Li掺杂ZnO纳米阵列的水热合成和水热法原理及制备方法汇总(DOC)
- 格式:doc
- 大小:3.51 MB
- 文档页数:26
水热合成氧化锌制备方法水热合成是一种常用的制备氧化锌的方法,该方法利用水在高温高压条件下的特殊性质,通过溶剂中的反应物发生化学反应,最终形成氧化锌晶体。
本文将详细介绍水热合成氧化锌的原理、步骤及相关注意事项,以期为实验操作提供指导与帮助。
首先,水热合成氧化锌的原理是利用水的高温高压条件下的溶解性与反应性。
在高温高压条件下,水分子的活性增强,使得反应速率加快并且反应效率提高。
同时,水分子还能够作为溶剂,使得反应物质更好地溶解并参与反应。
水热合成氧化锌的步骤如下:第一步,将适量的锌盐溶解于水中,通常使用的锌盐为锌硫酸、锌硝酸等。
该步骤中需注意溶解度的测定,以确保溶解度适中,不会出现过度溶解或沉淀形成。
第二步,将溶解好的锌盐溶液转移到高压容器中。
高压容器通常为特殊材料制成,能够承受高温高压的条件。
在转移过程中需要注意容器的密封性,以避免溶液从容器中泄漏。
第三步,将高压容器密封,并将其放入水热反应器中。
水热反应器是一种能够提供高温高压条件的设备,通常使用反应器内部加热的方式。
第四步,打开水热反应器,调节温度和压力。
温度通常在150-200℃之间,压力则在1-3MPa之间。
这些条件可以根据具体实验要求进行调整,以获得最佳的反应条件。
第五步,反应一定时间后,关闭水热反应器,并将其取出。
此时的反应物已经发生了水热合成反应,并形成了氧化锌晶体。
最后,将氧化锌样品从高压容器中取出,并经过滤、洗涤等步骤进行处理,以去除杂质和不溶性物质。
处理后的氧化锌样品可以用于进一步的分析和表征。
需要注意的是,在水热合成氧化锌过程中,一定要注意安全操作。
高温高压条件下的实验存在一定的危险性,操作人员应穿戴好防护设施,并确保实验室设备的安全性。
综上所述,水热合成氧化锌是一种制备氧化锌的常见方法。
通过合理地控制反应条件和操作步骤,可以得到高质量的氧化锌样品。
希望本文所述内容能对实验操作提供有效指导,并在相关研究领域起到推动作用。
水热法制备ZnO纳米结构及其应用摘要纳米结构的ZnO由于具有优异的光、电、磁、声等性能,已经成为光电、化学、催化、压电等领域中聚焦的研究热点之一。
不同纳米结构的ZnO其制备方法多种多样,本文着重综述了水热法制备ZnO纳米结构,并探讨了ZnO纳米结构的生长机理和调控,同时展望了ZnO纳米结构在各领域中的最新应用。
关键词ZnO纳米结构水热法生长机理生长调控应用引言氧化锌是一种宽禁带直接半导体材料,室温下其禁带宽度为3.37 eV,激子束缚能为60 meV,可以实现室温下的激子发射,产生近紫外的短波发光,被用来制备光电器件,如紫外探测器、紫外激光器等。
另外ZnO还具有很好的导电、导热和化学稳定性能,在太阳能电池、传感器和光催化方面有广泛的应用前景。
因此成为国际上半导体材料研究的热点之一。
而一维半导体材料更由于其独特的物理特性及在光电子器件方面的巨大潜力,备受人们的关注[1, 2]。
将纳米ZnO用于电致发光器件中对提高器件性能很有帮助[3]。
在基底上高度有序生长的ZnO 纳米结构可制作短波激光器[2]和Graetzel太阳能电池电极[4],成为人们的研究热点。
目前国内外研究者已成功地合成了多种ZnO纳米结构:Huang等[5]制备出的ZnO纳米铅笔状结构具有尖端和高的比表面积,有望用于场发射微电子器件方面;杨培东[6]、Shingo Hirano[7]小组分别用气相传输法和水热法合成的ZnO纳米线阵列表现出室温紫外激光发射行为,可用来制备紫外纳米激光器;张立德[8]研究小组用简单的热蒸发方法得到了一种ZnO纳米薄片状结构,可用于纳米传感器方面。
另外,研究者还制备出ZnO纳米环、纳米带、纳米花和多足状等结构。
合成ZnO纳米结构的方法多种多样,主要有气相沉积法、模板法及催化助溶法、电化学法,其它还有诸如沉淀法、溶胶-凝胶法、多羟基化合物水解法等。
近年来水热法制备ZnO纳米结构成为了研究者关注的热点,与其它方法相比,水热法具有设备简单,反应条件温和,可大面积成膜,工艺可控等优点。
