当前位置:文档之家› 富勒烯相关知识.doc

富勒烯相关知识.doc

富勒烯相关知识.doc
富勒烯相关知识.doc

富勒烯

制备

目前较为成熟的富勒烯的制备方法主要有电弧法、热蒸发法、燃烧法和化学气相沉积法等。

电弧法

一般将电弧室抽成高真空, 然后通入惰性气体如氦气。电弧室中安置有制备富勒烯的阴极和阳极, 电极阴极材料通常为光谱级石墨棒,阳极材料一般为石墨棒, 通常在阳极电极中添加铁,镍,铜或碳化钨等作为催化剂。当两根高纯石墨电极靠近进行电弧放电时, 炭棒气化形成等离子体,在惰性气氛下碳分子经多次碰撞、合并、闭合而形成稳定的C60及高碳富勒烯分子, 它们存在于大量颗粒状烟灰中, 沉积在反应器内壁上, 收集烟灰提取。电弧法非常耗电,成本高,是实验室中制备空心富勒烯和金属富勒烯常用的方法。

燃烧法

将苯、甲苯在氧气作用下不完全燃烧的碳黑中有C60或C70,通过调整压强、气体比例等可以控制C60与C70的比例,该法设备要求低,产率可达到0.3%-9%,是工业中生产富勒烯的主要方法。

化学气相沉积(CVD)

主要用于制备碳纳米管,合适实验条件可制备出富勒烯。反应过程:有机气体和N2压入石英管,用激光、电阻炉或等离子体加热,气体分子裂解后在催化剂表面生长成富勒烯或碳纳米管。催化剂一般为Fe、Co、Ni、Cu颗粒。CVD设备简单,原料成本低,产率高;并且反应过程易于控制,可大规模生产。

提纯

通常是以C60为主,C70为辅的混合物,还有碳纳米管、无定形碳和碳纳米颗粒。决定

富勒烯的价格和其实际应用的关键就是富勒烯的纯化。实验室常用的富勒烯提纯步骤是:从富含C60和C70的烟尘中先用甲苯索氏提取,然后纸漏斗过滤。蒸发溶剂后,剩下

的部分(溶于甲苯的物质)用甲苯再溶解,再用氧化铝和活性碳混合的柱色谱粗提纯,

第一个流出组分是紫色的C60溶液,第二个是红褐色的C70,此时粗分得到的C60或C70

纯度不高,还需要用高效液相色谱(纯度高,设备昂贵,分离量小)来精分。

Nagata发明了一项富勒烯的公斤级纯化技术。该方法通过添加二氮杂二环到C60, C70等同系物的1、2、3-三甲基苯溶液中。DBU只会和C70以及更高级的同系物反应,并

通过过滤分离反应产物,而富勒烯C60与DBU不反应,因此最后得到C60的纯净物;

其它的胺化合物,如DABCO,不具备这种选择性。

C60可以与环糊精以 1:2的比例形成配合物,而C70则不行,一种分离富勒烯的方法就

是基于这个原理,通过S-S桥固定环糊精到金颗粒胶体,这种水溶性的金/环糊精的复

合物[Au/CD]很稳定,与不水溶的烟灰在水中回流几天可以选择性地提取C60,而C70组

分可以通过简单的过滤得到。将C60从[Au/CD] 复合物中分离是通过向环糊精水溶液加

入对环糊精内腔具有高亲和力的金刚烷醇使得C60与[Au/CD] 复合物分离而实现C60的

提纯,分离后通过向[Au/CD/ADA]的复合物中添加乙醇,再蒸馏,实现试剂的循环利用。50毫克[Au/CD]可以提取5毫克富勒烯C60。后两种方法都只停留在实验室阶段,并不

常用。

Coustel重结晶法 Coustel等利用C60和C70在甲苯溶液中溶解度的不同,通过简单的重结晶法得到纯度为95-99%的C60 。本方法第一次重结晶得到C60的纯度约为95%,通

过二次重结晶得到的C60 ,纯度达到98%-99%。 Prakash法由于C70等高富勒烯对

AlCl3的亲和力大于C60 ,据此,Prakash将C60与C70的混合物溶入CS2中,加入适量AlCl3 ,由于C70等高富勒烯与AlCl3形成络合物,因而从溶液中析出, C60仍留在溶液

99.9%.Atwood法用环芳烃(n=8)来处理含C60 / C70混合物的甲苯溶液,由于环芳烃对C60独特的识别能力,形成1:1包结物结晶,该结晶在氯仿中迅速解离,可以得到纯度大于99.5%的C60 ,从母液中得到富C70的组分

富勒烯的种类

?巴基球团簇:最小的是C20 (二十烷的不饱和衍生物)和最常见的C60;

?碳纳米管:非常小的中空管, 有单壁和多壁之分;在电子工业有潜在的应用;

?巨碳管:比纳米管大,管壁可制备成不同厚度,在运送大小不同的分子方面有潜在价值;

?聚合物:在高温高压下形成的链状、二维或三维聚合物;

?纳米“洋葱”:多壁碳层包裹在巴基球外部形成球状颗粒,可能用于润滑剂;[26]?球棒相连二聚体:两个巴基球被碳链相连;

?富勒烯环。

[20]富勒烯(十二面图)[26]富勒烯

C60

(截断二十面体图)

C70

硼巴基球

2007年科学家们预测了一种的新的硼巴基球,它用硼取代了碳形成巴基球,B80的结

其它巴基球

另外一种常见的富勒烯是C70,72, 76, 84,甚至100个碳组成的巴基球也是很容易得到的。碳纳米芽

纳米芽是通过共价键将富勒烯吸附在碳纳米管外形成纳米“芽”结构。

富勒体

富勒体(Fullerites)是富勒烯及其衍生物的固态形态的称呼,中文一般不特别称呼这个

形态。超硬富勒体这个词一般被用来表述使用高压高温得到的富勒体,这种条件下普

通的富勒烯固体会形成钻石形式的纳米晶体,它有相当高的机械强度和硬度。

内嵌富勒烯

内嵌富勒烯是将一些原子嵌入富勒烯碳笼而形成的一类新型内嵌富勒烯,如氢、碳、钪、氮等,大部分是在电弧法制造富勒烯的过程中形成的,也可以通过化学方法将富

勒烯打开孔后装入一些原子或分子。

主条目:金属富勒烯

结构

在数学上,富勒烯的结构都是以五边形和六边形面组成的凸多面体。最小的富勒烯是

C20,有正十二面体的构造。没有22个顶点的富勒烯,之后都存在C2n的富勒烯,n=12、13、14......暂时有1812种富勒烯。所有富勒烯结构的五边形个数为12个,六边形个

数为n-10。

C60的分子结构为球形32面体,它是由60个碳原子通过20个六元环和12个五元环

连接而成的具有30个碳碳双键的足球状空心对称分子,所以,富勒烯也被称为足球烯。C60是高度的I h对称,高度的离域大π共轭,但不是超芳香体系,他的核磁共振

碳谱只有一条谱线,但是它的双键是有两种,它有30个六元环与六元环交界的键,

射线单晶衍射数据表明,[6,6]键长是135.5皮米,[5,6]长键是146.7皮米,因此[6,6]有更多双键的性质,也更容易被加成,加成产物也更稳定,而且六元环经常被看作是苯环,五元环被看作是环戊二烯或五元轴烯。

