当前位置:文档之家› 本科毕业设计--简易函数信号发生器设计

本科毕业设计--简易函数信号发生器设计

本科毕业设计--简易函数信号发生器设计
本科毕业设计--简易函数信号发生器设计

简易函数信号发生器设计

摘要:信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。这次的设计分为五个模块:单片机控制及显示模块、数模转换模块、波形产生模块、输出显示模块、电源模块。使用AT89C52作为主控台结合芯片DAC0832产生1HZ-300HZ频率可调的五种信号波(正弦波、三角波和方波)。这几种波形有几个开关控制,可以随意进行切换,十分方便。另外,波形的频率和振幅也可以通过开关进行更改。可以说这次的设计操作简单,内容丰富,而且电路快捷明了。在编程语言上,我们选择自身比较熟悉的 C语言,这样在后期波形的调试及与硬件衔接方面更容易发挥出自身优势。经过设计及后期长时间的调试,设计的所有功能均已实现。

关键字:信号发生器、频率、幅度、AT98C52、DAC0832

1、设计要求

1)以单片机为核心,经过D/A转换和放大电路的处理,最后输出信号;

2)要求能输出正弦波、三角波和方波四种信号;

3)输出信号可以通过按键来改变;

4)频率可变,范围在1---300hz;

5)幅度可调0---10v;

6)可实现四路A/D电压采样;

2、总体设计

2.1 系统组成及工作原理

该函数信号发生器可以输出四种波形,有正弦波、三角波和方波。在此基础上进一步实现对波形频率和占空比的调节,并用液晶屏分两行显示波形名称和波形频率。

函数信号发生器的设计总体框图如图1所示,主要有单片机AT89C52,电源,键盘模块,LCD1602显示模块构成。

按案件模块:由5个复位开关与74LS21组成的系统通过对单片机传输中断信号来实现波形切换及频率和占空比的调节。

显示模块:用LCD1602,分行显示波形类型和波形频率的显示。

图1 系统总体框图

2.2测量原理

我们这个系统可实现四路A/D电压采样,使用的算法是:V=5*N/256,取五个点电压进行测量,并将测量完的十进制数据转化为二进制数据。

AD采样数据

电压源输入0.10 0.20 0.30 0.40 0.45

1.01

2.00

3.02

4.01 4.51

电压表测得

(放大后)

采集系统测得 1.01 2.00 3.02 4.02 4.52 3、硬件设计

3.1硬件组成

3.1.1 资源分配

晶振采用12MHZ。P1口的P1.0-P1.4分别与四个按键连接,分别控制波形切换、频率加、频率减,占空比加,占空比减。

P2口与DAC0832的D0-D7数据输入端相连。

P3口用来控制DAC0832的输入寄存器选择信号CS。

3.1.2 D/A转换模块部件

DAC0832芯片原理

管脚功能介绍(如图2所示)

V c c

20

Iout111lsbDI07Iout212DI16DI25Rfb 9DI34DI416Vref

8

DI515DI6

14msbDI713ILE 19WR218CS 1WR1

2

Xfer 17

U2

DAC0832

图2 DAC0832管脚图

DI7~DI0:8位的数据输入端,DI7为最高位。 ILE :数据锁存允许控制信号输入线,高电平有效。 CS :选片信号输入线(选通数据锁存器),低电平有效。

WR1:数据锁存器写选选通输入线,负脉冲有效,由ILE 、CS 、WR1的逻辑组合产生LE1,当LE1为高电平时,数据锁存器状态随输入数据线变化,LE1的负跳变时将输入数据锁存。

XFER :数据传输控制信号输入线,低电平有效,负脉冲有效。

WR2:DAC 寄存器选通输入线,负脉冲有效,由WR2、XFER 的逻辑组合产生LE2,当LE2为高电平时,DAC 寄存器的输出随寄存器的输入而变化,LE2的负跳变时将数据锁存器的内容打入DAC 寄存器并开始D/A 转换。

IOUT1:模拟电流输出端1,当DAC 寄存器中数据全为1时,输出电流最大,当 DAC 寄存器中数据全为0时,输出电流为0。

IOUT2:模拟电流输出端2, IOUT2与IOUT1的和为一个常数,即IOUT1+IOUT2=常数。

RFB :反馈电阻引出端,DAC0832内部已经有反馈电阻,所以 RFB 端可以直接接到外部运算放大器的输出端,这样相当于将一个反馈电阻接在运算放大器的输出端和输入端之间。

VREF :参考电压输入端,此端可接一个正电压,也可接一个负电压,它决定0至255的数字量转化出来的模拟量电压值的幅度,VREF 范围为(+10~-10)V 。VREF 端与D/A 内部T 形电阻网络相连。

Vcc :芯片供电电压,范围为(+5~+15)V 。 AGND :模拟量地,即模拟电路接地端。

DGND :数字量地。 3.1.3放大部分

放大部分采用双极运算放大电路,LM358 内部包括有两个独立的、高增益、

内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。

图3 lm358

3.2 单片机核心模块

3.2.1 AT89C52单片机及其说明

AT89C52为8 位通用微处理器:

图4 PDIP封装的AT89C52引脚图

采用工业标准的C51内核,在内部功能及管脚排布上与通用的8xc52 相同,

其主要用于会聚调整时的功能控制。功能包括对会聚主IC 内部寄存器、数据RAM 及外部接口等功能部件的初始化,会聚调整控制,会聚测试图控制,红外遥控信号IR的接收解码及与主板CPU通信等。主要管脚有:XTAL1(19 脚)和XTAL2(18 脚)为振荡器输入输出端口,外接12MHz 晶振。RST/Vpd(9 脚)为复位输入端口,外接电阻电容组成的复位电路。VCC(40 脚)和VSS(20 脚)为供电端口,分别接+5V电源的正负端。P0~P3 为可编程通用I/O 脚,其功能用途由软件定义,在本设计中,P0 端口(32~39 脚)被定义为N1 功能控制端口,分别与N1的相应功能管脚相连接,13 脚定义为IR输入端,10 脚和11脚定义为I2C总线控制端口,分别连接N1的SDAS(18脚)和SCLS(19脚)端口,12 脚、27 脚及28 脚定义为握手信号功能端口,连接主板CPU 的相应功能端,用于当前制式的检测及会聚调整状态进入的控制功能。