《ZnO纳米材料的水热法制备及丙酮气敏性能优化研究》一、引言随着纳米科技的飞速发展,氧化锌(ZnO)纳米材料因其独特的物理和化学性质,在光电子器件、传感器、催化剂等领域展现出广泛的应用前景。
其中,ZnO纳米材料的气敏性能在气体传感器领域具有重要价值。
本文将重点研究ZnO纳米材料的水热法制备工艺及其在丙酮气敏性能方面的优化。
二、ZnO纳米材料的水热法制备1. 材料与设备本实验所需材料包括:锌盐、氢氧化钠、去离子水等。
设备包括:水热反应釜、离心机、烘箱、扫描电子显微镜(SEM)等。
2. 制备方法采用水热法,将锌盐与氢氧化钠溶液混合,调节pH值后,转移至水热反应釜中,在一定温度和压力下进行反应。
反应完成后,离心分离、洗涤、干燥,得到ZnO纳米材料。
3. 制备工艺优化通过调整反应温度、反应时间、pH值等参数,优化ZnO纳米材料的制备工艺。
采用SEM等手段对制备的ZnO纳米材料进行表征,分析其形貌、粒径等特性。
三、丙酮气敏性能研究1. 丙酮气敏性能测试方法采用气敏传感器测试系统,对制备的ZnO纳米材料进行丙酮气敏性能测试。
通过改变丙酮气体浓度,测量传感器的电阻变化,评估其气敏性能。
2. 丙酮气敏性能优化措施通过调整ZnO纳米材料的形貌、粒径、比表面积等特性,优化其丙酮气敏性能。
同时,研究不同掺杂元素对ZnO纳米材料丙酮气敏性能的影响。
四、实验结果与讨论1. 制备结果通过水热法成功制备出ZnO纳米材料,其形貌规整,粒径均匀。
通过优化制备工艺,得到具有较好性能的ZnO纳米材料。
2. 丙酮气敏性能分析实验结果表明,优化后的ZnO纳米材料具有较好的丙酮气敏性能。
在较低浓度下,传感器电阻变化明显,表现出较高的灵敏度。
同时,响应和恢复时间较短,具有较好的响应速度。
3. 掺杂元素影响分析实验发现,掺杂适量金属元素可以进一步提高ZnO纳米材料的丙酮气敏性能。
不同掺杂元素对气敏性能的影响程度不同,需进一步研究其作用机制。
五、结论本文采用水热法制备了ZnO纳米材料,并对其丙酮气敏性能进行了优化研究。
ZnO纳米材料的合成与应用研究概述:ZnO纳米材料作为一种具有广泛应用前景的半导体材料,其合成与应用研究一直备受关注。
本文旨在探讨ZnO纳米材料的合成方法以及其在各个领域的应用,从而深入了解其在科学研究和工业应用中的潜力。
一、ZnO纳米材料的合成方法1. 水热法合成水热法是一种常用的制备ZnO纳米材料的方法。
它通过调节反应条件和反应时间,可以获得具有不同形貌和尺寸的ZnO纳米颗粒。
水热法合成ZnO纳米材料具有简单、低成本、可扩展性强等优点,因此受到了广泛关注。
2. 溶胶-凝胶法合成溶胶-凝胶法是一种通过溶胶中的化学反应和胶体形成过程制备纳米材料的方法。
在ZnO纳米材料的合成中,可以通过溶胶-凝胶法控制反应条件,如温度、浓度和PH值等,以实现获得具有不同形貌和尺寸的纳米颗粒。
3. 气相法合成气相法是制备ZnO纳米材料的一种常用方法。
它通过将金属有机化合物或金属化合物加热到高温,然后通过氧化反应生成ZnO纳米颗粒。
气相法合成的ZnO纳米材料具有高纯度、高晶度和尺寸可控性好等特点。
二、ZnO纳米材料在光电子领域的应用1. 光催化应用ZnO纳米材料具有优异的光催化性能,可以利用其吸收紫外光的特性来分解有害有机物和杀灭细菌。
因此,ZnO纳米材料被广泛应用于光催化净化空气、水处理和消毒等领域。
2. 光电器件应用由于ZnO纳米材料的特殊电学性质和优异的光电性能,它在光电器件领域具有广泛应用潜力。
例如,ZnO纳米材料可以用于制备光电传感器、光电调制器、太阳能电池等。
三、ZnO纳米材料在生物医学领域的应用1. 抗菌材料ZnO纳米材料具有较高的抗菌性能,可以通过抑制细菌的生长来达到消毒和杀菌的目的。
因此,在生物医学领域,ZnO纳米材料被广泛应用于医疗设备、外科用品和医疗纺织品等。
2. 肿瘤治疗由于ZnO纳米材料的优异光学性质,在肿瘤治疗中可以利用其光热效应。
将ZnO纳米材料注入肿瘤组织,并利用红外激光的吸收来使其产生局部高温,从而实现对肿瘤的治疗。