C60及其相关C70两者都满足这种所谓的孤立五角规则(IPR)。而C84的异构体中有24个满足孤立五角规则的,而其它的51568个异构体则不满足孤立五角规则,这51568 为非五角孤立异构体,而不满足孤立五角规则的富勒烯迄今为止只有几种富勒烯被分离得到,比如分子中两个五边形融合在顶尖的一个蛋形笼状内嵌金属富勒烯Tb3NaC84。或具有球外化学修饰而稳定的富勒烯如C50C l10,以及C60H8。

理论计算表明C60的最低未占据轨道(LUMO)轨道是一个三重简并轨道,因此它可以得到至少六个电子,常规的循环伏安和差示脉冲伏安法检测只能得到4个还原电势,而在真空条件下使用乙腈和甲苯的1:5的混合溶剂可以得到六个还原电势的谱图。

C70

理论计算表明C70的LUMO轨道是一个二重简并轨道,不过它的LUMO+1轨道与LUMO轨道的能级差很小,因此它可以得到至少六个电子,常规的循环伏安和差示脉冲伏安法检测只能得到4个还原电势,而在真空条件下使用乙腈和甲苯的1:5的混合溶剂可以得到六个还原电势的谱图。

低对称性富勒烯

低对称性富勒烯的键长是不一样的,虽然也是离域π键,从核磁共振碳谱可以清楚看出来有很多条碳信号。

手性

一些富勒烯是D2对称性的,因此他们是有固有手性的,如 C76、C78、C80和C84等,科学家一直致力于发展特别的传感器来识别和分离他们的对映异构体。

物理性质

物化性质

C60的密度为1.65g.cm-3燃烧热: 9.08kcal·mol-1

折射率: 2.2(600nm) 沸点: 800K升华

六方晶系蒸汽压:室温5×10-6torr,800K时8×10-4torr

溶解性

富勒烯在大部分溶剂中溶得很差,通常用芳香性溶剂如甲苯、氯苯或非芳香性溶剂二

硫化碳溶解。纯富勒烯的溶液通常是紫色,浓度大则是紫红色,C70的溶液比C60的稍

微红一些,因为其它在500nm处有吸收;其它的富勒烯如C76、C80等则有不同的紫色。富勒烯是迄今发现的唯一在室温下溶于常规溶剂的碳的同素异性体。

有些富勒烯是不可溶的,因为他们的基态与激发态的带宽很窄,如C28,C36和C50。

C72也是几乎不溶的,但是C72的内嵌富勒烯,如La2@C72是可溶的,这是因为金属元

素与富勒烯的相互作用。早期的科学科学家对于没有发现C72很是疑惑,但是却有C72

的内嵌富勒烯。窄带宽的富勒烯活性很高,经常与其它富勒烯结合。化学修饰后的富

勒烯衍生物的溶解性增强很多,如PC61BM室温下在氯苯中的溶解度是

50mg/mL。C60和C70在一些溶剂的溶解度列于左表,这里的溶解度通常是饱和浓度

的估算值。

导电性

超导

C60固体超导性的BCS理论认为,超导转变温度随着晶胞体积的增加而升高,因为

C60分子间的间隔与费米能级N(εF)的态密度的升高相关,因此科学家们做了大量的工

作试图增加富勒烯分子间的距离,尤其是将中性分子插入A3C60晶格中来增加间距同

的特别的性质:Mott-Hubbard转变以及C60分子的取向/轨道有序和磁结构的关

系。C60固体是由弱相互作用力组成的,因此是分子固体,并且保留了分子的性质。一个自由的C60分子的分立能级在固体中只是很弱的弥散,导致固体中非重叠的带间隙很窄,只有0.5eV。未掺杂的 C60固体,5倍 h u带是其HOMO能级,3倍的t1u带是其空的LUMO能级,这个系统是带禁阻的。但是当C60固体被金属原子掺杂时,金属原子会给t1u带电子或是3倍的t1g带的部分电子占据有时会呈现金属性质。虽然它的t1u带是部分占据的,按照BCS理论A4C60的t1u带是部分占据的应该有金属性质,但是它是一个绝缘体,这个矛盾可能用Jahn-Teller效应来解释,高对称分子的自发变形导致了它的兼并轨道的分裂从而得到了电子能量。这种Jahn-Teller型的电子-声子作用在C60固体中非常强以致于可以破坏了特定价态的价带图案。窄带隙或强电子相互作用以及简并的基态对于理解并解释富勒烯固体的超导性非常重要。电子相互斥力比带宽大时,简单的Mott-Hubbard模型会产生绝缘的局域电子基态,这就解释了常压时铯掺杂的C60固体是没有超导性的。电子相互作用驱动的t1u电子的局域超过了临界点会生成Mott绝缘体,而使用高压能减小富勒烯相互间的间距,此时铯掺杂的C60固体呈现出金属性和超导性。

关于C60固体的超导性还没有完备的理论,但是BCS理论是一个被广泛接受的理论,因为强电子相互作用和Jahn-Teller电子-声子偶合能产生电子对,从而得到较高的绝缘体-金属转变温度。

热力学性质

差示扫描量热法(DSC)表明C60在256K时发生相变,熵为27.3J.K-1.mol-1,归因于其玻璃形态-晶体转变,这是典型的导向无序的转变。相似地,C70在275,321和338K也发生无序转变,总熵为22.7 J.K-1.mol-1。富勒烯的宽的无序转变与从起始较低的温度的类跳跃式旋转向各向同性的旋转渐变有关。

富勒烯是稳定的,但并不是完全没有反应性的。石墨中sp2杂化轨道是平面的,而在

富勒烯中为了成管或球而形成了较大的键角张力。当它的某些双键通过反应饱和后,

键角张力就释放了,如富勒烯的[6,6]键是亲电的,将sp2杂化轨道变为sp3杂化轨道来

减小键张力,原子轨道上的变化使得该键从sp2的近似120°成为sp3的约109.5°,

从而降低了C60球的吉布斯自由能而稳定。富勒烯即可以形成单加成产物,也可以形

成多加成产物。富勒烯的功能化以分为两类:在富勒烯的笼外进行化学修饰;将分子

束缚到富勒烯球内,也就是开孔反应。

因为这个分子的球形结构使碳原子高度棱锥体化,这对其反应活性有深远的影响。据估计,其应变能相当于80%反应热能。共轭碳原子平行性影响杂化轨道sp2,一个获得p

电子的sp2.27轨道。p 轨道的互相连结扩大在外球面更胜于其内球,这是富勒烯为给电体的一个原因。另一个原因是,空的低能级轨道上。

富勒烯中的双键不都相同。大致可分为两种:[6,6]键,连接两个六角形的键,[5,6]键连

接一个六边形和五边形。两者中[6,6]键比环状六边形聚合物(cyclohexatriene)分子中

的[6,6]键和轴烯与二环并戊二烯分子中的双键更短。换句话说,虽然富勒烯分子中的

碳原子都是超共轭,但富勒烯却不是一个超大的芳香化合物。C60富勒烯有60个电子,但封闭壳体系结构需要72个电子。富勒烯能够通过与钾的反应获得缺失电子,如首

先合成的K6C60盐和接着合成的 K12C60盐,在这种化合物中,原分子中键长交替的现

象消失了。根据IUPAC的规定,亚甲基富勒烯(也称环丙烷富勒烯,methanofullerene)指

闭环(环丙烷)富勒烯衍生物,而fulleroid指开环富勒烯衍生物(亚甲基桥轮

烯,methanoannulene)

富勒烯往往可以发生亲电反应。辅助动力补助双键互补时的张力。这种类型的反应的

关键是功能化单加成反应(monoaddition)或多加成反应(multiple addition),避免多

加成带来的拓扑关系 (新的取代基团交联到一起或互相占据)

