当前位置:文档之家› 直管气流干燥器化工原理课程设计.docx

直管气流干燥器化工原理课程设计.docx

直管气流干燥器化工原理课程设计.docx
直管气流干燥器化工原理课程设计.docx

化工原理课程设计说明书——直管气流干燥器

四川大学轻纺与食品学院

(一)诸论

(二)题目及数据

(三)流程图

(四)流程与方案选择说明与论证

(五)干燥器主要部件和尺寸的计算

1.基本物料衡算

2.干燥管主要参数的计算

3.加速段管长的计算

4.恒速段管长的计算

(六)主要附属设备的选型和计算

1.加料器的选型和计算

2.空气加热器的选型和计算

3.旋风分离器的选型和计算

4.风机的选型和计算

(七)设计评价;

(八)设计结果概览

(九)参考文献

(一)化工原理课程设计的目的和要求

课程设计是《化工原理》课程的一个总结性教学环节,是培养学生综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练。在整个教学计划中,它也起着培养学生独立工作能力的重要作用。

课程设计不同于平时的作业,在设计中需要学生自己做出决策,即自己确定方案,选择流程,查取资料,进行过程和设备计算,并要对自己的选择做出论证和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。所以,课程设计是培养学生独立工作能力的有益实践。

通过课程设计,学生应该注重以下几个能力的训练和培养:

1. 查阅资料,选用公式和搜集数据(包括从已发表的文献中和从生产现场中搜集)的能力;

2. 树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作时的劳动条件和环境保护的正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力;

3. 迅速准确的进行工程计算的能力;

4.用简洁的文字,清晰的图表来表达自己设计思想的能力

(二)聚氯乙烯简介

分子式为-[CH2CHCl]-n,简称PVC, PVC为无定形结构的白色粉末,支化度较小。工业生产的PVC分子量一般在5万~12万范围内,具有较大的多分散性,分子量随聚合温度的降低而增加;无固定熔点,80~85℃开始软化,130℃变为粘弹态,160~180℃开始转变为粘流态;有较好的机械性能,抗张强度60MPa左右,冲击强度5~10kJ/m2;有优异的介电性能。但对光和热的稳定性差,在100℃以上或经长时间阳光曝晒,就会分解而产生氯化氢,并进一步自动催化分解,引起变色,物理机械性能也迅速下降,在实际应用中必须加入稳定剂以提高对热和光的稳定性。PVC很坚硬,溶解性也很差,只能溶于环己酮、二氯乙烷和四氢呋喃等少数溶剂中,对有机和无机酸、碱、盐均稳定,化学稳定性随使用温度的升高而降低。PVC溶解在丙酮-二硫化碳或丙酮-苯混合溶剂中,用于干法纺丝或湿法纺丝而成纤维,称氯纶,具有难燃、耐酸碱、抗微生物、耐磨的特性并具有较好的保暖性和弹性。

(三)干燥器介绍

实现物料干燥的设备称为干燥器,工业上被干燥的物料千差万别。在物料性状上,有板状、块状、纤维状、粒状、粉状、液状等等。由于物料的多样性,为满足各种物料的干燥要求,干燥器的形式也是多种多样的,每种干燥器都有一定的适应性和局限性。

1.)气流干燥器

在此干燥器中,粉粒状湿物料受高速热气流的冲击呈分散和悬浮状态,在热气流的输送过程进行干燥。

特点:

(1)干燥速度快,体积小

(2)气、固并流操作,不会烧坏物料。

(3)干燥时间短,特别适合热敏性物料

(4)干燥产品的湿含量均匀

(5)结构简单,设备投资少,占地面积小、操作方便,性能稳定,维修量小。

缺点:

(1)只适合干燥非结合水分

(2)颗粒破碎现象严重,粉料排空会造出环境污染

(3)能量消耗较高

2)流化床干燥器

流化床干燥过程是散装物料被置于孔板上,并由其下部输送气体,引起物料颗粒在气体分布板上运动,在气流中呈悬浮状态,产生物料颗粒与气体的混合底层,犹如液体沸腾一样。在流化床干燥器中物料颗粒在此混合底层中与气体充分接触,进行物料与气体之间的热传递与水分传递。

特点:

(1)适合干燥结合水分

(2)热质传递速率高

(3)结构紧凑、便于操作

(4)干燥时间短,处理量大,适应性广。

缺点:

(1)连续操作时颗粒物料的停留时间分布不均匀。

(2)仅适用于散粒状物料的干燥

3喷雾干燥器

喷雾干燥器是用喷雾的方法,使物料成为雾滴分散在热气流中,物料与热空气相互接触,使水分迅速蒸发,达到干燥的目的。

特点:

(1)干燥速度快

(2)干燥时间短

(3)适合热敏性物料的干燥

缺点:

(1)体积传热系数低

(2)体积庞大

(3)热效率低

(4)动力消耗大

因此,在选用干燥器时,应认真考虑以下几个因素:

(1)保证物料的干燥质量要求,干燥均匀,不发生变质。

(2)能量消耗低,热效率高。

(3)干燥速度快,干燥时间短,能做到小设备大生产。

(4)尽量降低生产成本

(5)干燥工艺简单,投资小,操作稳定,控制灵活,劳动条件好,污染环境小。

题目及数据

题目:设计直管气流干燥器,以干燥聚氯乙烯树脂湿物料 已知数据: (1) 湿物料: 颗粒直径:m d p

μ150=;

绝干物料密度:3/1400m kg m =ρ

绝干物料比热:

K kg kJ C S ./256.1=;

含湿量(以湿基计): =1w 20 %

操作温度(℃):201=θ ℃ 652≤θ ℃

操作压力(KPa):101.325 加热蒸汽压力:4 atm(表压) 原料量(kg/h): =1G 1120 (2) 干燥介质:湿空气

800=φ

%,

200=t ℃, 1401=t

(3) 干物料(产品)含水量:=2w 5 % 临界湿含量03.0=C X

平衡湿含量0=?

X

流程图

流程与方案选择说明与论证

1)干燥器的选型

在选择干燥器时,首先应根据湿物料的形态、特性、处理量以及工艺要求进行选择。然后再结合能源、载热体种类的限制以及安装设备的场地等问题选出可用的干燥器,并通过对所选干燥器的基建费和操作费进行经济核算,必须要保证产品的质量产量,速率快,操作控制方便,劳动条件好,并且能耗低,成本少。

气流干燥器是工业中常用的一种,它能够干燥粉粒状、泥状、块状湿物料,具有结构简单,造价低,易于制造和维修,操作稳定且便于控制,一般热效率也比较高的特点。

且以上的合成纤维结晶,矿石,合成橡胶等,适气流干燥比较适合于干燥粒径100m

合干燥热敏性物料,而聚氯乙烯具有热稳定性差,软化点为80℃,而其含湿量可以达到较高而不潮解,故干燥聚氯乙烯选用气流干燥器是合理的。

2)工艺流程

在设计中采用湿物料直接加入干燥管中,由于蒸汽流的冲击作用而将物料分散,从而使物料得以干燥,干燥后的物料大部分由旋风分离器收集,剩余部分由袋滤器捕集。由于气流干燥器的干燥时间较短,若湿物料水分未干燥完全的话,可串联流动干燥机,使湿物料干燥充分。