P0 口

P0 口是一组8 位漏极开路型双向I/O 口,也即地址/数据总线复用口。作为输出口用时,每位能吸收电流的

方式驱动8 个TTL逻辑门电路,对端口P0 写“1”时,可作为高阻抗输入端用。

在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8 位)和数据总线复用,在访问期间激活内部上拉电阻。

在Flash 编程时,P0 口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。

P1 口

P1 是一个带内部上拉电阻的8 位双向I/O 口, P1 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑

门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。

P2 口

P2 是一个带有内部上拉电阻的8 位双向I/O 口,P2 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑

门电路。对端口P2 写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。

在访问外部程序存储器或16 位地址的外部数据存储器(例如执行MOVX @DPTR 指令)时,P2 口送出高8 位地址数据。在访问8 位地址的外部数据存储器(如执行MOVX @RI 指令)时,P2 口输出P2 锁存器的内容。

Flash 编程或校验时,P2亦接收高位地址和一些控制信号。

P3 口

P3 口是一组带有内部上拉电阻的8 位双向I/O 口。P3 口输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻

辑门电路。对P3 口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。此时,被外部拉低的P3 口将用上拉电阻输出电流(IIL)。

P3 口除了作为一般的I/O 口线外,更重要的用途是它的第二功能

P3 口还接收一些用于Flash 闪速存储器编程和程序校验的控制信号。

RST

复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。

ALE/PROG

当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8 位字节。一般情况下,ALE 仍以时钟振荡频率的1/6 输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE 脉冲。

对Flash 存储器编程期间,该引脚还用于输入编程脉冲(PROG)。

如有必要,可通过对特殊功能寄存器(SFR)区中的8EH 单元的D0 位置位,可禁止ALE 操作。该位置位后,只有一条 MOVX 和MOVC指令才能将ALE 激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE 禁止位无效。

PSEN

程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89C52 由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN 有效,即输出两个脉冲。在此期间,当访问外部数据存储器,将跳过两次PSEN信号。

EA/VPP

外部访问允许。欲使CPU 仅访问外部程序存储器(地址为0000H—FFFFH),EA 端必须保持低电平(接地)。需注意的是:如果加密位LB1 被编程,复位时内部会锁存EA端状态。如EA端为高电平(接Vcc端),CPU 则执行内部程序存储器中的指令。 Flash 存储器编程时,该引脚加上+12V 的编程允许电源Vpp,当然这必须是该器件是使用12V 编程电压Vpp。

XTAL1

振荡器反相放大器的及内部时钟发生器的输入端。

XTAL2

振荡器反相放大器的输出端。

特殊功能寄存器

在AT89C52 片内存储器中,80H-FFH 共128 个单元为特殊功能寄存器(SFE),SFR 的地址空间映象如表2 所示。

并非所有的地址都被定义,从80H—FFH 共128 个字节只有一部分被定义,还有相当一部分没有定义。对没有定义的单元读写将是无效的,读出的数值将不确定,而写入的数据也将丢失。不应将数据“1”写入未定义的单元,由于这些单元在将来的产品中可能赋予新的功能,在这种情况下,复位后这些单元数值总是“0”。 AT89C52除了与AT89C51所有的定时/计数器0 和定时/计数器1 外,还增加了一个定时/计数器2。定时/计数器2 的控制和状态位位于T2CON (参见表3)T2MOD(参见表4),寄存器对(RCAO2H、RCAP2L)是定时器2 在16 位捕获方式或16 位自动重装载方式下的捕获/自动重装载寄存器。

数据存储器

AT89C52 有256 个字节的内部RAM,80H-FFH 高128 个字节与特殊功能寄存器(SFR)地址是重叠的,也就是高128 字节的RAM 和特殊功能寄存器的地址是相同的,但物理上它们是分开的。当一条指令访问7FH 以上的内部地址单元时,指令中使用的寻址方式是不同的,也即寻址方式决定是访问高128 字节RAM 还是访问特殊功能寄存器。如果指令是直接寻址方式则为访问特殊功能寄存器。例如,下面的直接寻址指令访问特殊功能寄存器0A0H(即P2 口)地址单元。

MOV 0A0H,#data

间接寻址指令访问高128 字节RAM,例如,下面的间接寻址指令中,R0 的内容为0A0H,则访问数据字节地址为0A0H,

而不是P2 口(0A0H)。

MOV @R0,#data

堆栈操作也是间接寻址方式,所以,高128 位数据RAM 亦可作为堆栈区使用。·定时器0和定时器1:

3.2.2单片机最小系统版模块

图 5 3.3两级运放电路

图 6

芯片特性:

内部频率补偿

直流电压增益高(约100dB)

单位增益频带宽(约1MHz)

电源电压范围宽:单电源(3—30V)

双电源(±1.5 一±15V)

低功耗电流,适合于电池供电

· 低输入偏流

低输入失调电压和失调电流

共模输入电压范围宽,包括接地

差模输入电压范围宽,等于电源电压范围

输出电压摆幅大(0 至Vcc-1.5V)

3.4显示电路

图7

LCD1602

主要功能 A、 40通道点阵LCD 驱动; B、可选择当作行驱动或列驱动; C、输入/输出信号:输出,能产生20×2个LCD驱动波形;输入,接受控制器送出的串行数据和控制信号,偏压(V1∽V6); D、通过单片机控制将所测的频率信号读数显示出来

4 、程序设计

4.1 主程序设计

图 8

4.2 子程序设计

4.2.1三角波程序流程图

三角波的实现是设置一个初值,然后进行加数,同样是加到某个数之后再进行减数,减到初值之后就再返回到先前的操作,这个操作跟锯齿波的实现是相似的。此程序输入的VREF的电压是+5V,因此该波形输出的最大频率是初值为00H 和最终值为0FFH,且步数为1,这样输出的波形是最大的。

程序流程图如下图所示:

图9

4.2.2 方波程序流程图

此波形的实现更加简单,只需开始的时候设置一个初值然后直接输出这个值

就行了,输出一段时间后,然后再重新置一个数据,然后再输出这个数据一段时间,但是此时的时间一定要等于前面那段时间。这样才是一个方波,如果两个时间不相同,那就相当于一个脉冲波了。流程图如下图所示:

置初值

输出信号

num++,步数

判断是否已满?