水浴法制备掺杂氧化锌纳米材料的研究【摘要】本文概述了ZnO金属元素和非金属元素的掺杂,制备出薄膜、粉末或者纳米棒,分别从XRD、吸收光谱和光致发光等方面进行了表征。
【关键词】ZnO掺杂;溶胶-凝胶;水热法1.引言氧化锌(ZnO)是一种新型的宽禁带半导体材料,具有六角纤维锌矿结构。
由于是直接带隙,电子跃迁率大,适合作为光电发射器件;也可以用在紫外激光、光致发光和太阳能电池等领域。
而掺杂的氧化锌材料具有新的光电特性,掺杂的种类很多,本文介绍金属掺杂和非金属元素掺杂。
2.金属元素的掺杂采用溶胶-凝胶法在玻璃基底上制备了ZnO:Li薄膜[1]。
以乙酸锌、无水乙醇、乙醇胺、和氯化锂为前驱体,制备掺杂元素的胶体,用匀胶机旋涂在抛光并且清洗干净的石英玻璃衬底上,得到不同厚度的薄膜。
采用XRD表征,薄膜厚度越厚,薄膜的(002)晶面择优生长越强,归因于晶粒生长受衬底晶格失配和晶格缺陷的影响较小。
分光光度计测量的吸收谱表明,薄膜越厚,平均透射率下降,紫外光区的吸收边往长波方向移动;这是因为,薄膜越厚,晶粒粒径越大,越容易产生光学散射和带隙变窄。
荧光光谱表明,薄膜层数越多,发光峰强度呈现增强的趋势,普遍认为禁带宽度的变小有利于带间跃迁和激子复合。
另外薄膜在六层时,方阻最小。
改变退火温度,对ZnO:Li薄膜特性进行了深入的研究[2],退火温度在4500C ~5500C时,制备的薄膜择优生长性强,光学透过率在90%以上,电阻率较小。
随退火温度的提高,减少了内部缺陷,加强了晶粒C轴的择优生长,提高了结晶质量;而光线受不同晶向的散射变弱,透过率得到提高。
采用水热法结合溶胶.凝胶法在SiO2:基片上制备了不同AI含量掺杂的ZnO 纳米棒阵列[3].通过x射线衍射仪(XRD),电子扫描显微镜(SEM),透射光谱和光致发光光谱仪(PL)等测量手段,分析了薄膜样品的微结构、表面形貌、透射及光致发光特性。
结果表明,制备出的薄膜具有良好的结晶质量和明显的沿(002)方向择优取向生长。
水热法制备纳米氧化铟的方法
水热法是一种常用的制备纳米材料的方法之一。
其基本原理是在
高温高压下将适当比例的前驱体溶液置于反应锅中,通过调节反应条
件(如反应温度、时间和压力等),在溶液中形成一定阶次的胶体粒子,最终在减压冷却的过程中,制备出所需的纳米材料。
在制备纳米氧化铟过程中,水热法也被广泛应用。
其主要步骤为:首先制备氧化铟的前驱体,如氧化铟乙醇溶胶液;然后将前驱体溶液
置于反应锅中,控制反应温度、时间和压力等条件,使其形成一定阶
次的氧化铟胶体粒子;最后将反应产物经过离心、洗涤和干燥等步骤,即制备出纳米氧化铟。
水热法制备纳米氧化铟的优点在于制备简单、成本低廉、对环境
友好,同时还可以控制纳米材料的形貌和粒径等特性,使其具有更好
的应用性能。
因此,这种方法在纳米材料的制备和应用中具有广泛应
用前景。
水热法制备锥状ZnO纳米线阵列及其光电性研究水热法制备锥状ZnO纳米线阵列及其光电性研究摘要ZnO是一种在光电领域中具有重要地位的半导体材料。
采用聚乙二醇(PEG(2000))辅助的水热合成法制备出了粒径较为均匀的锥状氧化锌纳团线阵列, 并用SEM、XRD对其进行了表征。
实验结果表明,表面活性剂(PEG22000)和氨水的加入量对ZnO纳米线阵列的形貌有直接的影响;分析出了不同体系中的化学反应过程及生长行为,研究了衬底状态、生长溶液浓度、生长时间、pH值等工艺参数对薄膜生长的影响,并对薄膜柱晶等特殊形貌晶体的生长机理进行了探讨。
研究表明:薄膜的晶粒成核方式主要为异质成核,柱晶的生长方式为层-层生长。
生长的ZnO柱晶的尺寸和尺寸分布与晶种层ZnO晶粒有着相同的变化趋势。
随着生长液浓度的增加,ZnO棒晶的平均直径明显增大。
生长体系长时间放置,会导致二次生长,形成板状晶粒。
NH3·H2O生长系统,可以调节pH值来控制薄膜的生长。
对于碱性溶液体系,ZnO合适的生长温度为70~90℃,通过调节温度,可以改变纳米棒的生长速率。