(二)参数确定

1)选择干燥介质

在物料的干燥过程中,采用何种介质是根据物料的性质和生产厂家的具体情况来确定的。通常使用的干燥介质是不饱和热空气,此次设计所采用的是相对湿度为80%的湿空气。2)气体进口温度的选定

提高气体进口温度可增大传热温差,有利于提高热效率和干燥强度,但同时也应该考虑工厂热源情况和物料特性。温度过高的话,干燥管的干燥速率将下降很快,并且操作费用增大,在本次设计计算中取140℃(由任务书确定)。

3)气体出口温度的确定

干燥器的出口气体温度与干燥管的长度及燃料费用有关,若取得较低,则对热能利用是有利的,可以节省燃料费,但干燥管长需要增加,制造成本将增加。通常,出口温度应该比进口气体的绝热饱和温度高20~50℃。

4)湿物料的进口温度的确定

湿物料的进口温度都是根据生产实际情况而定,根据任务书,取20℃.

干燥器主要部件和尺寸的计算

一.基本物料恒算 1. 气化水分量W

25.01X 1

1

1=-=

ωω

0526.012

2

2=-=

ωωX

G c =G 1(1-ω1)=896kg/h=0.2489kg/s

W=G c (X 1-X 2)=0.0491Kg/s 2. H 0、t w 的确定及t 2、θ2的说明

t 0=20℃,其饱和蒸汽压

kpa t P s 3485.2)84

.2333991.115916.18ex p(15200=+-=

H 1 = H 0 =0.622 ψPs0P?ψPs0

=0.0118Kg 水汽/Kg 绝干物料

试差公式:

w 1w w 0()t t r H H =-- w w 2491.27 2.30285r t =-

w w 23991.11exp 18.591615233.84p t ??=- ?+??

w

w w

0.622p H P p =?

-

由试差公式,可得t w =41.35℃

因为X 2 > X c , 所以可认为 θ2=t w =41.35℃≤65℃,且满足产品要求。 t 2应该比进口气体的绝热饱和温度高20~50℃ 3. 绝干空气消耗量Gg 计算

G C (X 1-X 2)=G g (H 2-H 1) 由热量衡算式:

G g C H0(t 1-t 2)=W(r 0+C V t 2-C W θ1)+G C C m2(θ2-θ1) C H0=1.005+1.884×0.0118=1.027KJ/(Kg ? ℃)

C m2=c s +c w X 2=1.256+4.187×0.0526=1.4762KJ/(Kg ? ℃) 取t 2=80℃

算得Gg=2.1658Kg/s t 2的校核

H 2= H 1+W Gg =0.0118+0.0491

2.1658=0.0345 H 2=0.622

p 101.325?p

t d =3991.11

16.58?Inp -233.84=33.8621℃

?t= t 2- t d = 46.14℃ 20℃<46.14<50℃ 所以t 2的选择合理。 4. 干燥管管径D 的确定

V H =(0.002835+0.004557H 1)(t 1+273)=1.1931m 3/kg 绝干气体

取Ug=25m/s D=√GgVH π

4

Ug

=0.3628m=36.28cm

令D=36cm ,则Ug=24.996m/s 二.相关参数计算 1. 沉降速度

8.02

11=--t t t t t

t t =92℃

0.40.60.470.6

1.64 1.60.9571(213.1510)13.87513.87520.1396(1.510)1400

gt gt Jt p m A d ρμρ--??=?=?=??

μg1=3.214×10-7(t 1+273)0.712=2.342×10-5 ρg1=

1+H0V H1

=0.848

4

.1181

.9???

?

??=Jt t A u =0.5982

2.确定加速区Nu 与Rer 间的关系n

r n A Nu Re = 设Re r <400 则0.65

000.76Re Nu r =(加速区始点)

0.5

20.54Re t t Nu r =+(加速区终点)

0Re r =

1

1

1g g g p u d μρ=135.78<400

则0.65

000.76Re Nu r ==18.4994

t

g gt

t p rt u d μρ=

Re =4.0284

0.520.54Re t t Nu r =+=3.0838

==

)

Re /ln(Re )

/ln(00rt r t Nu Nu n 0.5093

n r n Nu A 0

Re =

=1.5167

3.固体颗粒的初速

2

)4

(6D d G A p m c

a π

ρ=

=68.7911

06

.00p a m d A u =

=0.172

4加速区平均

J

A 及q A 的表达式

2988

.20875

.130

6

.16

.00

4.00

0=??=m p g g J d A ρμρ

2

0Jt

J J A A A +=

=20.2192 q A 的计算

m q t A A A ?=λ1

4

.013089.0-=n p c n d G A A =0.0445 6

.04

.0+-=n g

n g

g A μρλλ gm g ρρ=

三.加速区管长的计算 (1)加速第一段(预热段) 1、热衡算

=-=?)(121θθm c i C G q 12.2368W

C GgC q t t H i

i 137.54641

1=?-

=

H Hm

g gm V V u u ==24.8324 001m gm r ri u u u u -==-=24.6604

2.传热计算 ①2

11211ln

)

()(θθθθ-----=

?i i ml t t t t t =107.66℃

②. q A 的计算

3028.211=+=X C C C w s m

t=0.5(t 1+t i )=138.7732℃

4339.183

102657.2)273(10214.3/488.0/1851.1)273)(004557.0002835.0(138.7732

0118

.00311.0)273(1082.284.7241

4

6

.04.05712.073

1

318.042

11==

??=+?====++======+?==+++=

+----n gm

n gm g m gm g gm m m Hm m m s g i s A s

pa t m kg kg m t H V t t H H t t t t μρλμρλθθλρ绝干气体

m q t A A A ?=λ1=20788.4627

③ri u 的试差计算 设

3.11

=-ri

ri u u 则=ri u 18.96954 B u =

0.40.411()2

n n ri ri u u ---+=1.3995 81.94

.111-=--ri J i u A J =1787.2564

4

.11

81.9exp 11????

??

?

????

?????????? ??+?=-u q i

i J ri B A q J A u =18.2981 所以u ri =18.2981 ④校核:

分段较为合理2,5.11

?<>-i

i

i r r t r u u u u 3、流体力学计算 求τ?及L ?

81.94.111-=--ri J i u A J =1787.3008 81.94.1-=ri J i u A J =1173.6193

J m = 2.4 2.4

119.812.4J ri ri

ri ri A u u u u --??--??-??

=1474.3459

m =

11i i

ri ri

J J u u ----=96.4556

???

??+-=-21i u u m Jm b r ri = -597.4463

b

mu b

mu m i r ri ++=

?-1ln

1τ=0.0044 ()ri ri gm u u m u m b L --???

?

??+=?-11τ=0.0157

4、附加计算

①本段末粒子速度u mi =u gm -u ri=6.5343 ②1

1---=

ri ri

ri i u u u r =0.3477

8333.02.1/1≈=i C

第二段 1.预分段

4444.0/11=-=i i R r =??