Num ——,步数

判断是否等于初值?

否/是

开 始

开始

给A设置初值

输出信号

设置输出的时间

再设置一个初值

输出信号

输出一段时间

图10

4.2.3 正弦波程序流程图

正弦波的实现则相对比较复杂,因为正弦波的实现是输出各个点的值就行了,可是各个点值则要通过正弦函数来求出,不过这些值直接去网上下载下来使用就可以了。输出的数据刚好是256个数据,这样则可以直接相加就行了。

流程图如下图所示:

图11 程序设计

#include

typedef unsigned char uchar; unsigned char i,j=0,sqar_num=128; //最大值100,默认值50

unsigned char cho=0; //0:正弦波。1:方波。2:三角波。3:锯齿波。

unsigned char num=0;

unsigned char TIME0_H=0xff,TIME0_L=0xd9; //定时器0的初值设置;全局变量.对应正弦波,锯齿波50HZ

sbit chg= P1^0;

//三角波100Hz.

sbit freq_u=P1^1; sbit freq_d=P1^2;

sbit duty_u=P1^3;

sbit duty_d=P1^4;

sbit cs =P3^7;

bit flag=0;

unsigned int FREQ=150;//初始化频率,50HZ

sbit rw=P3^6;

sbit rs=P3^5;

sbit lcde=P3^0;

unsigned char TempBuffer[7]; unsigned char value1[]={"Frequency:"};

void delay(unsigned int ms)

{

unsigned int i,j;

for (j=0;j

for (i=0;i<120;i++);

}

unsigned char code sin_num[]={

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,

2, 2, 2,

2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8,

8, 9, 9,

10, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17,

18,18, 19, 20, 21,

22, 23, 24, 25, 25, 26, 27, 28, 29, 30, 31,

32,34, 35, 36, 37,

38, 39, 40, 41, 42, 44, 45, 46, 47, 49, 50,

51,52, 54, 55, 56,

57, 59, 60, 61, 63, 64, 66, 67, 68, 70, 71,

73, 74, 75, 77, 78,

80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95,

96, 98, 99, 101,102,

104,106,107,109,110,112,113,1 15,116,118,120,121,123,124,126,1 28,

129,131,132,134,135,137,139,1 40,142,143,145,146,148,149,151,1 53,

154,156,157,159,160,162,163,1 65,166,168,169,171,172,174,175,1 77,

178,180,181,182,184,185,187,1 88,189,191,192,194,195,196,198,1 99,

200,201,203,204,205,206,208,2 09,210,211,213,214,215,216,217,2 18,

219,220,221,223,224,225,226,2 27,228,229,230,230,231,232,233,2 34,

235,236,237,237,238,239,240,2 40,241,242,243,243,244,245,245,2

46,

246,247,247,248,248,249,249,2 50,250,251,251,251,252,252,253,2 53,

253,253,254,254,254,254,254,2 55,255,255,255,255,255,255,255,2

55

};

//调节部分--频率

void freq_ud(void)

{

unsigned int temp;

if(freq_d==0)

{ FREQ--; }

else if(freq_u==0)

{ FREQ++; }

if(cho==1|cho==3) //锯齿波256次中断一周期,特殊处理下。否则他的频率是100(+\-)n*2Hz.

{

temp=0xffff-3906/FREQ; //方波,三角波默认为100hz,切换后频率也为50HZ 65336-10^6/(256*FREQ) TIME0_H=temp/256;

TIME0_L=temp%256;

}

else if(cho==0|cho==3)//正弦波三角波默认周期50hz 65536-10^6//(512*FREQ)

{

temp=0xffff-1953/FREQ;

TIME0_H=temp/256;

TIME0_L=temp%256;

}

}

//调节部分--方波的占空比

void duty_ud(void) //方波也采用512次中断构成一个周期。

{

if(duty_d==0&sqar_num>0)

sqar_num--;

else

if(duty_u==0&sqar_num<255)

sqar_num++;

}

//波形发生函数

void sint(void)

{

if(!flag)

{

cs=0;P2=sin_num[num++];cs=1;

if(num==0){num=255;flag=1;}

}

else if(flag)

{

cs=0;P2=sin_num[num--];cs=1;

if(num==255){num=0;flag=0;}

}

}

信号发生器毕业设计

信号发生器的设计与制作 系别:机电系专业:应用电子技术届:07届姓名:张海峰 摘要 本系统以AD8951集成块为核心器件,AT89C51集成块为辅助控制器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术测量使用。AD9851是AD公司生产的最高时钟为125 MHz、采用先进的CMOS技术的直接频率合成器,主要由可编程DDS系统、高性能模数变换器(DAC)和高速比较器3部分构成,能实现全数字编程控制的频率合成。 关键词AD9851,AT89C51,波形,原理图,常用接法

ABSTRACT 5 The system AD8951 integrated block as the core device, AT89C51 Manifold for auxiliary control devices, production of a function signal generator to produce low cost. Suitable for students to learn the use of electronic technology measurement. AD9851 is a AD produced a maximum clock of 125 MHz, using advanced CMOS technology, the direct frequency synthesizer, mainly by the programmable DDS systems, high-performance module converter (DAC) and high-speed comparator three parts, to achieve full Digital program-controlled frequency synthesizer. Key words AD9851, AT89C51, waveforms, schematics, Common Connection

函数信号发生器设计方案

函数信号发生器的设 计与制作 目录 一.设计任务概述 二.方案论证与比较 三.系统工作原理与分析 四.函数信号发生器各组成部分的工作原理 五.元器件清单 六.总结 七.参考文献

函数信号发生器的设计与制 一.设计任务概述 (1)该发生器能自动产生正弦波、三角波、方波。 (2)函数发生器以集成运放和晶体管为核心进行设计 (3)指标: 输出波形:正弦波、三角波、方波 频率范围:1Hz~10Hz,10Hz~100Hz 输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V; 二、方案论证与比较 2.1·系统功能分析 本设计的核心问题是信号的控制问题,其中包括信号频率、信号种类以及信号强度的控制。在设计的过程中,我们综合考虑了以下三种实现方案: 2.2·方案论证 方案一∶采用传统的直接频率合成器。这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。 方案二∶采用锁相环式频率合成器。利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。而且,由模拟方法合成的正弦波的参数,如幅度、频率相信都很难控制。 方案三:采用8038单片压控函数发生器,8038可同时产生正弦波、方波和三角波。改变8038的调制电压,可以实现数控调节,其振荡范围为0.001Hz~300K 方案四:采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于1-10Hz的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。该电路已经用于实际电路的实验操作。 三、系统工作原理与分析 采用由集成运算放大器与场效应管共同组成的方波—三角波—正弦波函数发生器的设计方法,先通过比较器产生方波,再通过积分器产生三角波,最后通过场效应管正弦波转换电路形成正弦波,波形转换原理图如下:

信号发生器设计(附仿真)

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p =6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶体管的截止电压值。 m 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2 调整电路的对称性,并联电阻R E2 用来减小差 分放大器的线性区。C 1、C 2 、C 3 为隔直电容,C 4 为滤波电容,以滤除谐波分量,改善输出 波形。 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n个波段范围。 ③输出电压:一般指输出波形的峰-峰值U p-p。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r~和r△;表征方波特性的参数是上升时间t r。 四、电路仿真与分析

函数信号发生器的设计与制作

函数信号发生器的设计、和装配实习 一.设计制作要求: 掌握方波一三角波一正弦波函数发生器的设计方法和测试技术。学会由分立器件和集成电路组成的多级电子电路小系统的布线方法。掌握安装、焊接和调试电路的技能。掌握在装配过程中可能发生的故障进行维修的基本方法。 二.方波一三角波一正弦波函数发生器设计要求 函数发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。其电路中使用的器件可以是分立器件,也可以是集成电路(如单片集成电路函数发生器ICL8038)。本次电子工艺实习,主要介绍由集成运算放大器和晶体管差分放大器组成的方波一三角波一正弦波函数信号发生器的设计和制作方法。 产生正弦波、方波、三角波的方案有多 种: 1:如先产生正弦波,然后通过整 形电路将正弦波变换成方波,再由积分 电路将方波变成三角波。 2:先产生三角波一方波,再将三 角波变成正弦波或将方波变成正弦波。 3 3:本次电路设计,则采用的图1函数发生器组成框图 是先产生方波一三角波,再将三角波变换成正弦波的电路设计方法。此钟方法的电路组成框图。如图1所示:可见,它主要由:电压比较器、积分器和差分放大器等三部分构成。 为了使大家能较快地进入设计和制做状态,节省时间,在此,重新复习电压比较器、积分器和差分放大器的基本构成和工作原理: ,并判所谓比较器,是一种用来比较输入信号v1和参考电压V REF 断出其中哪个大,在输出端显示出比较结果的电路。 在《电子技术基础》一书的9.4—非正弦波信号产生电路的9.4.1中,专门讲述了: A:单门限电压比较器、B:过零比较器 C:迟滞比较器的电路结构和工作原理。 一、单门限电压比较器 所谓单门限电压比较器,是指比较器的输入端只有一个门限电压。

北京邮电大学课设 基于MSP430的简单信号发生器的设计

基于MSP430的信号发生器 设计报告 学院:电子工程学院 班级:2013211212 组员:唐卓浩(2012211069) 王旭东(2013211134) 李务雨(2013211138) 指导老师:尹露

一、摘要 信号发生器是电子实验室的基本设备之一,目前各类学校广泛使用的是标准产品,虽然功能齐全、性能指标较高,但是价格较贵,且许多功能用不上。本设计介绍一款基于MSP430G2553 单片机的信号发生器。该信号发生器虽然功能及性能指标赶不上标准信号发生器,但能满足一般的实验要求,且结构简单,成本较低。本次需要完成的任务是以MSP430 LaunchPad 的单片机为控制核心、DAC 模块作为转换与按键电路作为输入构成的一种电子产品。MSP430 LaunchPad 单片机为控制核心,能实时的进行控制;按键输入调整输出状态,DAC0832将单片机输出的数字信号转化为模拟量,经运放放大后,在示波器上输出。在本次程序设计中充分利用了单片机内部资源,涉及到了中断系统、函数调用等。 关键字:信号发生器 MSP430单片机数模转换 二、设计要求 以msp430单片机为核心,通过一个DA (数字模拟)转换芯片,将单片机输出的方波、三角波、正弦波(数字信号)转换为模拟信号输出。提供芯片:msp430G2553、DAC0832、REF102、LM384、OP07。参考框图如下: Lauchpad MSP430 电位器 按键1 DA 转换DAC0832 放大输出LM384 按键N 按键2 AD …… 图1 硬件功能框图 1、基本要求 (1) 供电电压 VDD= 5V~12V ;(√) (2) 信号频率:5~500Hz(可调);(√) (3) 输出信号电压可调范围:≥0.5*VDD ,直流偏移可调:≥0.5*VDD ;(√) (4) 完成输出信号切换;(√) (5) 方波占空比:平滑可调20%~80%;(√) (6) 通带内正弦波峰峰值稳定度误差:≤±10%(负载1K )。(√)

函数信号发生器的使用方法规定

函数信号发生器的使用方法规定 1、目的:为操作人员作操作指导。 2、范围:适用于函数信号发生器操作人员。 3、操作步骤: 3.1注意事项 仪器在只使用“电压输出端”时应将“输出衰减”开关置于“0dB”~“80dB”内的位置,以免功率指示电压表指示过大而损坏。 3.2使用方法 3.2.1开机:在未开机前应首先检查仪器外接电源是否为交流220V±10%,50Hz±5%, 并检查电源插头上的地线脚应与在地接触良好,以防机壳带电。面板上的电源开关 应放在“关”位置,“电平调节”旋钮置中间,输出衰减旋钮置“0dB”,频段开关设 置在你所需要的频段。 3.2.2频率选择:首先将频段开关设置在你所期望的频率范围内,然后调节频率调谐旋钮 和频率微调旋钮,至数码管上指示你所需要的频率为止。 3.2.3波形选择:波形开关在“~”位置,可在电压输出端获得全频段的电压正弦信号,在 功率输出端可获得20Hz~100kHz的功率输出;波形开关在“”位置,在电压输 出端可获得全频段的电压方波信号。输出衰减在功率输出端8Ω档同样可以获得 20Hz~100kHz的方波功率输出。 3.2.4输出电压调整:电压输出端的输出电压可通过“电平调节”旋钮连续可调。 3.2.5功率输出调整:功率输出端的输出同由“电平调节”旋钮控制调节,并可通过“输 出衰减”进行80 dB的衰减。“输出衰减”控制开关上有8Ω和600Ω二档匹配档, 用以匹配低阻和较高负载以获取最大输出功率。 3.2.6功率的平衡输出:本仪器600Ω功率输出档可进行平衡输出,方法是可将面板上中间 红色接线柱和黑色接线柱之间的接地片取下,接在两个红色接线柱上即可,但本仪器连接的其它仪器也应不接在“地”电位。

