FINISH /CLEAR /PREP7 !1.定义单元与材料属性 ET,1,SOLID65,,,,,,,1 ET,2,LINK8 MP,EX,1,13585 !混凝土材料的初始弹模以及泊松比 MP,PRXY,1,0.2 FC=14.3 !混凝土单轴抗压强度和单轴抗拉强度 FT=1.43 TB,CONCR,1 TBDA TA,,0.5,0.95,FT,-1 !定义混凝土材料及相关参数,关闭压碎 TB,MISO,1,,11 !定义混凝土应力应变曲线,用MISO模型 TBPT,,0.0002,FC*0.19 TBPT,,0.0004,FC*0.36 TBPT,,0.0006,FC*0.51 TBPT,,0.0008,FC*0.64 TBPT,,0.0010,FC*0.75 TBPT,,0.0012,FC*0.84 TBPT,,0.0014,FC*0.91 TBPT,,0.0016,FC*0.96 TBPT,,0.0018,FC*0.99 TBPT,,0.002,FC TBPT,,0.0033,FC*0.85 MP,EX,2,2.0E5 !钢筋材料的初始弹模以及泊松比 MP,PRXY,2,0.3 TB,BISO,2 TBDA TA,,300,0 !钢筋的应力应变关系,用BISO模型

地震力计算方法CQC和平方开平方法比较

振型组合方法CQC和SRSS的区别之一 地震作用力的计算常常用底部剪力法和振型分解反应谱法,振型分解反应谱法的基本概念是:假定建筑结构是线弹性的多自由度体系,利用振型分解和振型正交性的原理,将求解n个自由度弹性体系的地震反应分解为求解n个独立的等效单自由度弹性体系的最大地震反应,进而求得对应于每一个振型的作用效应。 此时,就可以根据考虑地震作用的方式不同,采用不同的组合方式,对于平面振动的多质点弹性体系,可以用SRSS法,它是基于假定输入地震为平稳随机过程,各振型反应之间相互独立而推导得到的;对于考虑平—扭耦连的多质点弹性体系,采用CQC法,它与SRSS法的主要区别在于:平面振动时假定各振型相互独立,并且各振型的贡献随着频率的增高而降低;而平—扭耦连时各振型频率间距很小,相邻较高振型的频率可能非常接近这就要考虑不同振型间的相关性,

还有扭转分量的影响并不一定随着频率增高而降低,有时较高振型的影响可能大于较低振型的影响,相比SRSS时就要考虑更多振型的影响。 底部剪力法考虑到结构体系的特殊性对振型分解反应谱法的简化,当建筑物高度不大,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,结构振动位移反应往往以第一振型为主,而且第一振型接近于直线时,就可以把振型分解法简化为基本的底部剪力法计算公式。这个基本公式计算得到的各质点的水平地震作用可以较好的反映刚度较大的结构,但当结构基本周期较长,场地特征周期较小时,计算所得顶部地震作用偏小。 顾名思义,CQC-complete quaddratic combination,即完全二次项组合方法,其不光考虑到各个主振型的平方项,而且还考虑到耦合项,对于比较复杂的结构比如考虑平扭耦连的结构使用完全二次项组合的结果比较精确。

混凝土的ANSYS分析

【原创】钢筋混凝土分离式建模方法(含ANSYS命令流) 钢筋混凝土, 分离式, 建模, ANSYS, 命令钢筋混凝土, 分离式, 建模, ANSYS, 命令 一、简介 钢筋混凝土有限元建模的方法与结果评价(前后处理),是对钢筋混凝土结构进行数值模拟的重要步骤,能否把握模型的可行性、合理性,如何从计算结果中寻找规律,是有限元理论应用于实际工程的关键一环。Blackeage以自己做过的一组钢筋混凝土暗支撑剪力墙的数值模拟为例,从若干方面提出一些经验与建议。希望大家一起讨论、批评指正(wang.jian@https://www.doczj.com/doc/6d12609121.html,)。 程序:ANSYS 单元:SOLID65、BEAM188 建模方式:分离 暗支撑剪力墙结构由北京工业大学曹万林所提出,简言之就是一种在普通钢筋配筋情况下,加配斜向钢筋的剪力墙结构。 二、单元选择 以前经常采用的钢筋混凝土建模方法是通过SOLID65模拟混凝土,通过SOLID65的实常数指定钢筋配筋率,后来发现这种整体式的模型并不理想,而且将钢筋周围的SOLID65单元选择出来,再换算一个等效的配筋率,工作量也并不小。最关键的是采用整体式模型之后,得不出什么有意义的结论,弄一个荷载-位移曲线出来又和实验值差距比较大。只有计算的开裂荷载与实验还算是比较接近,但这个 手算也算得出来的东西费劲去装模作样的建个模型又有什么意义? 所以,这次我尝试采用分离式的模型,钢筋与混凝土单元分别建模,采用节点共享的方式。建模时发现,只要充分、灵活地运用APDL 的技巧,处理好钢筋与混凝土单元节点的位置,效率还是很高的。 [center] 暗支撑剪力墙数值模型[/center] 看过很多的资料,分离式模型是用LINK8与SOLID65的组合方式,这样做到是非常直观,因为LINK8是spar类型的单元,每个节点有3个自由度,这与SOLID65单元单节点自由度数量是一致的。但是问题也就由此产生,当周围的混凝土开裂或是压碎时,SOLID65将不能对LINK8的节点提供足够地约束(如下图箭头方向),从而导致总刚矩阵小主元地出现影响计算精度,或者干脆形成瞬变体系导致计 算提前发散。 [center] LINK8+SOLID65的问题[/center] 如果采用梁单元模拟暗钢筋,就算包裹钢筋的混凝土破坏了,钢筋单元本身仍可对连接点提供一定的侧向刚度(其实钢筋本身就是有一定抗弯刚度的),保证计算进行下去。ANSYS中的梁单元比较多,建议选取beam188单元。beam188支持弹塑性分析、自定义截面。可以用内力计算结果按截面插值得出应力结果,这样,SOLID65+beam188不仅解决了SOLID65+beam188的小主元问题,而且可以方便地控 制钢筋单元的划分密度,也扩充了钢筋单元输出信息。 三、单元组合方式 将剪力墙中所有钢筋单元(包括暗柱、梁的纵、箍筋、暗支撑钢筋、暗支撑箍筋、暗分布筋)单独建模,为了能够与混凝土单元节点共享,将混凝土单元细化,单元高度设为暗柱箍筋间距与墙片分布筋间距的最大公约数。 钢筋与混凝土单元节点共享。不考虑粘接-滑移影响。其实由于混凝土单元已经细化过了,钢筋周围的混凝土由于钢筋作用而开裂之

相关主题
文本预览
相关文档 最新文档