在亲核加成中富勒烯作为一个亲电试剂与亲核试剂反应,它形成碳负离子被格利雅试

剂或有机锂试剂等亲核试剂捕获。例如,氯化甲基镁与C60在定量形成甲基位于的

环戊二烯中间的五加成产物后质子化形成(CH3)5HC60。在格氏试剂作用下与CH3I反应

能生成各种烷基化产物:C60+10t-BuMgBr+10CH3I → C60(t-Bu)10Me10(在THF中)。

宾格反应也是重要的富勒烯环加成反应,形成亚甲基富勒烯。富勒烯在氯苯和三氯化

铝的作用下可以发生富氏烷基化反应,该氢化芳化作用的产物是1,2加成的(Ar-CC-H). 周环反应

富勒烯的[6,6]键可以与双烯体或双烯亲和体反应,如D-A反应。[2+2]环加成可以形成

四元环,如苯炔。1,3偶极环加成反应可以生成五元环,被称作Prato反应。富勒烯与

卡宾反应形成亚甲基富勒烯。周环反应

加氢(还原)反应

C60可以和强还原剂如锂的氨溶液发生还原反应而氢化。C60的氢化物可表示为C60H2n,其中n=l~18。C60H2及C60H4可以用氢锆酸盐或锌/酸还原合成。至今未能成功合成出

C60H60,其不稳定性源自环已烷平面的巨大张力。C60的多氢化物中以C60H36最稳定,

但其结构难以确定。因为氢原子可以键连在外表面,也可钻进碳笼内而键连在内表面。高度氢化富勒烯不稳定,富勒烯与氢气直接反应在高温条件下的直接反应会导致笼结构

崩溃,而形成的多环芳烃。

氧化反应

虽然很难,但是富勒烯氧化还是有可以的,比如和氧气或四氧化锇。由石墨气化法制备的富勒烯含有氧化富勒烯C60O n(n≤5),光氧化C60也可生成C60O,红外光谱研究表明

C60O中O与两个碳原子形成了环氧三元环。C60可以像烯烃一样用OsO4氧化,生成

C60的锇酸酯。该反应是由砒啶加成物或在砒啶存在的条件下与化学计量的OsO4反应

来完成:

C60+OsO4+2C5H5N→[Os(O)2(py)2(OC60O)](条件 C6H5CH3,0~25℃)

羟基化反应

富勒烯可以通过羟基化反应得到富勒多醇(fullerenols)和富勒醇,其水溶性取决于其(富勒醇)分子中羟基数的多少。一种方法是富勒烯与稀硫酸和硝酸钾反应可生成

C60(OH)15。另一种方法是在稀氢氧化钠溶液的催化下反应由TBAH增加24 到26个羟基。羟基化反应也有过用无溶剂氢氧化钠与过氧化氢和富勒烯反应的报道。用过氧化氢与富勒烯的反应合成C60(OH)8,羟基的数量可以达到36至40个。

亲电加成

与卤素反应 C60可被氟化生成C60F2n(n=15~30),n值在30以上时, 富勒烯骨架中会有σ键断裂。氯、溴也可在一定条件下同C60反应,生成对应的氯化或溴化富勒烯,如C60Cl6、C60Br8、C60Br24等。C60F60能和微量水反应而放出HF,可以与很多亲核试剂起反应,在有机合成中发挥作用。空间位阻的原因,不能制得全氯化的C60Cl60,而是生成C60Cl n。C60Cl n在真空中加热会重新生成C60,表明氯化并没有破坏C60的分子骨架。将C60溶液与Br2反应,得到两个溴代衍生物C60Br6和C60Br8。

反加成

反加成反应即Retro-Additions(RA)。研究表明,通过RA消去,取代基实现了他们的目的后便与富勒烯主体分离。

配位反应

富勒烯在有机金属化学中作为配体。[6,6]双键是缺电子的,通常与金属成键的η= 2(配位化学中的常数)。键合模式如η= 5或η=6可以因作为配体的球状富勒烯改变而改变。富勒烯和硫羰基钨W(CO)6在环己烷溶液中,阳光直接照射下反应生成的(η2-C60)5 W(CO)6。

开孔反应

开孔反应是指通过化学手段选择性地切断富勒烯骨架上的碳碳键来制备开孔富勒烯的

反应。开孔后就可能把一些小分子装到碳球中,如氢分子、氦、锂等。

其它反应

超分子化学

自然界里,在调控纳米尺度物质的尺寸、形貌和功能方面,通过共价联结以及非共价

联结的组装及自组装都是一种非常普遍的方式,将富勒烯和其它一些功能基团有效的

通过非共价作用联结在一起形成具有特定结构的分子体系,进而通过调控各个基团之

间的电子相互作用实现其功能化。

裸C60的主客体化学

由于C60分子独特的刚性球状结构,发展能够与其高效结合的特定主体是一件很有意

义的工作,二十多年来科学家们乐此不疲地用新奇的化合物和有趣的方式将其包起来

得到包含物和嵌合物,在富勒烯的主客体化学(host-guest chemistry)方面进行了大量的

研究并取得了长足的进展,发展了一系列主体化合物,大致分为富π电子化合物和大

环主体两类;前者有二茂铁、卟啉、酞菁、四硫富瓦烯、苝、碗烯和带状多共轭体系

等的衍生物,后者有环糊精、杯芳烃、氮杂杯芳烃、长链烷烃、低聚物等的衍生物.

迄今与富勒烯分子超分子结合力最强的是相田卓三合成的卟啉笼分子,在邻二氯苯中

与C60的结合常数为Log Ka = 8.11

C60衍生物超分子的自组装

修饰富勒烯可以获得更多的作用位点,因此富勒烯衍生物的超分子自组装的研究一直

是个热点,远远多于不修饰的富勒烯的组装,特别是在基于富勒烯的功能材料、光致

电子转移、人工光合作用体系、光子器件等诸多的研究领域。在自组装过程中,原子,

势。

C60及其衍生物的有序聚集态的制备方法

富勒烯功能化后产生的自组装前体,通过超分子作用形成有序聚集态结构,既是提高对富勒烯本征认识以及单分子器件构筑水平,也是对富勒烯高新技术功能化材料的需要。十多年来,国内外很多研究组已经在获得稳定的C60纳米材料如纳米颗粒、纳米管、纳米线、纳米带和高度有序二维结构等方面进行了大量的研究,发展了经典自组装法、模板法、气相沉积法、化学吸附和LB膜技术等方法来构筑具有特定形貌的有机纳米材料。

安全性和毒性

Moussa等人做了在生物体的腹腔内注射大剂量C60后的毒理研究,没有证据表明白鼠在注射5000 mg/kg(体重)的C60剂量后有中毒现象。Mori等人也没有发现给啮齿动物口服 C60和C70混合物2000 mg/kg的剂量后有中毒现象,也没有发现有遗传毒性或诱变性,其他人的研究同样证明C60和C70是无毒的,而Gharbi等人发现 C60悬浮液不会导致对啮齿类动物的急性或亚急生毒性,相反一定剂量的C60会保护他们的肝免受自由基伤害。

应用

护肤品

由于富勒烯能够很好地亲和自由基,因此一些商家将水溶性富勒烯添加到护肤品中来消除紫外线产生的自由基,但是效果一般且价格昂贵。

多元体研究

富勒烯衍生物与卟啉、二茂铁等富电子基团共价或非共价形成多元体,用在分子内能量、电荷转移或光致能量、电荷转移

富勒烯的衍生物PCBM([6,6]-phenyl-c61-butyric acid methyl ester)可用于本体异质结有机太阳能电池。P型共轭聚合物和N型富勒烯混合组成复合物,作为太阳能电池的薄膜材料,可提高光电转换效率。