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

简易函数信号发生器

课程设计任务书 (一)设计目的 1、掌握信号发生器的设计方法和测试技术。 2、了解单片函数发生器IC8038的工作原理和应用。 3、学会安装和调试分立元件与集成电路组成的多级电子电路小系统。 (二)设计技术指标与要求 1、设计要求 (1)电路能输出正弦波、方波和三角波等三种波形; (2)输出信号的频率要求可调; (3)拟定测试方案和设计步骤; (4)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (5)在面包板上或万能板或PCB板上安装电路; (6)测量输出信号的幅度和频率; (7)撰写设计报告。 2、技术指标 频率范围:100Hz~1KHz 1KHz~10KHz; 输出电压:方波V P-P≤24V,三角波V P-P=6V,正弦波V P-P=1V;方波t r小于1uS。 (三)设计提示 1、方案提示: (1)设计方案可先产生正弦波,然后通过整形电路将正弦波变成方波,再由积分电路将方波变成三角波;也可先产生三角波-方波,再将三角波变成正弦波。 (2)也可用单片集成芯片IC8038实现,采用这种方案时要求幅度可调。 2、设计用仪器设备: 示波器,交流毫伏表,数字万用表,低频信号发生器,实验面包板或万能板,智能电工实验台。 3、设计用主要器件: (1)双运放NE5532(或747)1只(或741 2只)、差分管3DG100 4个、电阻电容若干; (2)IC8038、数字电位器、电阻电容若干。 4、参考书: 《电子线路设计·实验·测试》谢自美主编华中科技大学出版社 《模拟电子技术基础》康华光主编高等教育出版社 《模拟电子技术》胡宴如主编高等教育出版社 (四)设计报告要求 1、选定设计方案; 2、拟出设计步骤,画出设计电路,分析并计算主要元件参数值; 3、列出测试数据表格; 4、调试总结,并写出设计报告。 (五)设计总结与思考 1、总结信号发生器的设计和测试方法;

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

函数信号发生器的设计与实现

实验1 函数信号发生器的设计与实现 姓名:_ _____ 学号: 班内序号:____ 课题名称:函数信号发生器的设计 摘要:采用运算放大器组成的积分电路产生比较理想的方波-三角波,根 据所需振荡频率和对方波前后沿陡度、方波和三角波幅度的要求,选择运放、稳压管、限流电阻和电容。三角波-正弦波转换电路利用差分放大器传输特性曲线的非线性实现,选取合适的滑动变阻器来调节三角波的幅度和电路的对称性,同时利用隔直电容、滤波电容来改善输出正弦波的波形。 关键词:方波三角波正弦波 一、设计任务要求 1.基本要求:

设计制作一个函数信号发生器电路,该电路能够输出频率可调的正弦波、三角波和方波信号。 (1) 输出频率能在1-10KHz范围内连续可调,无明显失真。 (2) 方波输出电压Uopp=12V(误差小于20%),上升、下降沿小于10us。 (3) 三角波Uopp=8V(误差小于20%)。 (4) 正弦波Uopp1V,无明显失真。 2.提高要求: (1) 输出方波占空比可调范围30%-70%。 (2) 自拟(三种输出波形的峰峰值Uopp均可在1V-10V内连续可调)。 二、设计思路和总体结构框图 总体结构框图: 设计思路: 由运放构成的比较器和反相积分器组成方波-三角波发生电路,三角波输入差分放大电路,利用其传输特性曲线的非线性实现三角波-正弦波的转换,从而电路可在三个输出端分别输出方波、三角波和正弦波,达到信号发生器实验的基本要求。 将输出端与地之间接入大阻值电位器,电位器的抽头处作为新的输出端,实现输出信号幅度的连续调节。利用二极管的单向导通性,将方波-三角波中间的电阻改为两个反向二极管一端相连,另一端接入电位器,抽头处输出的结构,实现占空比连续可调,达到信号发生器实验的提高要求。 三、分块电路和总体电路的设计过程 1.方波-三角波产生电路 电路图:

简易函数信号发生器的设计

单片机课程设计报告书 课题名称 简易函数信号发生器的设计 姓 名 ** 学 号 ** 院、系、部 ** 专 业 电子信息科学与技术 指导教师 ** 2011年12月12日 ※※※※※※※※※ ※ ※ ※※ ※ ※ ※※※※※※※※※ **级学生单片机 课程设计

目录 一、绪言 (1) 二、系统方案论证 (1) 2.1设计要求 (1) 2.2 简易函数信号发生器方案论证 (1) 2.3 单片机的控制方案论证 (1) 2.4 键盘选择方案论证 (2) 三、系统设计 (2) 3.1 硬件电路设计 (2) 3.2 程序流程图 (4) 3.3 C语言程序设计 (5) 四、简易函数信号发生器的仿真 (8) 4.1 系统仿真 (8) 4.2工作原理分析 (10) 结束语 (11) 参考文献 (11) 修改通篇页面设置里面的左右边距