?=?--i i i

i i C r r q q 1

113.0332 热量衡算

=?-

=--1

1Hi i

i i GgC q t t 128.6498

=-+?=

2

0θw i v i

i C t C r q W 0.0051

=+

=-Gg

W H H i

i i 10.0142 =+=-)(2/11i i mi t t t 131.579 =+=-)(2/11i i mi H H H 0.013

绝干气体kg m t H V mi mi Hmi /1.1646)273)(004557.0002835.0(3=++=

3/0.86981m kg V H Hmi

mi

gmi =+=

ρ

s m u V V u gmi Hmi Hmi

gmi /24.402411

==

-- 1.传热计算

C t t t t t i i i i mi 90.1972ln )

()(2

2

1221=-----=

?--θθθθ

=+++=

--4

11i

i i i s t t t θθ81.12695

)/(0.0309)273(1082.28.04k m w t s g ?=+??=-λ

s pa t mi gmi ??=+??=--5712.07102.308)273(10214.3μ

0445.03089.04

.01==-n p

c n

d G A A

==

+-6

.04.0n g

n g g A μρλλ4231.7756

=?=m q t A A A λ116985.394

4. u ri 的试差计算 设s m u u ri ri /13.9753

.11

==

- =+=---)(2/14

.04

.01n ri

n ri u u u B 1.3546

1173.5981.94

.111=-=--ri J i u A J

=?

???

?

????

??

??????? ??+?=-4

.11

1

81.9exp 1u q i

i J ri B A q J A u 12.264

校核

2,5.11<>-ri

ri t ri u u

u u

,所以分段合理 =-=81.94

.1ri

J i u A J 667.0699

=-???

?

??--=--81.94.214

.24

.21ri ri ri ri J m u u u u A J 913.6451 =--=

--ri

ri i

i u u J J m 1184.1346

=???

??+-=-21ri ri m u u m J b -372.581

=++=

?-b

mu b

mu m ri ri 1ln 1τ0.0068 ()ri ri gm u u m u m b L --???

?

??+=?-11τ=0.0636

附加计算

=-=ri gm mi u u u 12.125

=-=

--1

1ri ri

ri i u u u r 0.4904

0.75521

1=???=

--i

i i i i r r q q C 按上述方法重复计算可得加速段中第3—10的数据

总加速时间?τ= 0.1419s 总加速管长?L= 2.7887m

附加计算(加速段结束)

段末粒子速度umi=ugm-uri=22.2104

绝干物料水汽kg kg H i /0.028= C t i 95.5893=

绝干气体kg m t H V i i Hi /1.0917)273)(004557.0002835.0(3=++=∴

u gi =0

H Hi

g V V u =22.8753 mi gi ri u u u -=真)(=0.6649

()kut

=ri u =1.29>1

四、终速段的计算

由加速段结束时知:1-i t =95.589 1-i H =0.028 1.由本大段的平均状态下的物性求该段的gm u

2t =80℃

C

t t t i m 87.7947)(2/121=+=-

s pa t m g ??=+?=--5712.07102.1272)273(10214.3μ

2H = 0.0345 0.031)(2/121=+=-H H H i m

绝干气体kg m t H V m m Hm /1.074)273)(004557.0002835.0(3=++=

H Hm

g gm V V u u ==22.5007 1. 求i q ?

)(11i i i i t t GgCH q -=?--=35.7007 3. =-----=

?--2

2212221ln

)

()(θθθθt t t t t i i ml 46.0051

4.t gm m u u u -== 21.9025

5. 求α和a

??

?

??=

m m p C u D d G a 246πρ=3.1408 3/9600.01m kg V H Hm

m

gm =+=

ρ

C t t t i i s 5723.644

i

121=+++=

--θθ

)/(0.0297)273(1082.28.04k m w t s g ?=+?=-λ

0495.4)(=-=

g

gm

m gm p e u u d R μρ

5.0Re 54.02+=Nu =3.0867

1591.611==

p

g d Nu λα

6.计算L ?及τ?

3.910742=???

?

???=

?lm i

t D a q L π

α

0.1786=?=

?m

u L

τ 干燥管总长度 6.6994L =?+?=恒速加速L L m 总干燥时间0.3205s =?+?=恒速加速τττ

附属设备选型计算

(1) 加料器的选型和计算 1.加料器的选型

气流干燥器装置所采用的加料器必须保证向干燥器连续均匀的加料。对于聚氯乙烯的干燥,应该选用螺旋加料器。螺旋加料器宜于输送粒状、粉状、及小块状物料,密封性能好,操作安全方便,结构简单制造费用低,但输送过程中物料易破碎,零件磨损大,且不宜输送粘性哒、易结团的物料。

2.加料器的计算 根据题意查表:d k 选取0.37,1k 取值为50

查表求螺旋加料器的倾斜修正系数βk ,选取输送倾斜角度为βk ,15

≤=0.7 t 为螺距,对于粘度小的物体取t=D 由于G=1120kg/h ,ρ=1400kg/3

m

根据式ρβtn D k k G d 2

47=可计算出D=0.0704m

min /4446.1881

r D

k n =≤

2空气加热器的选型及计算 首先求出所需通风净截面积 p

V G S = G 为空气质量流率。单位Kg/s

V p 为空气通过通风净截面的质量流速,单位为2

kg/m s ?,先取s m kg V p ?=2

/8

得到S=0.2707m 2

由7-6 SRL 型空气加热器技术性能表,确定为SRL

重新计算V p 得V p =8.02152

kg/m s ? 由传热系数及阻力计算公式

s m W V K p

?==240

.0/9579.342.15

采用的热介质为水蒸气,假定其工作压力为p=4atm ,其冷凝温度为143.62℃

C t m 62.632

140

2062.143=+-

=? kW t t Gc Q p 314.264)(01=-=

2845.118m t K Q

A m

=?=

串联台数 244.428

845

.118==

N 取整数,得N =5台

安全系数 5×28.0/118.845=1.18 证明所选加热器合适。 空气阻力pa V p p 35.5571.167

.1==?

3旋风分离器

h m LC V Hi G /4.800736003=?=

设进口风速为17m/s ,查表选择CLP/A-8.2X 型旋风分离器

s m u u /61.16V V 2

G =????

???=表设实 pa V V p p G 502.13412

=???

?

????=?表表实 其规格及性能如下:

4风机的选型 选择风机时,应根据被输送气体的性质和风压范围选定风机的类型,然后再按照实际输送的风量和已换算成规定状况下的风压,从风机样本里查阅该类型风机的特性曲线或性能表选用合适的型号。

风量V=6497.4m 3/h

设计评价

1.干燥器的热效率:

%00.500

12

1=--=

t t t t h η

1. 干燥效率

%12.94=+=

M

W W

d Q Q Q η

2. 干燥总效率

%06.47==d h ηηη

由以上计算知,干燥器具有以下特色:

(1)干燥时间极为短暂,几乎在瞬间内(?τ=0.32s )便可以得到粉末状的干产品 (2).粒子显著分散于气流中,全管的体积传热系数很大,可以最大的干燥速率将物料的湿

分量降到最低

(3)物料与热风并流操作,且干燥时间短,故可以采用高温干燥介质,以提高气固的传热温差,同时物料在表面汽化段,操作安全

(4)干燥效率高,散热面积小,设备结构简单,造价低.