大气和水处理领域

大气中挥发性有机物的分析优点:不含官能团,对挥发性有机物(VOCs)具有化学惰性,能有效的吸附挥发性有机物存放稳定。水处理:可用来处理废水中的苯酚

催化领域

?催化氢转移和硅氢化反应

?催化烷烃裂解反应

?催化H2-D2互换反应、催化耦合和烷基转移反应

?在非金属固氮体系中的应用

?在金刚石合成及助推剂中的应用

激光科学

C60的特性:具有超快光学响应。从红外到可见光区,透光性好,激发态吸收强,具有热稳定性和氧化稳定性可用于制作性能优异的光限幅器件、光双稳器件和全光学光开关,实现光脉冲压缩。

富勒烯光限幅技术

光限幅:控制激光强度。当材料被激光照射时,在低强度激光照射下材料具有高的透过率;而在高强度激光照射下具有低的透过率。光限幅过程是利用光学材料的非线性吸收、非线性折射或非线性散射等非线性光学效应来实现的。

润滑领域

有一定的极压和润滑性能。C60的衍生物C60F 60俗称“特氟隆”可做为“分子滚珠”和“分子润滑剂”。

C60衍生物研究进展

C60衍生物研究进展及应用 摘要:富勒烯C60自发现以来,以其独特的类似足球的结构引起了人们的普遍关注,尤其是1990年Kratschemer等制备出常规量的富勒烯,极大的推动了对富勒烯的性质和用途的研究及相关领域的发展。富勒烯衍生物的合成以及其性质的研究也成为了富勒烯化学的热门课题。本论文对富勒烯及其衍生物的结构性质进行了详细的说明,介绍了生成富勒烯衍生物的一些重要反应,以及富勒烯衍生物在纳米材料、生物医学材料、光学材料、磁性材料等方面的应用。 关键词:富勒烯C60衍生物;研究;结构;性能;应用

1 前言 纳米科技[1, 2]是上世纪80年代开始逐步兴起的一门多学科交叉的综合性前沿科技,其研究领域涉及物理学、化学、材料学、生物学、电子学等。而纳米材料正是纳米科技的基础和先导,也是纳米科技领域富有活力、内涵丰富的学科分支。广义的讲,纳米材料是指材料的三维空间中,至少有一维处于1-100 nm尺寸范围内,或者是由它们作为成分的基本单元所构成的材料,包括纳米微粒(零维材料),直径为纳米量级的纳米纤维、纳米线、纳米须、纳米带、纳米管、纳米棒(一维材料),厚度为纳米量级的薄膜、多层膜和片(二维材料),直径为纳米量级的花和球(三维材料),以及基于上述低维材料所构成的致密或非致密固体。 自从1985年Kroto、Curl和Smalley等人[3]发现富勒烯以来,富勒烯以其独特的类似足球的结构引起了人们的普遍关注,尤其是1990年Kratschemer等制备出常规量的富勒烯,极大的推动了对富勒烯的性质和用途的研究及相关领域的发展。短短二十年来,几乎世界上所有著名大学和研究所都有科学家进行了与富勒烯有关的研究,这些研究几乎涉及物理学、化学以及材料科学的各个领域,同时对生物、医学、天文学以及地质学等也产生了巨大冲击,富勒烯及富勒烯族化合物的研究已经成为当前国际上异常活跃的研究领域之一。富勒烯(Fullerene)是一类新型球状分子,它是以碳原子组成的笼状分子,高度对称。其中代表性化合物且具有I h对称性的[60]富勒烯中,所有的碳原子的化学环境完全相同,其13C NMR谱在δ 142.68 ppm处只有一个单峰。其以特殊的结构和独特的光、电、磁性倍受关注。C60球状分子内外表面有60个π电子,组成三维π电子共轭体系,六元环间的(6/6键)边双键为反应的活性部位。C60的反应性类似于缺电子的烯烃,易于发生加成反应。目前合成的富勒烯衍生物种类繁多,而其中多加成衍生物的三维立体结构使其在生命科学以及材料科学等方面有着重要的应用价值,因此合成功能化的富勒烯多加成衍生物是富勒烯化学中最前沿的课题之一。由于纳米材料结构单元的尺度与物质的许多特征长度相当,如电子的德布罗意波长、超导相干长度、遂穿势垒厚度、铁磁性临界尺度等,使其具有许多特异效应[4],如量子尺寸效应、小尺寸效应、表面和界面效应、宏观量子隧道效应、介电限域效应,从而导致纳米材料和纳米结构的物理化学性质既不同于微观的原子、分子,也不同于宏观物体。与相同组成的常规材料相比,在光学、磁学、电学、力学以及热学等方面具有许多奇异的性能[5-6],使其在微电子、光电材料、生物医学等领域具有广阔的应用前景[7-8]。在纳米结构材料中若引入C60衍生物有可能使其物理化

富勒烯的应用现状

富勒烯(C60)研究与应用现状

富勒烯(C60)研究与应用现状 大连工业大学 摘要:富勒烯发现至今只有短短20年时间,由于其独特的结构和物理、化学性质,吸引了众多科学家的目光,因此在这20 年中,使得C60化学得到了很大的发展.文章综述了富勒烯的几种合成方法,并阐述了目前常用的应用现状,最后对其未来的发展作了展望。 关键词富勒烯;合成方法;应用 引言 富勒烯的发现始于1985 年Kroto 等【1】在高真空环境下激光溅射石墨的研究。利用这种方法只能产生数以千计的富勒烯分子,根本无法进行富勒烯详细的性质表征研究, 当然更谈不上应用。1990 年,Krastchmer 等【2】发明了低压氦气环境下石墨电极电弧放电法合成富勒烯,能够得到克量级的C60 产物。由于富勒烯特殊的结构和性能,在材料、化学、超导与半导体物理、生物等学科和激光防护、催化剂、燃料、润滑剂、合成、化妆品、量子计算机等工程领域具有重要的研究价值和应用前景。1991 年富勒烯被美国《科学》杂志评为年度分子,富勒烯被列为21 世纪的新材料。此后,科学家经过不断的探索和研究,发明了更多生产富勒烯的方法,例如连续石墨电极放电法、激光配合高温石墨棒蒸发法【3】、引入铁磁性金属催化剂法【4、5】、高温等离子体石墨蒸发法【6、7】,苯高温火焰燃烧法【8-10】等。而且富勒烯在日常生活中的应用越来越广泛, 因而富勒烯产品在未来社会具有很好的发展前景。 2.富勒烯的合成方法 2.1水下放电法 水下放电法【11】将电弧室中的介质由惰性气体换为去离子水, 采用直流电弧放电, 以碳纯度为99%、直径6mm的碳棒做阳极, 直径为12mm的碳棒做阴极, 放入2. 5L 的去离子水中至其底部3mm的位置, 在电压为16 ~17V、电流为30A的条件下拉直流电弧, 产物可在水表面收集。 水下放电法不需要传统电弧法的抽气泵和高度密封的水冷真空室等系统, 免除了复杂昂贵的费用, 可进一步降低反应温度, 能耗更小, 并且产物在水表面收集而不是在整个有较多粉尘的反应室。与传统电弧法相比, 此法产率及质量均较高。此法可制备出球形洋葱富勒烯、像富勒烯似的碳纳米粒子、类似碳纳米管和富勒烯粉末。 总之, 电弧法是目前应用最广泛、有可能进一步扩大生产规模的制备方法, 其C60产率可达10% ~13% , 为其物理、化学的研究奠定了基础。电弧法制备碳纳米管产率约为30% ~70% , 在电弧放电的过程中能达到4 000K的高温, 这样的温度下碳纳米管最大程度地石墨化, 所以制备的管缺陷少, 比较能反映碳纳米管的真正性能。但由于电弧放电通常十分剧烈, 难以控制进程和产物, 合成的沉积物中存在有碳纳米颗粒、无定形炭或石墨碎片等杂质, 而且碳管和杂质融合在一起, 很难分离。 2.2CVD法 CVD是制备富勒烯的另一种典型方法。催化热分解反应过程一般是将有机气体(通常为C2 H2 )混以一定比例的氮气作为压制气体, 通入事先除去氧的石英管中, 在一定的温度下, 在催化剂表面裂解形成碳源, 碳源通过催化剂扩散,在催化剂后表面长出碳纳米管, 同时推着小的催化剂颗粒前移。直到催化剂颗粒全部