一绪言 函数发生器是一种多波形的信号源。它可以产生正弦波、方波、三角波、锯齿波,甚至任意波形。函数发生器有很宽的频率范围,使用范围很广,它是一种不可缺少的通用信号源。因此设计使用的AT89S52单片机构成的发生器,可以产生正弦波和方波。 二系统方案论证 2.1设计要求 1、设计一个基于AT89S52单片机的信号发生器; 2、能够输出方波和正弦波(正弦波是双极性的),要求可用按键选择; 3、可选电压值为1V、2V、3V、4V、5V五个档位; 4、可选频率值为:10Hz、20Hz、50Hz、100Hz、200Hz、500Hz、1KHz七个档位; 5、能够通过显示模块显示输出波形的主要参数。 2.2 简易函数信号发生器方案论证 方案一:用分立元件组成函数发生器,通常是单函数发生器且频率不高,其工作不很稳定,不易调试。 方案二:可以由晶体管,运放 IC等通用器件制作,更多的则是用专用的函数信号发生器IC产生。早期的函数信号发生器IC,如L8083、BA205等,他们的功能少,精度不高,频率上限只有300KHz,频率和占空比不能独立调节,二者相互影响。 方案三:利用专用直接数字合成DDS芯片的函数发生器:能产生任意波形并且达到很高的频率。但成本很高。 方案四:采用 AT89S52单片机和DAC0832芯片,直接连接按键和显示。该种方案主要对AT89S52单片机的各个I/0口充分利用,不再多用其他的芯片,从而减小了系统的成本,也对按照系统便携式低频信号发生器的要求所完成,占用空间小,使用空间小,使用芯片少,低功耗。 综合考虑,方案四各项性能和指标都优于其他各种方案,能使输出频率有较好的稳定性,充分体现了模块化设计的要求,而且这些芯片和器件均为通用器件,在市场上较常见,价格也低廉,样品制作成功的可能性比较大,所以本设计采用方案四。 2.3 单片机的控制方案论证 方案一:采用可编程逻辑期间CPLD 作为控制器。CPLD可以实现各种复杂的逻辑功能、规模大、密度高、体积小、稳定性高、IO资源丰富、易于进行功能扩展。

简易信号发生器设计制作

简易信号发生器设计制作 一、训练目的 (1)掌握正弦波、三角波、矩形波和方波发生电路的工作原理; (2)学会正弦波、三角波、矩形波和方波发生电路的设计方法; (3)进一步熟悉电子线路的安装、调试、测试方法。 二、工作原理 正弦波、三角板、矩形波是电子电路中常用的测试信号,如测试放大器的增益、通频带等均要用到正弦信号作为测试信号。下面分别介绍产生这三种信号电路结构和工作原理。 1.正弦信号发生器 正弦信号的产生电路形式比较多,频率较低时常用文氏电桥振荡器,图7-1为实用文氏电桥振荡电路。图中R 1、R 2、R 3、RW 2构成负反馈支路,二极管D 1、D 2构成稳幅电路,C 2、R 11(或R 12或R 13)、C 1、R 21(或R 22或R 23)串并联电路构成正反馈支路,并兼作选频网络。调节电位器RW 2可以改变负反馈的深度,以满足振荡的振幅条件和改善波形。二极管D 1、D 2要求温度稳定性好,特性匹配以确保输出信号正负半周对称,R 4接入用以消除二极管的非线性影响,改善波形失真。如K1接电阻R 11、K2接R 21,并且R 11= R 21=R ,C 1= C 2=C ,则电路的振荡频率为: 1 2f RC π= (7-1) 起振的幅值条件: 1 1f v R A R =+ (7-2) 图7-1 正弦信号发生器 通过调整RW 2可以改变电路放大倍数,能使电路起振并且失真最小。该电路可通过开关K1、K2选择不同的电阻以得到不同频率的信号输出。 2.方波和矩形波发生器

方波发生电路如图7-2,其基本原理是在滞回比较器的基础上增加了由R 4和C 1构成的积分电路,输出电压通过该积分电路送人到比较器的反相输入端。其中R 3 、D Z1和D Z2构成双向限幅电路,这样就构成了方波发生器电路,其工作原理如下: 假设在接通电源瞬间,输出电压o v 为Z V +(稳压二极管D Z1、D Z2额定工作时的稳压值),这时比较器同相端的输入电压为 2 12 Z R v V R R +≈ + (7-3) 同时输出电压o v 会通过电阻R 4给C 1充电,反相端的输入电压v -就会逐步升高,当反向输入端的电压v -略大于同相端输入电压v +时,比较器输出电压立即从Z V +翻转为Z V -,这时输出端电压o v 为Z V -,比较器同相端输入电压v +'为 2 12 Z R v V R R +'≈- + (7-4) 这时输出的电压o v 会通过R 4对C 1进行反向充电,当反相输入端的电压略低于v +'时,输出状态再翻转回来,如此反复形成方波信号。所产生方波信号的频率为 41 1 2f R C = 方波 (7-5) R 4 o 图7-2 方波发生电路

如何使用函数信号发生器

如何使用函数信号发生器 认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发. 这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波,换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路: 改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下: 将方波产生电路比较器的参考幅度予以固定(正、负可利用电路予以切换),改变充放电斜率,即可达成。 这种方式的设计一般使用者的反应是“难调”,这是大缺点,但它可以产生10%以下的占空比却是在采样时的必备条件。 以上的两种占空比调整电路设计思路,各有优缺点,当然连带的也影响到是否能产生“像样的”锯齿波。 接下来PA(功率放大器)的设计。首先是利用运算放大器(OP) ,再利用推拉式(push-pull)放大器(注意交越失真Cross-distortion的预防)将信号送到衰减网路,这部分牵涉到信号源输出信号的指标,包含信噪比、方波上升时间及信号源的频率响应,好的信号源当然是正弦波信噪比高、方波上升时间快、三角波线性度要好、同时伏频特性也要好,(也即频率上升,信号不能衰减或不能减太大),这部分电路较为复杂,尤其在高频时除利用电容作频率补偿外,也牵涉到PC板的布线方式,一不小心,极易引起振荡,想设计这部分电路,除原有的模拟理论基础外尚需具备实际的经验,“Try Error”的耐心是不可缺少的。 PA信号出来后,经过π型的电阻式衰减网路,分别衰减10倍(20dB)或100倍(40dB),此时一部基本的函数波形发生器即已完成。(注意:选用π型衰减网络而不是分压电路是要让输出阻抗保持一定)。 一台功能较强的函数波形发生器,还有扫频、VCG、TTL、 TRIG、 GATE及频率计等功能,其设