(5)气流干燥器,占地面积小,操作方便。

设计结果概览

70 (mm)

化工原理课程设计任务书 zong (修复的)共32页

2012年 06月 工业背景及工艺流程 乙醛是无色、有刺激性气味的液体,密度比水小,沸点20.8℃,易挥

发、易燃烧且能和水、乙醇、乙醚、氯仿等互溶,因其分子中具有羰基,反应能力很强,容易发生氧化,缩合,环化,聚合及许多类型加成反应。乙醛也是一种重要的烃类衍生物在合成工业有机化工产品上也是一种重要的中间体。其本身几乎没有直接的用途,完全取决于市场对它的下游产品的需求及下游产品对生产路线的选择,主要用于醋酸、醋酐、醋酸乙烯等重要的基本有机化工产品,也用于制备丁醇、异丁醇、季戊四醇等产品。这些产品广泛应用于纺织、医药、塑料、化纤、染料、香料和食品等工业。 国内乙醛生产方法有乙烯氧化法、乙醇氧化法和乙炔氧化法三种技术路线。工业上生产乙醛的原料最初采用乙炔,以后又先后发展了乙醇和乙烯路线。乙炔水化法成本高,因其催化剂——汞盐的污染难以处理等致命缺点,现以基本被淘汰。乙醇氧化或脱氢法制乙醛虽有技术成熟,不需要特殊设备,投资省,上马快等优点,但成本高于乙烯直接氧化法。乙烯直接氧化法制乙醛。由于其原料乙烯来源丰富而价廉,加之反应条件温和,选择性好,收率高,工艺流程简单及“三废”处理容易等突出优点,深受世界各国重视,发展非常迅速,现以成为许多国家生产乙醛的主要方法。 精馏方案的确定: 精馏塔流程的确定; 塔型的选择; 操作压力的选定; 进料状态选定; 加热方式等

所选方案必须: (1)满足工艺要求; (2)操作平稳、易于调节; (3)经济合理; (4)生产安全。 包括:流程的确定;塔型的选择;操作压力的选定;进料状态选定;加热方式等 操作压力选择 ●精馏可在常压、加压或减压下进行。 ●沸点低、常压下为气态的物料必须选用加压精馏;热敏性、高沸点 物料常用减压精馏。 进料状态的选择 ●一般将料液预热到泡点或接近泡点后送入塔内。这样可使: ● (1)塔的操作比较容易控制; ● (2)精馏段和提馏段的上升蒸汽量相近,塔径相似,设计制造比 较方便。 加热方式: ●(1)间接蒸汽加热 ●(2)直接蒸汽加热 ●适用场合:待分离物系为某轻组分和水的混合物。 ●优点:可省去再沸器;并可利用压力较低的蒸汽进行加热。操作 费用和设备费用均可降低。

化工原理课程设计水吸收氨填料吸收塔设计正式版分解

《化工原理》课程设计 水吸收氨气过程填料塔的设计学院 专业制药工程 班级 姓名 学号 指导教师 2013 年 1 月 15 日 目录 设计任务书 (4)

参考文献 (15) 对本设计的评述及心得 (15)

附表:附表附表

设计任务书 (一)、设计题目:水吸收氨气过程填料吸收塔的设计 试设计一座填料吸收塔,用于脱除混于空气中的氨气。混合气体的处理量为7500 m3/h,其中含氨气为5%(体积分数),要求塔顶排放气体中含氨低于%(体积分数)。采用清水进行吸收,吸收剂的用量为最小用量的倍。 (二)、操作条件 (1)操作压力常压 (2)操作温度 20℃. (三)填料类型 选用聚丙烯阶梯环填料,填料规格自选。 (四)工作日 每年300天,每天24小时连续进行。 (五)厂址 厂址为衡阳地区 (六)设计内容 1.吸收塔的物料衡算; 2.吸收塔的工艺尺寸计算;

3.填料层压降的计算; 4.液体分布器简要设计 5.吸收塔接管尺寸计算; 6.绘制吸收塔设计条件图; 7.对设计过程的评述和有关问题的讨论。 (七)操作条件 20℃氨气在水中的溶解度系数为H=(m3kPa)。 第一节前言 填料塔的有关介绍 填料塔洗涤吸收净化工艺不单应用在化工领域 ,在低浓度工业废气净化方面也能很好地发挥作用。工程实践表明 ,合理的系统工艺和塔体设计 ,是保证净化效果的前提。本文简述聚丙烯阶梯填料应用于水吸收氨过程的工艺设计以及工程问题。 填料塔是以塔内的填料作为气液两相间接触构件的传质设备,它是化工类企业中最常用的气液传质设备之一。 填料塔的主体结构如下图所示: 图1 填料塔结构图 填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以它特别适用于处理量小、有腐蚀性的物料及要求压降小的场合。液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。因气液两相组成沿塔高连续变化,所

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.6%的氯苯140000t,塔顶馏出液中含氯苯不高于0.1%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于0.9kPa; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

气流干燥器设计说明书(1)

第一章气流干燥的设计原则 (2) 干燥的目的及各种不同干燥方式 (2) 气流干燥过程及适用范围 (2) 气流干燥过程 (2) 气流干燥器适用对象 (3) 对流干燥流程、设备和某些操作条件的确定 (3) 干燥流程的主体设备 (4) 干燥对象氯酸钠的特性 (4) 第二章气流干燥器的设计基础 (5) 颗粒在气流干燥管中的运动 (5) 加速运动与等速运动及其特征 (5) 球形颗粒在气流中的运动速度 (5) 颗粒在气流干燥器中的对流传热系数 (6) 颗粒在气流干燥器中的对流传热速率 (6) 加速运动阶段 (6) 等速运动阶段 (7) 第三章气流干燥器的设计计算 (8) 物料、热量衡算 (8) 设计条件 (8) 干燥器的物料衡算 (9) 干燥器的热量衡算 (9) 气流干燥管直径和高度的计算 (11) 干燥管管径的计算 (11) 干燥管高度计算 (12) 气流干燥管的压降 (14) 气固相与干燥管壁的摩擦损失 (14) 克服位能提高所需压降 (14) 颗粒加速所引起的压降损失 (14) 局部阻力损失 (14) 辅助设备的选型 (15) 风机 (15) 预热器 (15) 及壁厚的核算 (15) 第四章后记 (17) 设计心得体会 (17) 符号说明 (17) 附录 (19) 参考文献 (19)