富勒烯介绍

富勒烯的发现、特性、结构极其应用 化学与材料科学学院化学专业0501班吴铭 摘要:长期以来,人们只知碳的同素异形体有三种:金刚石,石墨和无定形碳。自1985年发现了巴基球,1991年1992年又相继发现了巴基管(碳纳米管)和巴基葱,碳有了第四种同素异形体富勒烯,于是人们便开始了对其结构与特性的研究,并广泛应用。本文综述了富勒烯的发现、特性、结构极其应用。 关键词:富勒烯结构特性应用 目前为止,碳的同素异形体已被发现四种:金刚石,石墨,不定形碳和富勒烯。其中,人们对前三种应该早就熟知了,而对于最后一种恐怕大多人知知甚少。巴基球,巴基管和巴基丛统称富勒烯。以下则介绍富勒烯的发现特性,结构极其应用。 一.发现 (一) 巴基球的发现 英国萨塞克斯大学的波谱学家克罗托(h.w.kvoto)在研究星际空间暗云中含碳的尘埃时,发现此尘埃中有氰基聚分子,克罗托很想研究该分子形成的机制,但没有相应的设备.1984年克罗托赴美参加陂得萨斯州奥斯汀举行的学术会议,并到莱斯大学参观,现该校化学系系主任科生(R.F.cuv.jv)教授介绍,认识了研究原子簇化学的斯莫利教授,观看了斯莫利和他的研究生用他们设计的激光超团簇发生器,在氦气中用激光使碳化硅变成蒸汽的实验,克罗托对这台仪器非常感兴趣,这正是所渴求的仪器。三位科学家优异合作并安排在1985年8月到9月间进行合作研究。是时,他们用功率激光轰击石墨,使石墨中的碳原子汽化,用氮气流把气态碳原子送入真空室。迅速冷却后形成碳原子簇,再用质谱仪检测。他们解析质谱图后发现,该实验产生了含不同碳原子数的原子簇。其中相当于60个碳原子,质量数落在720处的信号最强,其次是相当于70个碳原子,质量数为840处的信号最强。说明C60是相对稳定的原子簇分子。(图1) (二) 巴基管和巴基丛的发现 1991年日本NFC公司的电镜专家饭岛博士,在氮气直流电弧放电后的阴极棒上发现了管状的结构的碳原子簇,直径约几纳米,成为碳纳米管(Cerbonnanofubes),又称巴基管(Buckytabes)。碳纳米管也是典型的富勒烯,可以有单层和多层之分,多层管则由几个或几十个单层管回轴套叠而成.想另管距为0。34nm与石墨层检举0。335nm相近.饭岛发现,如果巴基管全由方边形碳环组成,该管是不封闭的,可以向两端伸长;如果在管子两端有五边形,会将巴基管末端封闭。(图4) 1992年瑞士联邦大学的D.vgarte年人用高强度电子来对碳棒长时间照射,发现了多层相套的巴基球,结构像洋葱(Buckyonlons)。巴基葱的层面可达70多层。(图5) 二.结构及特性 (一)结构

日本利用富勒烯衍生物实现高迁移率n型TFT

日本利用富勒烯衍生物实现高迁移率n型TFT(组图) 2004/11/15 【日经BP社报道】日本产业技术综合研究所(简称产综研)日前宣布,利用含有富勒烯(C60)衍生物的n型半导体材料开发出了有机TFT(薄膜晶体管),该材料的电子迁移率(μ)达0.067cm2/Vs。这一数值在利用有机材料的镀膜而形成的n型半导体膜中是最高的,与过去普遍作为制作有机TFT的材料而使用的p型半导体材料的值(镀膜时)几乎相同(图1)。据称是利用“自凝”特性,形成结晶薄膜后,通过提高其导电性而实现的。可以说又朝着利用镀膜方式实现同时采用n型和p型两种有机材料的CMOS有机晶体管迈进了一步。此项成果已经在2004年9月于仙台召开的第65届日本应用物理学会学术演讲会上发表过。 产综研此次使用的半导体材料为“C60MC12”。是通过使一种名为长链烃基(Long ChainAlkylGroups)的长丝状有机材料与由碳聚合成球状的富勒烯进行化合而生成的。也就是说,形成了像带丝线的气球一样的形状。先将这种材料溶入CS2溶液中,再利用旋涂法涂布于含有多晶硅层的SiO2底板上进行成膜。 利用X线衍射等方法对成膜后的C60MC12进行分析发现,各分子形成了如下结构:通过自凝特性,富勒烯部分规则地排列成了薄膜状,而2个薄膜则通过内侧的烃基结合到了一起(图2)。由此可以推测,由于富勒烯部分整齐排列成结晶状,而在分子间形成了类似金属的传导区,由此就实现了此次的高迁移率。 仅在这种涂布状态下μ就高达0.049cm2/Vs。而产综研为了进一步提高迁移率,对其做了热处理,由此达到了0.067cm2/Vs。具体来讲,就是将这种薄膜在100度的真空环境中放置12个小时。经过这种热处理,C60MC12的结晶特性得到了提高。(记者:野泽哲生) 图1:n型有机半导体的电子迁移率也已接近p型半导体

富勒烯及其衍生物的制备和生物医学效应

专业课程实践论文题目:富勒烯及其衍生物的制 备和生物医学效应任课教师:罗志勇 姓名:刘远见 学号:20096918 学院:化学化工学院 专业班级:2009级材料化学1班