信号发生器的设计实现

电子电路综合设计 总结报告 设计选题 ——信号发生器的设计实现 姓名:*** 学号:*** 班级:*** 指导老师:*** 2012

摘要 本综合实验利用555芯片、CD4518、MF10和LM324等集成电路来产生各种信号的数据,利用555芯片与电阻、电容组成无稳态多谐振荡电路,其产生脉冲信号由CD4518做分频实现方波信号,再经低通滤波成为正弦信号,再有积分电路变为锯齿波。此所形成的信号发生器,信号产生的种类、频率、幅值均为可调,信号的种类、频率可通过按键来改变,幅度可以通过电位器来调节。信号的最高频率应该达到500Hz以上,可用的频率应三个以上,T,2T,3T或T,2T,4T均可。信号的种类应三种以上,必须产生正弦波、方波,幅度可在1~5V之间调节。在此过程中,综合的运用多科学相关知识进行了初步工程设计。

设计选题: 信号发生器的设计实现 设计任务要求: 信号发生器形成的信号产生的种类、频率、幅值均为可调,信号的种类、频率可通过按键来改变,幅度可以通过电位器来调节。信号的最高频率应该达到500Hz以上,可用的频率应三个以上,T,2T,3T 或T,2T,4T均可。信号的种类应三种以上,必须产生正弦波、方波,幅度可在1~5V之间调节。 正文 方案设计与论证 做本设计时考虑了三种设计方案,具体如下: 方案一 实现首先由单片机通过I/O输出波形的数字信号,之后DA变换器接受数字信号后将其变换为模拟信号,再由运算放大器将DA输出的信号进行放大。利用单片机的I/O接收按键信号,实现波形变换、频率转换功能。

基本设计原理框图(图1) 时钟电路 系统的时钟采用内部时钟产生的方式。单片机内部有一个用于构成振荡器的高增益反相放大器,该高增益反相放大器的输入端为芯片引脚XTAL1,输出端为引脚XTAL2。这两个引脚跨接石英晶体振荡器和微调电容,就构成一个稳定的自激振荡器。晶振频率为11.0592MHz,两个配合晶振的电容为33pF。 复位电路 复位电路通常采用上电自动复位的方式。上电自动复位是通过外部复位电路的电容充电来实现的。 程序下载电路 STC89C51系列单片机支持ISP程序下载,为此,需要为系统设计ISP下载电路。系统采用MAX232来实现单片机的I/O口电平与RS232接口电平之间的转换,从而使系统与计算机串行接口直接通信,实现程序下载。 方案一的特点: 方案一实现系统既涉及到单片机及DA、运放的硬件系统设计,

函数信号发生器设计报告

目录 1设计的目的及任务 1.1 课程设计的目的 1.2 课程设计的任务与要求 2函数信号发生器的总方案及原理图 2.1 电路设计原理框图 2.2 电路设计方案设计 3 各部分电路设计及选择 3.1 方波发生电路的工作原理 3.2 方波、三角波发生电路的选择 3.3三角波---正弦波转换电路的选择 3.4总电路图 4 电路仿真与调试 4.1 方波---三角波发生电路、三角波---正弦波转换电路的仿真与调试 4.2方波---三角波发生电路、三角波---正弦波转换电路的实验结果 5 PCB制版 6 设计总结 7仪器仪表明细清单 8 参考文献

1.课程设计的目的和设计的任务 1.1 设计目的 1.掌握用集成运算放大器构成正弦波、方波和三角波函数发生器的设计方法。 2.学会安装、调试与仿真由分立器件、调试与仿真由分立器件与集成电路组成的多级电子电路小系统。 2.2设计任务与要求: 设计一台波形信号发生器,具体要求如下: 1.输出波形:方波、三角波、正弦波。 2.频率范围:在1 Hz-10Hz,10 Hz -100 Hz,100 Hz -1000 Hz等三个波段。 3.频率控制方式:通过改变RC时间常数手控信号频率。 4.输出电压:方波U P-P≤24V,三角波U P-P =8V,正弦波U P-P >1V。 5.合理的设计硬件电路,说明工作原理及设计过程,画出相关的电路原理图。 6.选用常用的电器元件(说明电器元件选择过程和依据)。 7.画出设计的原理电路图,作出电路的仿真。 8.提交课程设计报告书一份,A3图纸两张,完成相应答辩。

2.函数发生器总方案及原理框图 图1-1 整体原理框图 2.2 函数发生器的总方案 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。本课题采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法。 本课题中函数发生器电路组成框图如下所示: 由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路的基本结构是比例放大器,对不同区段内比例系数的切换,是通过二级管网络来实现的。如输出信号的正半周内由D1~D3控制切换,负半周由D4~D6控制切换。电阻Rb1~Rb3与Ra1~Ra3分别组成分压器,控制着各二极管的动作电平。

简易信号发生器的设计实现

EDA课程设计简易信号发生器的设计实现 小组成员:XXXXXX XXXXX 专业:XXXXX 学院:机电与信息工程学院指导老师:XXXXXX 完成日期:XX年XX月XX日

目录 引言 (3) 一、课程设计内容及要求 (3) 1、设计内容 (3) 2、设计要求 (3) 二、设计方案及原理 (3) 1、设计原理 (3) 2、设计方案 (4) (1)设计思想 (4) (2)设计方案 (4) 3、系统设计 (5) (1)正弦波产生模块 (5) (2)三角波产生模块 (6) (3)锯齿波产生模块 (6) (4)方波产生模块 (6) (5)波形选择模块 (6) (6)频率控制模块 (6) (7)幅度控制模块 (6) (8)顶层设计模块 (7) 三、仿真结果分析 (7) 波形仿真结果 (7) 1、正弦波仿真结果 (7) 2、三角波仿真结果 (8) 3、锯齿波仿真结果 (8) 4、方波仿真结果 (8) 5、波形选择仿真结果 (9) 6、频率控制仿真结果 (9) 四、总结与体会 (10) 五、参考文献 (10) 六、附录 (11)

简易信号发生器 引言 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广范的应用。它能够产生多种波形,如正弦波、三角波、方波、锯齿波等,在电路实验和设备检验中有着十分广范的应用。 本次课程设计采用FPGA来设计多功能信号发生器。 一、课程设计内容及要求 1、设计内容 设计一个多功能简易信号发生器 2、设计要求 (1)完成电路板上DAC的匹配电阻选择、焊接与调试,确保其能够正常工作。 (2)根据直接数字频率合成(DDFS)原理设计正弦信号发生器,频率步进1Hz,最高输出频率不限,在波形不产生失真(从输出1KHz正弦转换为输出最高频率正弦时,幅度衰减不得大于10%)的情况下越高越好。频率字可以由串口设定,也可以由按键控制,数码管上显示频率傎。 (3)可以控制改变输出波形类型,在正弦波、三角波、锯齿波、方波之间切换。 (4)输出波形幅度可调,最小幅度步进为100mV。 二、设计方案及原理 1、设计原理 (1)简易信号发生器原理图如下