第一章气流干燥的设计原则 气流装置的设计内容包括干燥介质的选择,流程的确定,搜集和整理有关数据,干燥过程的物料和能量的衡算,干燥管结构类型和主要工艺尺寸的确定,干燥条件的确定以及主要辅助设备类型选型及设计,绘制表明物料流向﹑流量﹑组成﹑主要控制点和各设备之间相互个关系的工艺流程图和干燥装置主要设备总装置图等。 干燥的目的及各种不同干燥方式 干燥的目的主要是便于物料的储藏﹑运输和加工,通过干燥使产品或半成品达到要求的含湿标准。 将湿物料中的湿分(常见的为水分)除去的方法很多,如压榨﹑过滤﹑离心﹑冷冻及利用干燥剂等等。但综合除湿程度﹑操作的可靠性﹑经济性和处理能力,干燥是工业生产中应用最普遍的除湿方法。就干燥而言,根据传递方式的不同可分为传导干燥﹑对流干燥﹑辐射干燥和介电加热干燥。 气流干燥过程及适用范围 1.2.1 气流干燥过程 气流干燥装置是连续常压干燥器的一种。颗粒状或粉末状湿物料通过带式供料器从干燥器底部进入,同时高温干燥介质也从干燥器底部进入,并达到一定的流速将湿物料分散和悬浮于气流中,在物料和热介质气流一并沿干燥管向上流动的同时,发生高效的传质传热,达到快速干燥的目的。 适当的安装风机在系统中的位置,气流干燥器可以在正压下操作,对于有毒或粉尘污染可能较大的情况,采用真空操作,产品不宜泄露,有利于保持生产环境;同时也有利于降低水分汽化温度,保护热敏性物料。但此时风机处于抽气工作状态,所抽的气体温度较高,并可能含有一些颗粒和

化工原理课程设计 吸收塔汇总

《化工原理》课程设计 课题: 设计水吸收半水煤气体混合物中的二氧化碳的填料吸收塔设计者:王涛 学号:1043082002 指导老师:曹丽淑

目录 第一章设计任务????????????????????????????????????????????????????????????????????????????????????????????3 1.1设计题目????????????????????????????????????????????????????????????????????????????????????????????3 1.2设计任务及操作条件???????????????????????????????????????????????????????????????????????????3 1.3设计内容???????????????????????????????????????????????????????????????????????????????????????????????3 第二章设计方案???????????????????????????????????????????????????????????????????????????????????????????4 2.1设计流程的选择及流程图??????????????????????????????????????????????????????????????????????4 第三章填料塔的工艺设计??????????????????????????????????????????????????????????????????????????????4 3.1气液平衡关系????????????????????????????????????????????????????????????????????????????????????????4 3.2吸收剂用量???????????????????????????????????????????????????????????????????????????????????????????5 3.3计算热效应???????????????????????????????????????????????????????????????????????????????????????????5 3.4定塔径??????????????????????????????????????????????????????????????????????????????????????????????????6 3.5喷淋密度的校核?????????????????????????????????????????????????????????????????????????????????????6 3.6体积传质系数的计算??????????????????????????????????????????????????????????????????????????????7 3.7填料层高度的计算??????????????????????????????????????????????????????????????????????????????????8 3.8附属设备的选择???????????????????????????????????????????????????????????????????????????????????9第四章设计结果概要??????????????????????????????????????????????????????????????????????????????????15第五章设计评价 ?????????????????????????????????????????????????????????????????????????????????? 17

气流干燥器设计说明书(1)

第一章气流干燥的设计原则 (2) 1.1干燥的目的及各种不同干燥方式 (2) 1.2 气流干燥过程及适用范围 (2) 1.2.1 气流干燥过程 (2) 1.2.2气流干燥器适用对象 (3) 1.3对流干燥流程、设备和某些操作条件的确定 (3) 1.3.1 干燥流程的主体设备 (4) 1.4干燥对象氯酸钠的特性 (4) 第二章气流干燥器的设计基础 (5) 2.1颗粒在气流干燥管中的运动 (5) 2.1.1加速运动与等速运动及其特征 (5) 2.1.2 球形颗粒在气流中的运动速度 (5) 2.2 颗粒在气流干燥器中的对流传热系数 (6) 2.3 颗粒在气流干燥器中的对流传热速率 (6) 2.3.1加速运动阶段 (6) 2.3.2等速运动阶段 (7) 第三章气流干燥器的设计计算 (8) 3.1物料、热量衡算 (8) 3.1.1设计条件 (8) 3.1.2干燥器的物料衡算 (9) 3.1.3干燥器的热量衡算 (9) 3.2气流干燥管直径和高度的计算 (10) 3.2.1干燥管管径的计算 (10) 3.2.2干燥管高度计算 (11) 3.3气流干燥管的压降 (13) 3.3.1气固相与干燥管壁的摩擦损失 (13) 3.3.2克服位能提高所需压降 (13) 3.3.3颗粒加速所引起的压降损失 (13) 3.3.4局部阻力损失 (13) 3.4辅助设备的选型 (14) 3.4.1风机 (14) 3.4.2预热器 (14) 3.4.3及壁厚的核算 (14) 第四章后记 (15) 4.1设计心得体会 (15) 4.2符号说明 (16) 附录 (16) 参考文献 (16)

第一章气流干燥的设计原则 气流装置的设计内容包括干燥介质的选择,流程的确定,搜集和整理有关数据,干燥过程的物料和能量的衡算,干燥管结构类型和主要工艺尺寸的确定,干燥条件的确定以及主要辅助设备类型选型及设计,绘制表明物料流向﹑流量﹑组成﹑主要控制点和各设备之间相互个关系的工艺流程图和干燥装置主要设备总装置图等。 1.1干燥的目的及各种不同干燥方式 干燥的目的主要是便于物料的储藏﹑运输和加工,通过干燥使产品或半成品达到要求的含湿标准。 将湿物料中的湿分(常见的为水分)除去的方法很多,如压榨﹑过滤﹑离心﹑冷冻及利用干燥剂等等。但综合除湿程度﹑操作的可靠性﹑经济性和处理能力,干燥是工业生产中应用最普遍的除湿方法。就干燥而言,根据传递方式的不同可分为传导干燥﹑对流干燥﹑辐射干燥和介电加热干燥。 1.2 气流干燥过程及适用范围 1.2.1 气流干燥过程 气流干燥装置是连续常压干燥器的一种。颗粒状或粉末状湿物料通过带式供料器从干燥器底部进入,同时高温干燥介质也从干燥器底部进入,并达到一定的流速将湿物料分散和悬浮于气流中,在物料和热介质气流一并沿干燥管向上流动的同时,发生高效的传质传热,达到快速干燥的目的。 适当的安装风机在系统中的位置,气流干燥器可以在正压下操作,对于有毒或粉尘污染可能较大的情况,采用真空操作,产品不宜泄露,有利于保持生产环境;同时也有利于降低水分汽化温度,保护热敏性物料。但此时风机处于抽气工作状态,所抽的气体温度较高,并可能含有一些颗粒和粉