关键词:ZnO薄膜,低温,水热法,薄膜生长HYDROTHERMAL SYNTHESIS OF ZnO NANOWIRE ARRAYSCONE AND OPTOELECTRONICRESEARCHABSTRACTZnO is an important area in the status of photovoltaic semiconductor material.Polyethylene glycol (PEG (2000)) assisted hydrothermal synthesis were prepared by a more uniform particle size of zinc oxide nano cone line array group and use SEM, XRD characterization was carried out. The results show that surfactant (PEG22000) and ammonia addition on the morphology of ZnO nanowire arrays have a direct impact; analyze the different systems of chemical reactions and growth behavior of the state of the substrate, growth concentration, growth time, pH, and other process parameters on film growth, and morphology of thin film transistors and other special column crystal growth mechanism was discussed. The results show that: the film grain nucleation is mainly heterogeneous nucleation, crystal growth patterns column for the layer - layer growth. The growth of ZnO crystal size and column size distribution of ZnO grain and seed layer have the same trend. With the increase in the growth of concentration, ZnO rods significantly increased the average diameter of crystal.Growth system extended period of time will lead to secondary growth, the formation of tabular grains. NH3 • H2O growth system, you can adjust the pH value to control the film growth. The alkaline solution system, ZnO is a suitable growth temperature 70 ~ 90 ℃, by adjusting the temperature, can change the growth rate of nanorods.Key words:ZnO films, low temperature, hydrothermal method, thin film growth目录中文摘要 (i)Abstract (ii)第一章绪论............................................................................... (1)1.1..