富勒烯及其衍生物的制备和生物医学效 应 刘远见liuyuanjian [重庆大学化工学院2009级材料化学1班重庆中国 400044] [摘要]:富勒烯和其衍生物作为一种新型含碳纳米材料,由于其独特的结构和物理化学性质,在生物、医学、超导、光学及催化等多领域有着极为广阔的应用前景。在生物和医学领域,富勒烯及其衍生物具有抗氧化活性和细胞保护作用、抗菌活性、抗病毒作用、载带药物和肿瘤治疗等活性。在总结国内外相关研究基础上,论文重点综述了几种典型富勒烯及衍生物的制备和生物效应。 [关键字]:富勒烯;纳米材料;生物效应;细胞保护; [Abstract]:Due to their unique structure and physical and chemical properties,fullerene and its denvatives have a widerange of potential appacations in biomedical field.They have many advantages in cell protection and antioxidant properties,antibacterial activity,antiviral activity,drug delivery and anti-tumor activities.In this paper,biomedical effects of fullerenes have been highlighted,and the synthesis of fullerene its derivative have been reviewed as well. [Key words]:fullerene;Nano-materials;Biological effects;Cytoprotective 纳米科学、信息科学和生命科学并列成为2l世纪的三大支柱科学领域。纳米颗粒(nanoparticles,Nas)和超细颗粒物(ultrafine particles,UFPs),一般是指尺寸至少有一维在l~100 nm间的粒子。纳米尺度是处在原子簇和宏观物体交界的过渡区域,处于这个区域的材料具有一些独特性质,如小尺寸效应、表面、界面效应和量子尺寸效应等。空气中纳米颗粒虽然浓度很低,但具有很高的颗粒物数目。将宏观物体细分成纳米颗粒后,它的光学、热学、电学、磁学、力学以及化学性质和大体积固体相比将会显著不同。纳米材料的小尺寸、化学成分、表面结构、溶解性、外形和聚集情况决定着它们特殊的物理化学性质,这些性质使得纳米材料在将来有着广泛的用途。(1) Kroto等(1985)于1985年发现了巴基球,并提出了球型中空分子的模型,将之命名为富勒烯(C60)。Kratschrner等(1990)首先用石墨电弧放电法实现了富勒烯的宏量制备,此后在世界范围内掀起了研究富勒烯的热潮。涉及的学科包括物理、化学、生物、天文和材料科学等。一个分子能如此迅速地打开通向科学新领域的大门,这是非常罕见的。由于富勒烯分子的巨大科学意义,被美国‘科学’杂志评为1991年的“明星分子”。

碳纳米管和富勒烯的光电特性和应用

碳纳米管和富勒烯的光电特性和应用 一、碳纳米管的结构性能及应用 (一)碳纳米管的结构 碳纳米管是指由类似石墨的六边形网格组成的管状物,可以看作是石墨片层绕中心轴按一定的螺旋角卷曲而成。管子一般由单层或多层组成,相应的纳米碳管就称为单壁纳米碳管(SWNT)和多壁纳米碳管(MWNT)。碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆 管结构,并且大多数由五边形截面所组成。管 身由六边形碳环微结构单元组成, 端帽部分 由含五边形的碳环组成的多边形结构,或者称 为多边锥形多壁结构。是一种具有特殊结构 (径向尺寸为纳米量级,轴向尺寸为微米量 级、管子两端基本上都封口)的一维量子材料。 固定的距离,约为0.34nm,直径一般为2~20nm。长度可达数微米,因此有较大的长径比。资料表明:碳纳米管的晶体结构为 密排六,c=0.6852nm,c/a=2.786 ,与石墨相 比,a值稍小而c值稍大,预示着同一层碳管 内原子间有更强的键合力,碳纳米管有极高 的同轴向强度。多壁碳纳米管存在三种类型 的结构,分别称为单臂纳米管、锯齿形纳米 管和手性形纳米管。 由于其独特的结构,碳纳米管的研究具 有重大的理论意义和潜在的应用价值,如:其独特的结构是理想的一维模型材料;巨大的长径比使其有望用作坚韧的碳纤维,其强度为钢的100倍,重量则只有钢的1/6;同时它还有望用作为分子导线,纳米半导体材料,催化剂载体,分子吸收剂和近场发射材料等。 (二)碳纳米管的主要性质及应用 (1)碳纳米管的性质如下:

1. 碳纳米管上碳原子的P电子形成大范围的离域π键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。 碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。理论预测其导电性能取决于其管径和管壁的螺旋角。当CNTs的管径大于6nm时,导电性能下降;当管径小于6nm时,CNTs可以被看成具有良好导电性能的一维量子导线。有报道说Huang通过计算认为直径为0.7nm的碳纳米管具有超导性,尽管其超导转变温度只有1.5×10-4K,但是预示着碳纳米管在超导领域的应用前景。 常用矢量Ch表示碳纳米管上原子排列的方向,其中Ch=na1+ma2,记为(n,m)。a1和a2分别表示两个基矢。(n,m)与碳纳米管的 导电性能密切相关。对于一个给定(n,m)的纳米 管,如果有2n+m=3q(q为整数),则这个方向上 表现出金属性,是良好的导体,否则表现为半导 体。对于n=m的方向,碳纳米管表现出良好的导 电性,电导率通常可达铜的1万倍。 2. 碳纳米管具有很高的杨氏模量和抗拉强度,杨氏模量估计可高达5T Pa;同时碳纳米管还具有极高的韧性,十分柔软.碳纳米管的导电性与本身的直径和螺旋度有关,随着这些参数的变化可表现出导体或半导体性质。碳纳米管管壁在生长过程中有时会出现五边形和七边形缺陷,使其局部区域呈现异质结特性。不同拓扑结构的碳纳米管连接在一起会出现非线性结效应,有近乎理想的整流效应.在室温条件下,碳纳米管能够吸收较窄频谱的光波,能以新的频谱发射光波,还能发射与原来频谱完全相同的光波。 (2)碳纳米管还有以下的应用: 1. 纳米电子学方面 作为典型的一维量子输运材料,用金属性单层碳纳米管制成的三极管在低温下表现出典型的库仑阻塞和量子电导效应。碳纳米管既可作为最细的导线被用在纳米电子学器件中,也可以被制成新一代的量子器件。碳纳米管还可用作扫描隧道显微镜或原子力显微镜的探针。碳纳米管还为合成其它一维纳米材料的控制生长供了一种模板或框架,碳纳米管在高温下非常稳定,利用碳纳米管的限制反应可制备其它材料的一维纳米结构。这一方法用于制备多种金属碳化物一维纳米晶

富勒烯c60的结构及应用

简述富勒烯C60的结构及应用 结构: C60的分子结构为球形32面体,它是由60个碳原子以20个六元环和12个五元环连接而成的具有30个碳碳双键(C=C)的足球状空心对称分子,所以,富勒烯也被称为足球烯。球体直径约为710pm,即由12个五边形和20个六边形组成。其中五边形彼此不相联接只与六边形相邻。与石墨相似,每个碳原子以sp2杂化轨道和相邻三个碳原子相连,剩余的p 轨道在C60分子的外围和内腔形成π键 应用: 一.用于增强金属: 在增强金属材料方面,C60的作用将比焦炭中的碳更好,这是因为C60比碳的颗粒更小、活性更高,C60与金属作用产生的碳化物分散体的颗粒大小是0.7nm,而碳与金属作用产生的碳化物分散体的颗粒大小为2μm~5μm,在增强金属的作用上有较大差别。 二.用作新型催化剂 C60具有烯烃的电子结构,可以与过渡金属(如铂系金属和镍)形成一系列络合物。例如C60与铂、锇可以结合成{[(C2H5)3P]2Pt}C60和C60OsO4·(四特丁基吡啶)等配位化合物,它们有可能成为高效的催化剂。 三.用于气体的贮存: 利用C60独特的分子结构,可以将C60用作比金属及其合金更为有效和新型的吸氢材料。每一个C60分子中存在着30个碳碳双键,因此,把C60分子中的双键打开便能吸收氢气。与金属或其合金的贮氢材料相比,用C60贮存氢气具有价格较低的优点,而且C60比金属及其合金要轻,因此,相同质量的材料,C60所贮存的氢气比金属或其合金要多。C60不但可以贮存氢气,还可以用来贮存氧气。与高压钢瓶贮氧相比,高压钢瓶的压力为3.9×106Pa,属于高压贮氧法,而C60贮氧的压力只有2.3×105 Pa,属于低压贮氧法。利用C60在低压下大量贮存氧气对于医疗部门、军事部门乃至商业部门都会有很多用途。 四.用于制造光学材料: 由于C60分子中存在的三维高度非定域电子共轭结构使得它具有良好的光学及非线性光