函数信号发生器的设计与制作

Xuchang Electric V ocational College 毕业论文(设计) 题目:函数信号发生器的设计与制作 系部:电气工程系_ 班级:12电气自动化技术 姓名:张广超 指导老师:郝琳 完成日期:2014/5/20

毕业论文内容摘要

目录 1引言 (3) 1.1研究背景与意义 (3) 1.2研究思路与主要内容 (3) 2 方案选择 (4) 2.1方案一 (4) 2.2方案二 (4) 3基本原理 (5) 4稳压电源 (6) 4.1直流稳压电源设计思路 (6) 4.2直流稳压电源原理 (6) 4.3集成三端稳压器 (7) 5系统工作原理与分析 (8) 5.1ICL8038芯片性能特点简介 (8) 5.2ICL8038的应用 (8) 5.3ICL8038原理简介 (8) 5.4电路分析 (9) 5.5ICL8038内部原理 (10) 5.6工作原理 (11) 5.7正弦函数信号的失真度调节 (11) 5.8ICL8038的典型应用 (12) 5.9输出驱动部分 (12) 结论 (14) 致谢 (15) 参考文献 (16) 附录 (17)

1引言 信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波(含方波)、正弦波的电路被称为函数信号发生器。 1.1研究背景与意义 函数信号发生器是工业生产、产品开发、科学研究等领域必备的工具,它产生的锯齿波和正弦波、矩形波、三角波是常用的基本测试信号。在示波器、电视机等仪器中,为了使电子按照一定规律运动,以利用荧光屏显示图像,常用到锯齿波信号产生器作为时基电路。例如,要在示波器荧光屏上不失真地观察到被测信号波形,要求在水平偏转线圈上加随时间线性变化的电压——锯齿波电压,使电子束沿水平方向匀速搜索荧光屏。对于三角波,方波同样有重要的作用,而函数信号发生器是指一般能自动产生方波正弦波三角波以及锯齿波阶梯波等电压波形的电路或仪器。因此,建议开发一种能产生方波、正弦波、三角波的函数信号发生器。函数信号发生器根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件,也可以是集成器件,产生方波、正弦波、三角波的方案有多种,如先产生正弦波,根据周期性的非正弦波与正弦波所呈的某种确定的函数关系,再通过整形电路将正弦波转化为方波,经过积分电路后将其变为三角波。也可以先产生三角波-方波,再将三角波或方波转化为正弦波。随着电子技术的快速发展,新材料新器件层出不穷,开发新款式函数信号发生器,器件的可选择性大幅增加,例如 ICL8038就是一种技术上很成熟的可以产生正弦波、方波、三角波的主芯片。所以,可选择的方案多种多样,技术上是可行的[1]。 1.2研究思路与主要内容 本文主要以ICL8038集成块为核心器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术实验使用。ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从几赫到几百千赫的低失真正弦波、三角波、矩形波等脉冲信号。基于ICL8038函数信号发生器主要电源供电、波形发生、输出驱动三大部分组成。电源供电部分:主要由集成三端稳压管LM7812和LM7912构成的±12V直流电压作为整个系统的供电。波形发生部分:主要由单片集成函数信号发生器ICL8038构成。通过改变接入电路的电阻或电容的大小,能够得到几赫到几百千赫不同频率的信号。输出驱动部分:主要由运放LF353构成。由于ICL8038的输出信号幅度较小,需要放大输出信号。ICL8038的输出信号经过运放LF353放大后能够得到输出幅度较大的信号[2]。

简易函数信号发生器的设计

简易函数信号发生器的设计 一、 电路功能 能同时输出方波、三角波和正弦波三种波形。 二、 技术指标 信号发生器能产生方波、三角波和正弦波三种周期性波形输出信号频率范围在100Hz —10KHz 可调,输出信号的峰峰值可调,方波的峰峰值约为8V ,三角波的峰峰值约为5V ,正弦波的峰峰值约为6V 。 三、 电路原理框图 (电路原理框图) 四、 元器件的介绍 1、 集成运算放器LM324 每块运放集成电路内含有四个相同的运算放大器,它们电源共用,彼此独立工作,管脚排列如图一所示。 图一(集成运算放大器LM324)

2、发光二极管LED 本次设计所用的发光二极管有绿色和红色两种圆头发光二极管,发光二极管的管脚有长短,长的为正极,短的为负极。 3、二极管 二极管具有单向导电性,如图3所示。如图中所示,二极管的一端是银色的,此端口为负极。 图二(二极管) 4、PNP和NPN PNP和NPN分别有三个管脚,分别有基极b,集电极c和发射极e,他们的分布店铺是如图四所示。 图三(三极管) 五、电路中元件参数的计算与取值,元器件清单 1、方波、三角波电路 2、

电路图如图四所示是产生方波和三角波的电路原理图。如图所示,A U 1构成有源积分器, A U 2构成迟滞比较器。 A U 2中,根据“虚短虚开”得 当n v =p v =0时,01v 的值为门限电压 当01V 单独作用时,p v = 01122 V R R R + (1) 当02V 单独作用时,p v = 022 11 V R R R + (2) ∴ 022 11 01212V R R R V R R R +++ = 0 (3) ∴此时01v 为门限电压T V T V ∴=01V = 022 1 V R R - (4) 又02V = z V ± = ±4V ∴ +T V = Z V R R 21 (5) -T V = z V R R 2 1 - (6) ∴ 当01v 达到+T V 时,三角波反转;当01v 达到-T V 时,三角波再次反转 ∴ +T V 和-T V 分别代表三角波的峰-峰值 ∴ 峰-峰值 m m v 01 = +T V --T V = z V R R 2 1 2,又称回差电压 又由原理图可知,方波的峰-峰值为z V 2 图四(方波三角波产生电路) 300 -4V +4V 2 0R

相关主题
文本预览
相关文档 最新文档