纳米科技 (1)1.1.1纳米材料的结构单元 (1)1.1.2纳米材料的特性 (2)1.2纳米ZnO材料的特性 (4)1.2.1 ZnO的晶体结构 (4)1.2.2 ZnO的光电性能 (5)1.2.3 ZnO的紫外受激发射 (6)1.3 ZnO纳米材料的应用 (7)1.3.1表面声波(SAW)1.3.2半导体紫外激光器 (11)1.3.3太阳能电池 (11)1.3.4 表面型气敏器件 (12)1.3.5缓冲层和衬底 (13)第二章溶胶一凝胶成膜原理及实验方法..................……2.1引言..................··········……2.2溶胶一凝胶技术的特点 (17)2.3煅烧和烧结2.4溶胶一凝胶法制备薄膜的常用方法 (20)旋涂法.......................……浸涂提拉法...................……2.5影响因素 (21)2.5.1水解度 (21)2.5.2溶胶浓度..................................,. (21)2.5.3温度 (22)2.5.4催化剂 (22)2.6试剂及仪器设备 (22)2.6.1试剂的选用 (22)2.6.2实验器材 (23)2.7薄膜的制备过程 (23)2.7.1基片的清洗 (23)2.7.2旋涂法镀膜 (25)2.7.3干燥和热处理 (25)2.8几种主要的分析方法简介 (26)2.8.IX射线衍射分析 (26)2.8.2荧光分光光度法 (26)2.8.3紫外一可见分光光度法 (26)2.8.4原子力显微分析 (27)2.8.5扫描电子显微分析 (27)第一章绪论1.1纳米科技“纳米”是一个尺度的度量,最早把这个术语用到技术上的是日本在1974年底,但是以“纳米”来命名的材料是在20世纪80年代,它作为一种材料的定义把纳米颗粒限制到1-100 nm范围。
《ZnO纳米材料的水热法制备及丙酮气敏性能优化研究》篇一一、引言随着纳米科技的飞速发展,氧化锌(ZnO)纳米材料因其独特的物理和化学性质,在光电子器件、传感器、催化剂等领域展现出广泛的应用前景。
ZnO纳米材料的气敏性能对于气体检测、环境监测和安全防护等领域具有极高的应用价值。
本文将详细介绍ZnO纳米材料的水热法制备工艺及其在丙酮气敏性能的优化研究。
二、ZnO纳米材料的水热法制备1. 材料与试剂制备ZnO纳米材料所需的主要材料和试剂包括:锌盐(如硝酸锌)、碱(如氢氧化钠)、去离子水以及表面活性剂等。
2. 制备方法水热法是一种制备ZnO纳米材料的常用方法。
具体步骤如下:(1)将一定浓度的锌盐溶液与碱溶液混合,调节pH值;(2)加入表面活性剂,以控制ZnO纳米颗粒的形貌和尺寸;(3)将混合液转移至反应釜中,加热并保持一定时间;(4)反应结束后,冷却、离心、洗涤,得到ZnO纳米材料。
3. 制备工艺优化通过调整反应物的浓度、pH值、反应温度和时间等参数,可以优化ZnO纳米材料的制备工艺,提高其产率和质量。
三、丙酮气敏性能优化研究1. 丙酮气敏性能测试采用气敏传感器对制备的ZnO纳米材料进行丙酮气敏性能测试。
通过测量传感器在不同浓度丙酮气体下的电阻变化,评估其气敏性能。
2. 性能优化措施(1)材料改性:通过掺杂其他元素或采用复合材料的方法,提高ZnO纳米材料的气敏性能。
(2)表面修饰:利用表面活性剂或生物分子对ZnO纳米材料进行表面修饰,提高其与丙酮气体的相互作用,从而提高气敏性能。
(3)结构优化:通过调整ZnO纳米材料的形貌、尺寸和结晶度等,优化其气敏性能。
3. 优化效果分析通过对比优化前后的气敏性能测试结果,分析优化措施对ZnO纳米材料气敏性能的影响。
结果表明,经过优化后的ZnO纳米材料在丙酮气体检测方面表现出更高的灵敏度、更低的工作温度和更好的选择性。
四、结论本文研究了ZnO纳米材料的水热法制备工艺及其在丙酮气敏性能的优化研究。
ZnO纳米棒阵列的水热法制备及其光学性质*宋玉哲1,陈昊2,刘国汉1,韩根亮1,徐进章2,李工农1(1.甘肃省科学院传感技术研究所,甘肃兰州730000;2.兰州大学核科学与技术学院,甘肃兰州730000摘要: 在四甲基氢氧化铵的水溶液中,锌片基底上成功生长了ZnO纳米棒阵列,利用扫描电镜、X射线衍射和荧光仪检测了产品的形貌、结构和光致发光性能。