化工原理课程设计简易步骤

《化工原理》课程设计说明书 设计题目 学生姓名 指导老师 学院 专业班级 完成时间

目录 1.设计任务书……………………………………………() 2.设计方案的确定与工艺流程的说明…………………() 3.精馏塔的物料衡算……………………………………() 4.塔板数的确定………………………………………() 5.精馏段操作工艺条件及相关物性数据的计算………() 6.精馏段的汽液负荷计算………………………………() 7.精馏段塔体主要工艺尺寸的计算…………………() 8.精馏段塔板主要工艺尺寸的计算…………………………() 9.精馏段塔高的计算…………………………………() 10.精馏段塔板的流体力学验算…………………………() 11.精馏段塔板的汽液负荷性能图………………………() 12.精馏段计算结果汇总………………………………() 13.设计评述……………………………………………() 14.参考文献………………………………………………() 15.附件……………………………………………………() 附件1:附图1精馏工艺流程图………………………() 附件2:附图2降液管参数图……………………………()附件3:附图3塔板布孔图………………………………()

板式塔设计简易步骤 一、 设计方案的确定及工艺流程的说明 对塔型板型、工艺流程、加料状态、塔顶蒸汽冷凝方式、塔釜加热方式等进行说明,并 绘制工艺流程图。(图可附在后面) 二、 精馏塔物料衡算:见教材P270 计算出F 、D 、W ,单位:kmol/h 三、 塔板数的确定 1. 汽液相平衡数据: 查资料或计算确定相平衡数据,并绘制t-x-y 图。 2. 确定回流比: 先求出最小回流比:P 266。再确定适宜回流比:P 268。 3. 确定理论板数 逐板法或梯级图解法(塔顶采用全凝器)计算理论板层数,并确定加料板位置:P 257-258。(逐板法需先计算相对挥发度) 确定精馏段理论板数N 1、提馏段理论板数N 2 4. 确定实际板数: 估算塔板效率:P 285。(①需知全塔平均温度,可由 t-x-y 图确定塔顶、塔底温度,或通过试差确定塔顶、塔底温度,再取算术平均值。②需知相对挥发度,可由安托因方程求平均温度下的饱和蒸汽压,再按理想溶液计算。) 由塔板效率计算精馏段、提馏段的实际板层数N 1’,N 2’:P 284式6-67。 四、 精馏段操作工艺条件及相关物性数据的计算 1. 操作压力m p :取2 F D m p p p += 2. 精馏段平均温度m t :查t-x-y 图确定塔顶、进料板温度,再取平均值。或由泡点方程试差法确定塔顶、进料板温度。 3. 平均摩尔质量M Vm 、M Lm :由P 8式0-27分别计算塔顶、进料板处的摩尔质量,再分别 取两处的算术平均值。汽相的摩尔分率查t-x-y 图。 4. 平均密度Vm ρ、Lm ρ: Lm ρ:用P 13式1-7分别计算塔顶、进料板处液相密度,再 取算术平均值。m Vm m Vm T R M p ??= ρ 5. 液体表面张力m σ:由B B A A m x x σσσ+=分别计算塔顶mD σ与进料板mF σ,再取 平均值。 6. 液体粘度m μ:与表面张力的计算类似。 五、 精馏段汽液负荷(Vs 、Ls )计算 V=(R+1)D L=RD

清水吸收二氧化硫化工原理课程设计毕业设计(论文)

摘要 在化工生产中,气体吸收过程是利用气体混合物中,各组分在液体中溶解度或化学反应活性的差异,在气液两相接触是发生传质,实现气液混合物的分离。在化学工业中,经常需将气体混合物中的各个组分加以分离,其目的是: ①回收或捕获气体混合物中的有用物质,以制取产品; ②除去工艺气体中的有害成分,使气体净化,以便进一步加工处理;或除去工业放空尾气中的有害物,以免污染大气。根据不同性质上的差异,可以开发出不同的分离方法。吸收操作仅为其中之一,它利用混合物中各组分在液体中溶解度或化学反应活性的差异,在气液两相接触时发生传质,实现气液混合物的分离。 一般说来,完整的吸收过程应包括吸收和解吸两部分。在化工生产过程中,原料气的净化,气体产品的精制,治理有害气体,保护环境等方面都要用到气体吸收过程。填料塔作为主要设备之一,越来越受到青睐。二氧化硫填料吸收塔,以水为溶剂,经济合理,净化度高,污染小。此外,由于水和二氧化硫反应生成硫酸,具有很大的利用。 本次化工原理课程设计,我设计的题目是:炉气处理量为m3 4200炉气吸过程填料吸收塔设计。本次任务为用水吸收二氧化硫常压填料塔。具体设计条件如下: 1、混合物成分:空气和二氧化硫; 2、二氧化硫的含量:0.05(摩尔分率) 3、操作压强;常压操作 4、进塔炉气流量:h 4200 m3 5、二氧化硫气体回收率:95% 吸收过程视为等温吸收过程。

目录 摘要 .................................................................................................................................................. I 第一章 设计方案的确定 (1) 1.1流程方案 (1) 1.2设备方案 (1) 1.3流程布置 (1) 1.4吸收剂的选择 (1) 第二章 填料的选择 (2) 2.1对填料的要求 (2) 2.2填料的种类和特性 (2) 2.3填料尺寸 (3) 2.4填料材质的选择 (3) 第三章 工艺计算 (4) 3.1气液平衡的关系 (4) 3.2吸收剂用量及操作线的确定 (4) 3.2.1吸收剂用量的确定 (4) 3.2.2操作线的确定 (5) 3.3塔径计算 (5) 3.3.1采用Eckert 通用关联图法计算泛点速率f u : (5) 3.3.2操作气速 (7) 3.3.3塔径计算 (7) 3.3.4喷淋密度U 校核 (7) 3.3.5单位高度填料层压降(Z P )的校核 (8) 3.4填料层高度计算 (9) 3.4.1传质系数的计算 (9) 3.4.2填料高度的计算 (12) 第四章 填料塔内件的类型与设计 (13) 4.1 塔内件的类型 (13) 第五章 辅助设备的选型 (16) 5.1管径的选择 (16) 5.2泵的选取: (17) 5.3风机的选型: (17) 第六章 填料塔附属高度计算 (17) 第七章 分布器简要计算 (18) 第八章 关于填料塔设计的选材 (18) 参考文献 (19) 附录 (20) 附图 (21) 致谢 (22)

烘干机计算说明书

烘干机计算说明书 1. 应知参数 ① 原料情况 状态:形状、颗粒大小; 初水份:干基水份=物料重量水份重量 湿基水份=水份 物料水份重量+ 一般情况下初水份是指湿基水份。 ② 烘干系统 气流干燥系统:颗粒较小或水份较小; 回转滚筒干燥系统:颗粒较大或水份较大(30%以上); ③ 成品要求 终水份要求; ④ 进风温度情况 气流干燥:木屑类的进风温度控制在180℃-200℃,以180℃为基准,水份在30%-40% 或以上,温度可以控制在180℃以上; 回转滚筒干燥:水份较高时(30%-40%或以上)温度可控制在200℃以上(木屑类); 低水份类温度可控制在160℃以下; 注意:设计时,气流干燥和回转滚筒干燥系统在干燥木屑类物料时进风温度可控制在200℃, 木塑行业中的木粉不得超过180℃。 ⑤ 出风温度 终水份在10%以上,回转滚筒干燥系统控制在60℃,气流干燥系统控制在80℃; 终水份在5%下,回转滚筒干燥系统控制在70℃,气流干燥系统控制在90℃; 2. 计算 ① 蒸发量计算(单位:kg/h ) 型号按蒸发量选 蒸发量=初水份 终水份)(产量--11*-产量 产量单位:kg/h ② 系统风量 系统风量=出风温度 进风温度蒸发量-3000* 选用鼓风机; ③ 回转滚筒干燥系统 直径=风速 引风机风量*14.3*3600*2 风速为1.5m/s 左右,一般取中间值;按引风机风量计算。 长度=直径*(6-10)倍 气流干燥系统 直径=风速 系统风量*14.3*3600*2 风速为16-20m/s ,一般取中间值; 长度=直径*(60-100)倍 ④ 热源计算(单位:kCa ) 热量=系统风量*0.25*(进风温度-20℃)