富勒烯及其衍生物的发展及研究

富勒烯及其衍生物的发展及研究 ——文献综述 摘要:富勒烯是无机化学研究中十分重要的一个领域。近年来,对富勒烯的结构、衍生物、在各方面的应用等都有了新的突破,而本文则是以文献综述的形式,通过阅读文献对近五年来有关富勒烯及其衍生物的发展及研究进行总结描述。 关键词:富勒烯物理性质化学性质应用 前言:1985年,人类在相继发现了石墨、金刚石之后,Kroto等发现了富勒烯,即C60,更以其独特的物理、化学性质引起了科学界普遍的关注。C60是含有众多双键具有独特笼型结构的三维芳香化合物.它的60个位于顶点上的碳原子组成了球形32面体,其中有12个面是五边形,20个面是六边形[1].这种结构类似于日常生活中所见到的足球,因此也被称作“足球烯”。这种特殊的结构使它具有特殊的超导、强磁性、耐高压、抗化学腐蚀等优异的性质.在超导材料、光电导材料、化妆品、纳米粒子材料、生物医学等领域应用前景广阔。内嵌式富勒烯的研究更是近来有关富勒烯研究的热门课题。 1.富勒烯的性质 1.1物理性质 C60是非极性分子,外观呈深黄固体,随厚度不同颜色可呈棕色到黑色.密度为1.678g/cm,不导电,但具有良好的非线性光学性质、光电导性,是很好的光电导材料,熔点>553K,易升华,易溶于含有大∏键的芳香性溶剂中,磁流中性,但是其五元环有很强的顺磁性,而六元环具有较为缓和的介磁性;分子中的60个碳原子是完全等价的.由于球面的弯曲效应、五元环的存在,使得碳原子的杂化方式介于sp2和sp3杂化之间,从立体构型来看,C60具有点群对称性,分子价电子数高达240个。[2] 1.2化学性质 1.2.1亲核反应—与金属的反应 C60与金属的反应主要分为两类一种是金属被置于C60碳笼的内部; 另一种是金属位于C60碳笼的外部。 (1)C 60碳笼内配合物生成反应: C60碳笼为封 闭的中空的多面体结构, 其内腔直径为7. 1 A,内部可嵌入原子、离子 或小分子形成新的团簇分子 , C 60+ A C60 ( A)。其主要包含物种 类为金属、惰性气体及部分极性分子(如LiF),其中金属包含物研究 最为广泛。Sm alley等人现已发现如 K、Na、Ba、Sr、Ho、Th等碱金 属、碱土金属、绝大多数稀有金属均可与C60形成C60(A)。 (2)C60碳笼外键合反应: 能与 C60键合的金属有: V、Fe、Co、Ni、Rh、Cu、La、Yb、Ag 等[3]。 1.2.2加成反应 由于C60的不饱和性,C60可以与胺类、磷化物等发生加成反应,在格氏试剂作用下还可以与CH3I反应,生成烷基化物。

富勒烯相关知识

富勒烯 制备 目前较为成熟的富勒烯的制备方法主要有电弧法、热蒸发法、燃烧法和化学气相沉积法等。 电弧法 一般将电弧室抽成高真空, 然后通入惰性气体如氦气。电弧室中安置有制备富勒烯的阴极和阳极, 电极阴极材料通常为光谱级石墨棒,阳极材料一般为石墨棒, 通常在阳极电极中添加铁,镍,铜或碳化钨等作为催化剂。当两根高纯石墨电极靠近进行电弧放电时, 炭棒气化形成等离子体,在惰性气氛下碳分子经多次碰撞、合并、闭合而形成稳定的C60及高碳富勒烯分子, 它们存在于大量颗粒状烟灰中, 沉积在反应器内壁上, 收集烟灰提取。电弧法非常耗电,成本高,是实验室中制备空心富勒烯和金属富勒烯常用的方法。 燃烧法 将苯、甲苯在氧气作用下不完全燃烧的碳黑中有C60或C70,通过调整压强、气体比例等可以控制C60与C70的比例,该法设备要求低,产率可达到%-9%,是工业中生产富勒烯的主要方法。 化学气相沉积(CVD) 主要用于制备碳纳米管,合适实验条件可制备出富勒烯。反应过程:有机气体和N2压入石英管,用激光、电阻炉或等离子体加热,气体分子裂解后在催化剂表面生长成富勒烯或碳纳米管。催化剂一般为Fe、Co、Ni、Cu颗粒。CVD设备简单,原料成本低,产率高;并且反应过程易于控制,可大规模生产。 提纯

通常是以C60为主,C70为辅的混合物,还有碳纳米管、无定形碳和碳纳米颗粒。决定富勒烯的价格和其实际应用的关键就是富勒烯的纯化。实验室常用的富勒烯提纯步骤是:从富含C60和C70的烟尘中先用甲苯索氏提取,然后纸漏斗过滤。蒸发溶剂后,剩下的部分(溶于甲苯的物质)用甲苯再溶解,再用氧化铝和活性碳混合的柱色谱粗提纯,第一个流出组分是紫色的C60溶液,第二个是红褐色的C70,此时粗分得到的C60或C70纯度不高,还需要用高效液相色谱(纯度高,设备昂贵,分离量小)来精分。Nagata发明了一项富勒烯的公斤级纯化技术。该方法通过添加二氮杂二环到C60, C70等同系物的1、2、3-三甲基苯溶液中。DBU只会和C70以及更高级的同系物反应,并通过过滤分离反应产物,而富勒烯C60与DBU不反应,因此最后得到C60的纯净物;其它的胺化合物,如DABCO,不具备这种选择性。 C60可以与环糊精以 1:2的比例形成配合物,而C70则不行,一种分离富勒烯的方法就是基于这个原理,通过S-S桥固定环糊精到金颗粒胶体,这种水溶性的金/环糊精的复合物[Au/CD]很稳定,与不水溶的烟灰在水中回流几天可以选择性地提取C60,而C70组分可以通过简单的过滤得到。将C60从[Au/CD] 复合物中分离是通过向环糊精水溶液加入对环糊精内腔具有高亲和力的金刚烷醇使得C60与[Au/CD] 复合物分离而实现C60的提纯,分离后通过向[Au/CD/ADA]的复合物中添加乙醇,再蒸馏,实现试剂的循环利用。50毫克[Au/CD]可以提取5毫克富勒烯C60。后两种方法都只停留在实验室阶段,并不常用。 Coustel重结晶法 Coustel等利用C60和C70在甲苯溶液中溶解度的不同,通过简单的重结晶法得到纯度为95-99%的C60 。本方法第一次重结晶得到C60的纯度约为95%,通过二次重结晶得到的C60 ,纯度达到98%-99%。 Prakash法由于C70等高富勒烯对AlCl3的亲和力大于C60 ,据此,Prakash将C60与C70的混合物溶入CS2中,加入适量AlCl3 ,由于C70等高富勒烯与AlCl3形成络合物,因而从溶液中析出, C60仍留在溶液