结果发现,通过改变四甲基氢氧化铵的浓度,可以实现对纳米棒阵列取向和直径的控制;产物出现了分别位于380nm的紫外发光峰和525nm的绿色发光峰,并认为O空位Zn填隙缔合缺陷也参与了绿色发光的形成。
最后,简单讨论了纳米棒阵列的生长机理。
关键词: 氧化锌;纳米阵列;发光;生长机理中图分类号: O614.2文献标识码:A 文章编号:1001 9731(2009增刊 0791 041 引言ZnO作为宽禁带半导体材料,具有很高的激子束缚能(60meV,易实现室温下高效率的受激发射,与其它几种发光材料如ZnSe、ZnS、GaN等相比,ZnO具有更大的优势。
而ZnO一维材料的阵列能够加快光生电子空穴的分离,使电子具有良好的运输性,所以纳米棒、纳米线阵列的制备备受关注。
制备ZnO一维材料阵列的方法主要有气相沉积法、溅射法或外延法等,这些技术需要昂贵的仪器、苛刻的实验条件,而溶液法则具有设备简单、条件温和等优点。
近年来,溶液法制备ZnO一维阵列取得了较好的成果。
Vay ssieres[1]等人利用玻璃片为基底,在锌盐和六亚甲基四胺的溶液中水热反应得到了纳米棒阵列。
随即,出现在各种基底上预先涂敷ZnO晶种层,在锌盐溶液中水热反应制备ZnO纳米阵列[2~4]的热潮。
近来,杨合情研究组[5]避免了晶种涂敷过程,利用锌片和氨水反应,通过改变反应时间可以控制纳米棒的直径。
在此基础上,我们利用锌片和四甲基氢氧化铵溶液反应,也制备了纳米棒阵列,改变四甲基氢氧化铵溶液的浓度,获得了形貌不同的纳米棒阵列,检测了产物的发光性质,并讨论了其生长机理。
Li掺杂ZnO(AZO)纳米阵列的水热合成摘要:准一维纳米材料,包括纳米线、纳米棒、纳米针、纳米管、纳米带、纳米同轴电缆和异质结等是当前纳米材料科学领域的前沿和热点。
有序的纳米阵列结构能够合理控制材料的定向生长,进而实现对其尺寸、维度、组成、晶体结构乃至物性的调控,从而有利于在纳米器件中的应用。
ZnO纳米线与碳纳米管,硅纳米线被认为是21世纪主要的纳米材料,在光学,光电子学,能源,传感器,关键词: Li掺杂 ZnO 纳米阵列水热合成1.1引言纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1~100nm)或由它们作为基本单元构成的材料。
由于纳米材料尺寸小,可与电子的德布罗意波长、超导相干波长及激子玻尔半径相比拟,电子被局限在一个体积十分微小的纳米空间,电子输运受到限制,颗粒、原子团簇。
由于这些材料一般具有量子效应,因此二维、一维和零维的纳米材料又被称为量子阱、量子线和量子点。
近十多年来,以碳纳米管为代表的准一维纳米新材料因其特殊的一维纳米结构(纳米管、纳米线、纳米同轴电缆、纳米带等),呈现出一系列优异的力、光、电、声、磁、热、储氢、吸波等性质,在未来纳米器件领域中具有广阔的应用前景,成为纳米材料家族中一类引入瞩目的群体。
然而,和量子阱、量子点的研究相比,准一维纳米材料的研究进展相对较慢,其原因在于准一维纳米材料尤其是结构可控的准一维纳米材料的制备比较困难。
尽管一维纳米结构可以利用纳米光刻技术(电子束光刻、结构、组分、形态、大小以及位置等进行人为的控制,从而直接生长出所需的准一维纳米材料和纳米结构。
因此,物理、化学合成将成为制备准一维纳米材料的一种十分重要的新途径。
对一维纳米材料可控生长技术、表征技术和应用技术的深入研究将会促进纳米科学和技术的发展,有助于发现新的效应,发展新的器件。
ZnO属于带隙较宽( 室温下3.37eV) 的半导体材料, 由于本征缺陷的存在, 使得ZnO往往具有的N 型导电性。
与其它传统半导体材料如Si、GaAS、CdS、GaN等相比,ZnO具有高的激子束缚能( 高达60meV,远大于GaN 的21~25meV) 、高的击穿强度和饱和电子迁移速率,可用作高温、高能、高速电子器件。
另外,ZnO还具有热电效应和化学传感特性[1],在传感器领域有重要的应用[2] 。