化工原理课程设计(水吸收氨填料吸收塔设计)(正式版)分解

《化工原理》课程设计水吸收氨气过程填料塔的设计 学院 专业制药工程 班级 姓名 学号 指导教师 2013 年 1 月 15 日

目录 设计任务书 (4) 第一节前言 (3) 1.1 填料塔的有关介绍 (4) 1.2 塔内填料的有关介绍............................. 错误!未定义书签。第二节填料塔主体设计方案的确定 .. (5) 2.1 装置流程的确定 (5) 2.2 吸收剂的选择 (5) 2.3 填料的类型与选择 (7) 2.4 液相物性数据 (6) 2.5 气相物性数据 (8) 2.6 气液相平衡数据 (7) 2.7 物料横算 (7) 第三节填料塔工艺尺寸的计算 (8) 3.1 塔径的计算 (8) 3.2 填料层高度的计算及分段 (9) 3.2.1 传质单元数的计算 (10) 3.2.2 传质单元高度的计算 (10) 3.2.3 填料层的分段 (11) 第四节填料层压降的计算 (12) 第五节填料塔内件的类型及设计 (13) 第六节填料塔液体分布器的简要设计 (13) 参考文献 (15) 对本设计的评述及心得 (15) 附表: 附表1填料塔设计结果一览表 (15) 附表2 填料塔设计数据一览 (15) 附件一:塔设备流程图 (17)

设计任务书 (一)、设计题目:水吸收氨气过程填料吸收塔的设计 试设计一座填料吸收塔,用于脱除混于空气中的氨气。混合气体的处理量为7500 m3/h,其中含氨气为5%(体积分数),要求塔顶排放气体中含氨低于0.02%(体积分数)。采用清水进行吸收,吸收剂的用量为最小用量的1.5倍。 (二)、操作条件 (1)操作压力常压 (2)操作温度 20℃. (三)填料类型 选用聚丙烯阶梯环填料,填料规格自选。 (四)工作日 每年300天,每天24小时连续进行。 (五)厂址 厂址为衡阳地区 (六)设计内容 1.吸收塔的物料衡算; 2.吸收塔的工艺尺寸计算; 3.填料层压降的计算; 4.液体分布器简要设计 5.吸收塔接管尺寸计算; 6.绘制吸收塔设计条件图; 7.对设计过程的评述和有关问题的讨论。 (七)操作条件 20℃氨气在水中的溶解度系数为H=0.725kmol/(m3?kPa)。

化工原理课程设计任务书

(封面) XXXXXXX学院 化工原理课程设计任务书 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日

目录 1、工艺生产流程线 (4) 2、流程及方案的说明和论证 (4) 3、换热器的设计计算及说明 (5) 4、计算校核 (6) 5、设计结果概要表 (9) 6、设计评价及讨论 (11) 参考文献 (11) 附图:主体设备结构图和花版设计图

化工原理课程设计任务书 一、设计题目:列管式换热器设计。 二、设计任务:将自选物料用河水冷却至生产工艺所要求的温度。 /d; 三、设计条件:1.处理能力:G=29*300 t 物料 2. 冷却器用河水为冷却介质,考虑广州地区可取进口水温度为 20~30℃; 3.允许压降:不大于105 Pa; 4.传热面积安全系数5~15%; 5.每年按330天计,每天24小时连续运行。 四、设计要求:1.对确定的工艺流程进行简要论述; 2.物料衡算、热量衡算; 3.确定列管式换热器的主要结构尺寸; 4.计算阻力; 5.选择适宜的列管式换热器并进行核算; 6.用Autocad绘制列管式冷却器的结构图(3号图纸)、花板布 置图(4号图纸)。 7.编写设计说明书(包括:①封面;②目录;③设计题目(任务 书);④流程示意图;⑤流程及方案的说明和论证;⑥设计计 算及说明(包括校核);⑦主体设备结构图;⑧设计结果概要 表;⑨对设计的评价及问题讨论;⑩参考文献。) 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码 专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码 例:潘继红等.管壳式换热器的分析和计算.北京:科学出版社,1996,70~90 陈之瑞,张志耘.桦木科植物叶表皮的研究.植物分类学报,1991,29(2):127~135 1.工艺生产流程: 物料通过奶泵被送入冷却器后,经管盖进行多次往返方向的流动。冷却后由出料管流出,不合格的物料由回流阀送回冷却器重新冷却,直至符合要求。经过处理的河水由冷却器的进口管流入,由出口管流出,其与牛奶进行逆流交换热量。 牛奶灭菌后温度高达110~115℃,然后进行第一阶段的冷却,冷却到均质温度55~75℃,而后进行均质。无菌均质后,牛奶经过第二阶段的冷却,最终由冷却水冷却至所需的出口温度。本实验所设计的就是第一阶段冷却的列管式换热器。

化工原理实验—吸收

填料吸收塔的操作及吸收传质系数的测定 一、实验目的 1.了解填料吸收塔的结构和流程; 2.了解吸收剂进口条件的变化对吸收操作结果的影响; 3.掌握吸收总传质系数K y a 的测定方法 4. 学会使用GC 二、实验原理 吸收操作是分离气体混合物的方法之一,在实际操作过程中往往同时具有净化与回收双重目的。因而,气体出口浓度y 2是度量该吸收塔性能的重要指标,但影响y 2的因素很多,因为吸收传质速率N A 由吸收速率方程式决定。 (一). 吸收速率方程式: 吸收传质速率由吸收速率方程决定 : m y A y aV K N ?=填 或 m y A y A K N ?= 式中: Ky 气相总传系数,mol/m 3.s ; A 填料的有效接触面积,m 2; Δy m 塔顶、塔底气相平均推动力, V 填 填料层堆积体积,m 3; K y a 气相总容积吸收传质系数,mol/m 2.s 。

从前所述可知,N A 的大小既与设备因素有关,又有操作因素有关。 (二).影响因素: 1.设备因素: V 填与填料层高度H 、填料特性及放置方式有关。然而,一旦填料塔制成,V 填就为一定值。 2.操作因素: a .气相总容积吸收传质系数K y a 根据双膜理论,在一定的气温下,吸收总容积吸收传质系数K y a 可表示成: a k m a k a K x y y +=11 又有文献可知:a y G A a k ?=和b x L B a k ?=,综合可得b a y L G C a K ?=,显然K y a 与气体流量及液体流量均有密切关系。比较a 、b 大小,可讨论气膜控制或液膜控制。 b .气相平均推动力Δy m 将操作线方程为:22)(y x x G L y +-= 的吸收操作线和平衡线方程为:y =mx 的平衡线在方格纸上作图,从图5-1中可得知: 2 12 1ln y y y y y m ???-?= ?