纳米目前来说,制备ZnO纳米结构的工艺方法很多,如物理气相沉积法、化学气相沉积法、溶胶2凝胶法、分子束外延法、热蒸发法、阳极氧化铝模板法、水热法等等。
这些方法制备的ZnO纳米材料具有非常丰富的结构形貌,如ZnO纳米线、纳米带、纳米环、纳米梳,四脚状纳米ZnO结构等等。
相对而言,化学溶液方法比较简单。
1.2 纳米材料的基本性质纳米材料之所以引起这么大的关注,不仅仅是在尺寸上的缩小,更重要的是尺寸缩小所带来的独特的性质,主要有:1.2.1量子尺寸效应当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽的现象均称为量子尺寸效应。
能带论最基本的结果之一是周期性势场中运动的电子的能级形成能带。
根据Kubo理论,能级间距和粒子直径有如下关系:δ=4E F/3N ∝ 1/ d3 (1-1)其中E F=h2(3π2n)2/3/2m (1-2)式中δ为能级间距,E为费米能级,N为总导电电子数,v为微粒体积,d为微F粒直径,m为电子质量,n为电子密度,h为普朗克常数。
对于体材料来说,可以认为包含无数个原子,即导电电子数N一∞,由式1.1可得能级间距δ一O,即对于体材料来讲能级呈连续变化;对于纳米颗粒来讲,由于它往往只包含几个至上百个原子,因此N为有限值,6就不等于零,由此会导致能级发生分裂。
当能级间距大于热能、光子能量或超导态的凝聚能时,就必须要考虑量子尺寸效应,这会导致纳米微粒的磁、光、声、热、电以及超导电性与宏观特性有着明显的不同。
1.2.2表面效应纳米材料的表面效应是指纳米粒子的比表面积随粒径的变小而急剧增大,使其表的百分数见表1-1。
直径/nm 1 2 5 10 20 100 原子总数30 2.5×1033×1033×104 2.5×105106表面原子所占比例/% 99 80 40 20 10 2 由表1.I可见,对直径大于100 am的颗粒表面效应可忽略不计,当尺寸小于100nm时,其表面原子百分数急剧增长,甚至lg超微颗粒表面积的总和可高达100 m2,构型的变化,同时也引起表面电子自旋构像和电子能谱的变化。
1.2.3小尺寸效应纳米材料中的微粒尺寸小到与光波波长或德布罗意波波长、超导态的相干长度等物理特征相当或更小时,晶体周期性的边界条件被破坏,非晶态纳米微粒的颗粒表面层附近原子密度减小,使得材料的声,光、电、磁、热、力学等热性出现改变而导致新特性出现的现象,被称为纳米材料的小尺寸效应。
例如,纳米材料的光吸收明显加大,并产生吸收峰的等离子共振频移;非导电材料的导电性出现;磁有序态向磁无序态转化,超导相向正常相的转变;金属熔点的明显降低等。
1.2.4宏观量子隧道效应微观粒子具有贯穿势垒的能力称为隧道效应。
近年来,人们发现一些宏观物理量,如微颗粒的磁化强度、量子相干器件中的磁通量等也显示出隧道效应,通常称之为器件,器件便无法工作。
经典电路的物理极限尺寸大约为0.259in。
目前研制的量子共振隧穿晶体管就是利用量子效应而制成的新一代器件。
1.2.5库仑阻塞和量子隧穿对于低维的纳米材料,如直径为几十纳米的半导体颗粒,其电流随电压的变化不再是线性的,而是在I.V曲线中出现锯齿状的台阶。
也就是说,体系的充放电过程不的单个电子穿过势垒到达另一个量子点的行为称为量子隧穿。
此时在一个量子点上所加的电压V>e/C。
利用库仑阻塞和量子隧穿效应可以设计下一代的纳米器件,如单电子晶体管和量子开关等。
1.2.6介电限域效应介电限域是纳米微粒分散在异质介质中由于界面引起的体系介电增强的现象,这种介电增强通常称为介电限局,主要来源于微粒表面和内部局域强的增强。
当介质的折射率比微粒表面和内部的场强比入射场强明显增加,这种局域强的增强称为介电限域。
一般来说,过度金属氧化物和半导体微粒都可能产生介电限域效应。
纳米微粒的介电限域对光吸收、光化学、光学线性等会有重要影响。
纳米微粒与异质介质的介电常数相差越大,介电限域效应就越明显,在光学性质上就表现出明显的红移现象。
1.3.1准一维纳米阵列的水热合成:在制备一维纳米材料时,不应该仅仅着眼于制备体系或者制备方法的丰富,更应该考虑对生长机理的认识和理解。
总的来说,准一维纳米材料的制备可以分为) 溶解于水, 从而加快反应的进行。
近年来, 由于其相对于其它方法具有能耗低、适用性广、可控性强、产率高、物相均匀、纯度高、结晶良好以及环境污染小等优点, 引起了人们越来越广泛的关注。
在本文中, 我们采用ZnCl2溶液和浓氨水( 25%) ,利用一种简单的水热法合成了ZnO纳米棒和纳米管。
对得到的样品的形貌和结构用扫描电子显微镜( SEM)和X 射线衍射仪(XRD)表征,并测试了ZnO纳米管的光致发光特性。
根据实验结果对ZnO 纳米棒和纳米管的形成过程和机理进行了有效的分析。
1.4氧化物纳米阵列:1.4.1氧化物纳米阵列结构氧化物半导体在制备的过程中不会对环境遗戚污染,是一种典型的绿色半导体,一般具有离子键强、熔点较高、无色透明和较大的禁带宽度(Eg)3eV)等特点,而且纳米线阵列,长度达到51am(如图1.3所示)。
并且.基于Ti02纳米线阵列的染料敏化太阳能电池在棚l 5的标准光照下,转化效率达到5 02%。
图1—3基于导电玻璃的Ti02纳米线阵列的SEM图片Fig 1·3 SEM pictures ofTi02 nanowire arrays based oⅡFTO glass 1.4.2纳米有序阵列结构的性质高度取向的纳米阵列是以纳米颗粒、纳米线、纳米管和纳米带为基本单元,果用物理和化学等方法在二维或三维空间构筑的纳米体系,其量子效应突出,性板,其中充填可聚合的甲基丙烯酸甲酯(MMA)单体,光引发聚合后再用氢氟酸刻蚀掉Si02模板,制备了PMMA三维有序多孔材料,其晶面间距和颜色因材料拉伸而变化,可用作拉敏传感器。
Cassagneau等报道了表面抗体修饰的聚噻吩三维有序多孔材料的颜色和在生物传感器中的应用。
Zhou等人的研究表明,组装于氧化铝模板中的In203纳米线阵列具有不同于In203薄膜和颗粒的荧光特性。
(2)电学性质通过模板法制备的一维聚合物纳米材料,由于模板的限制作用,聚合物分子链排列更有序,从而具有独特的性能。
如模板法合成的导电高分子纳米丝,其外层分子链呈有序排列.导致其电导率比块状试样高几个数量级,可用于制备纳米电路的导线等。
一维聚合物纳米材料比表面积极大,其电学输运性能随环境和吸附物质而改变,可用作高灵敏度传感器。
导电聚合物纳米管阵列可用于生物反应器或生物传感器的生物酶微胶囊,具体的方法是在模板中合成聚合物纳米管,将高浓度的生物酶充填到纳米管中并封管,形成可用于水相或有机相的酶生物反应器。
这路径,从而也有利于减少电荷的复合。
图1--6 ZnO有序纳米阵列在有机/无机体异质结光伏器件中应用的示意图Fig 1-6 schematic of application of ZnO aligaed nanoarray structure in inorganic/organic bulk heterojunction photovoltaic cell.(4)磁学性质具有纳米结构的磁记录材料一直是人们感兴趣的一个研究热点,理想的磁记录材料要求纳米粒子的粒径均一,磁性存储密度高。
磁性存储的密度主要是由存储每比特所需面积决定的。
提高存储密度的有效方法之一就是采用垂直于膜面的纳米线阵列来存储。
早在1993年Whitney等就研究了Ni和Co纳米线阵列的磁性质。
Albrecht等通过改进Co纳米线阵列的密度和直径,在磁场平行于纳米线的生长方向上,得到了矫顽(磁)力场Hc在温度5K时为3000Oe,在温度300K时为800Oe,大大高于用Co纳米粒子形成膜的Hc(10Oe,5K)。
对铁磁性纳米线阵列×1011 bit/in2,大小为100nm X 100nm,磁存储密度比传统磁盘提高了l04倍。
(5)催化性质以氧化铝为模板,向其纳米微孔中电沉积Ni、Au等金属微粒,可制备出高性能的金属纳米线电极。
孙景临等制备出了镍纳米线电极,并测定其对乙醇电催化氧化的动力学参数。
循环伏安法试验结果显示,镍纳米电极对乙醇的氧化峰电流密度较镍块体材料高出一个数量级,对乙醇的电化学催化氧化具有很高的催化活性。