玻璃器皿气流烘干器使用说明书

玻璃仪器气流烘干器使用说明书 一·玻璃气流烘干器 玻璃仪器气流烘干器,又称为玻璃仪器烘干器、玻璃器皿烘干器,玻璃仪器气流烘干器,玻璃烘干器,气流烘干器、试管烘干器等,是使用玻璃仪器的各类实验室、化验室干燥玻璃仪器的必备烘干器材。 二·功能 玻璃仪器气流烘干器具有快速、节能、无水渍、使用方便、维修简单等优点。该烘干器分B、C型两种型号。B型为改进新型,有调温自动控制装置(可调温40-120℃),C型为全不锈钢调温型。 三·规格 (1) 12孔20孔30孔可依据需要任意选择。 (2)标准管、异形管、粗细长度不等。 四·参数

外形尺寸:(外径×高度,风管不计mm):φ400×400 五·操作方法 (1)根据需烘干的玻璃器皿的大小,将相应规格的风管接插到上盖的出风口上。 (2)将需烘干器皿的水滴甩干,试管口朝下插入支架内烘干。 (3)将温度设定旋钮旋到所需要的温度。使用时将电源插头插入220V交流电源,接通电源开关,则冷风指示绿灯亮,电机工作吹出冷风,再接通热风开关,则热风指示红灯亮,电机工作吹进热风。 (4)当气流温度升至设定温度附近时,热风指示灯灭,加热停止(吹风电机继续工作),当气流温度降到设定温度以下时,热风指示灯亮,继续加热。 (5)当玻璃器皿被烘干后,先关掉热风开关,等玻璃器皿被吹凉后取下,并确定吹出的气流为冷风时,再最后关闭电源开关,切断电源。 六·清洁 每次使用前后对仪器表面做好清洁工作。 七·维护 需按照操作规程正确使用。 八·注意事项 (1)仪器在使用过程中不宜剧烈振动,以免待干燥玻璃器皿损坏。 (2)严禁烘干后直接关闭电源开关,以免剩余热量滞留于设备内部,烧坏电机和其他部件。 (3)电源插座要安装地线,以确保安全。

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:90 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 热量传递的概念与意义 热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

是自然界和工程技术领域中极普遍的一种传递现象。 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。 应予指出,热力学和传热学既有区别又有联系。热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。 传热的基本方式 根据载热介质的不同,热传递有三种基本方式: 热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。热传导的条件是系统两部分之间存在温度差。

化工原理课程设计(氨气填料吸收塔设计)

化工原理课程设计任务书设计题目填料吸收塔设计—15 主要内容1、设计方案简介:对给定或选定的工艺流程、主要设备进行简要 论述; 2、主要设备的工艺设计计算:物料衡算、能量衡算、工艺参数的 选定、填料塔结构设计和工艺尺寸的设计计算; 3、辅助设备的选型 4、绘流程图:以单线图的形式描绘,标出主体设备和辅助设备的 物料方向、物流量、能流量。 5、吸收塔的设备工艺条件图 6、编写设计计算说明书 设计参数用清水吸收空气中的NH 3 气体,混合气体处理量5000m3/h,其中NH 3 含量为0.14kg/m3干空气(标态),干空气温度为25℃,相对湿度为 70%,要求净化气中NH 3 含量不超过0.07%(体积分数),气体入口温 度40℃,入塔吸收剂中不含NH 3 ,水入口温度30℃。 设计计划进度布置任务,学习课程设计指导书,其它准备……………0.5天主要工艺设计计算…………………………………………2.5天辅助设备选型计算/绘制工艺流程图……………………1.0天绘制主要设备工艺条件图…………………………………1.0天编写设计计算说明书(考核)……………………………1.0天合计:(1周)………………………………………………6.0天 主要参考文献1. 《化工原理课程设计》,贾绍义等编,天津大学出版社,2002.08 2.《化工原理》(上、下册),夏清,陈常贵主编,天津大学出版社, 2005.01 3. 《化工原理课程设计》,大连理工大学编,大连理工大学出版社, 1994.07 4.《化工工艺设计手册》(第三版)(上、下册),化学工业出版社, 2003.08 5.《化学工程手册》(第二版)(上、下卷),时钧等主编,化学工 业出版社,1998.11 6.《化工设备机械基础》,董大勤编,化学工业出版社,2003.01 7.《化工数据导引》,王福安主编,化工出版社,1995.10 8.《化工工程制图》,魏崇光等主编,化学工业出版社1994.05 9.《现代填料塔技术指南》,王树楹主编,中国石化出版社,1998.08 设计文件要求1.设计说明书不得少于7000字,A4幅面; 2.工艺流程图为A2幅面; 3.设备工艺条件图为A3幅面; 备注

化工原理课程设计范例

专业:化学工程与工艺 班级:黔化升061 姓名:唐尚奎 指导教师:王瑾老师 设计时间: 2007年1月 前言 在化学工业和石油工业中广泛应用的诸如吸收、解吸、精馏、萃取等单元操作中,气液传质设备必不可少。塔设备就是使气液成两相通过精密接触达到相际传质和传热目的的气液传质设备之一。 塔设备一般分为级间接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔,在各种塔型中,当前应用最广泛的是筛板塔与浮阀塔。 筛板塔在十九世纪初已应用与工业装置上,但由于对筛板的流体力学研究很少,被认为操作不易掌握,没有被广泛采用。五十年代来,由于工业生产实践,对筛板塔作了较充分的研究并且经过了大量的工业生产实践,形成了较完善的设计方法。筛板塔和泡罩塔相比较具有下列特点:生产能力大于10.5%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次设计就是针对水乙醇体系,而进行的常压二元筛板精馏塔的设计及其辅助设备的选型。由于此次设计时间紧张,本人水平有限,难免有遗漏谬误之处,恳切希望各位老师指出,以便订正。 目录 一、设计任务 二、方案选定 三、总体设计计算-------------------------------05 3.1气液平衡数据------------------------------ 05 3.2物料衡算------------------------------------- 05 3.3操作线及塔板计算------------------------- 06 3.4全塔Et%和Np的计算----------------------06 四、混合参数计算--------------------------------07 4.1混合参数计算--------------------------------07 4.2塔径计算--------------------------------------08 4.3塔板详细计算-------------------------------10 4.4校核-------------------------------------------12 4.5负荷性能图----------------------------------14 五、筛板塔数据汇总-----------------------------16 5.1全塔数据-------------------------------------16 5.2精馏段和提馏段的数据-------------------17 六、讨论与优化-----------------------------------18 6.1讨论-------------------------------------------18 6.2优化--------------------------------------------18

化工原理课程设计换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

相关主题
文本预览
相关文档 最新文档