富勒烯

富勒烯 富勒烯(Fullerene) 是一种碳的同素异形体.任何由碳一种元素组成, 以球状, 椭圆状, 或管状结构存在的物质, 都可以被叫做富勒烯. 富勒烯与石墨结构类似, 但石墨的结构中只有六元环, 而富勒烯中可能存在五元环. C60是于1985年由Rich ard Buckminster Fuller发现的第一个富勒烯, 又被称为足球烯. 这是因为C60的表面结构与足球完全一致. 富勒烯这个名称也由Fuller 而来, 而我们一般用Buckm inster fullerene 指足球烯. 性质 密度和溶解性 C60的密度为cm。 C60不溶于水,在正己烷、苯、二硫化碳、四氯化碳等非极性溶剂中有一定的溶解性。 导电性 碳原子本具有导电性,而C60分子的导电性优于铜,重量只有铜的六分之一,一个巴克球分子相当于一纳米,可谓极微小,它的导电性来自奇特的分子结构并非靠其他原子,可见不久的将来人类世界将诞生非金属电缆、非金属电路板...等富勒烯产品。 结构

克罗托受建筑学家理查德·巴克明斯特·富勒(RichardBuckminsterFuller,18 95年7月12日~1983年7月1日)设计的美国万国博览馆球形圆顶薄壳建筑的启发,认为C60可能具有类似球体的结构,因此将其命名为buckminster fullerene(巴克明斯特·富勒烯,简称富勒烯)。 富勒烯是一系列纯碳组成的原子簇的总称。它们是由非平面的五元环、六元环等构成的封闭式空心球形或椭球形结构的共轭烯。现已分离得到其中的几种,如C60和C70等。在若干可能的富勒烯结构中C60,C240,C540和直径比为1:2:3。C60的分子结构的确为球形32面体,它是由60个碳原子以20个六元环和12个五元环连接而成的具有30个碳碳双键(C=C)的足球状空心对称分子,所以,富勒烯也被称为足球烯。球体直径约为710pm,即由12个五边形和20个六边形组成。其中五边形彼此不相联接只与六边形相邻。与石墨相似,每个碳原子以sp2杂化轨道和相邻三个碳原子相连,剩余的p轨道在C60分子的外围和内腔形成π键。 (补充:C60双键数的计算方法 由于每个孤立的碳原子周围有三个键(一个双键,两个单键)。而每个键却又是两个碳原子所共有,因此棱数=60×3×(1/2)=90 由于单键数+双键数=总棱边数单键数=2×双键数(即单键数为双键数的2倍)设单键数为a个,双键数为b个,则 a+b=90 a=2b 所以b=30) 其他

富勒烯C60衍生物的结构、性质、-----制备及其应用综述

富勒烯C60衍生物的结构、性质、-----制备及其应用综述

有机化学课程小论文 课题名称:富勒烯C60衍生物的结构、性质、制 备及其应用综述 学生姓名: 学号: 指导教师: 2011年1月13日

目录 摘要:.................................................................... I 关键词:................................................................ I Abstract: ....................................................... I I Key world:.................................................... I I 1.前言 (1) 1.1概述 (1) 1.2选题的意义 (1) 2.富勒烯C60衍生物的结构、性质、制备及其应用 (2) 2.1富勒烯C60衍生物的结构 (2) 2.1.1金属富勒烯的结构 (2) 2.1.2 C60吲哚衍生物的结构 (3) 2.1.3 C60杂环衍生物的结构 (3) 2.1.4 C60含氮衍生物的结构 (4) 2.1.5 C60-TTF衍生物结构 (4) 2.2富勒烯C60衍生物的性质 (4) 2.2.1 金属富勒烯的性质 (4) 2.2.2 C60吲哚衍生物的性质 (5) 2.2.3 C60杂环衍生物的性质 (5) 2.2.4 C60含氮衍生物的性质 (5) 2.2.5 C60-TTF衍生物的性质 (5)

富勒烯简介

富勒烯 诺贝尔博物馆里的富勒烯模型球碳,原名富勒烯(Fullerene,又译作福乐烯),又名巴基球或巴克球(Buckyball),是于1985年发现的继金刚石和石墨之后碳元素的第三种晶体形态,又一类碳的同素异形体。 预言及发现 1985年,英国化学家哈罗德·沃特尔·克罗托博士(Sir Harold Walter Kroto,19 39年10月7日~)和美国科学家理查德·埃里特·史沫莱(Sir Richard Errett Small ey,1943年6月6日~)等人在氦气流中以激光汽化蒸发石墨实验中首次制得由60个碳组成的碳原子簇结构分子C60。为此,克罗托博士获得1996年度诺贝尔化学奖。 结构 克罗托受建筑学家理查德·巴克明斯特·富勒(Richard Buckminster Fuller,189 5年7月12日~1983年7月1日)设计的美国万国博览馆球形圆顶薄壳建筑的启发,认为C60可能具有类似球体的结构,因此将其命名为buckminster fullerene(巴克明斯特·富勒烯,简称富勒烯)。 富勒烯是一系列纯碳组成的原子簇的总称。它们是由非平面的五元环、六元环等构成的封闭式空心球形或椭球形结构的共轭烯。现已分离得到其中的几种,如C60 和C70等。在若干可能的富勒烯结构中C60,C240,C540和直径比为1:2:3。C60的分子结构的确为球形32面体,它是由60个碳原子以20个六元环和12个五元环连接而成的具有30个碳碳双键(C=C)的足球状空心对称分子,所以,富勒烯也被称为足球烯。球体直径约为710pm,即由12个五边形和20个六边形组成。其中五边形彼此不相联接只与六边形相邻。与石墨相似,每个碳原子以sp2杂化轨道和相邻三个碳原子相连,剩余的p轨道在C60分子的外围和内腔形成π键。 (补充:C60双键数的计算方法 由于每个孤立的碳原子周围有三个键(一个双键,两个单键)。而每个键却又是两个碳原子所共有,因此棱数=60×3×(1/2)=90 由于单键数+双键数=总棱边数单键数=2×双键数(即单键数为双键数的2倍)设单键数为a个,双键数为b个,则 a+b=90 a=2b 所以b=30)

富勒烯C60的研究及应用

富勒烯C60的研究及应用 一纳米碳管的发现^ 碳元素作为自然界最普遍的元素之一, 以其特^有的成键轨道, 形成了丰富多彩的碳的家族。一直以^来人们认为自然界只存在三种碳的同素异形体: 金^刚石、石墨、无定形碳。1985 年Kro to, Smalley 等人^发现幻数为60 的笼状C60分子[1 ] , 其60 个碳原子分^别位于由20 个六边形环与12 个五边形环组成足球^状多面体的顶点上; 1990 年KratschmerW. 用石墨^电极电弧放电[2 ]首次宏观量地合成了C60, 其后, 球^形或椭球形的C70、 C76、C78、C82、C84 等又被相继发^现, 标志着碳的同素异形体的又一大家族富勒烯的^兴起。1991 日本N EC 的Iijima[3 ]用真空电弧蒸发石^墨电极, 并对产物作高分辨透射电镜(HREM ) , 发现^了具有纳米尺寸的碳的多层管状物——纳米碳管,^国内学者常称之为巴基管。巴基管的发现^掀起了续C60后富勒烯的又一次研究高潮。此后Ima S. [4 ]、Bethune D. [5 ]等人以Fe、Co 为催化剂进行^^电弧反应, 生长出了单层、半径1nm 的碳管, S.^Amelinckx 等[6 ] 采用金属催化热分解碳氢化合物^法, 制备出了螺旋状的纳米碳管。Ivanov V. 等[7 ]用^这一方法长出了长达50Lm 的纳米碳管等。纳米碳管以它独特的一维管状分子结构开辟了纳米材料的^新领域, 人们对于它的研究正方兴未艾。 二纳米碳管的分子结构和性能^

什么是纳米碳管? ThomasW. 定义[8 ]是: 由单^层或多层石墨片卷曲而成的无缝纳米级管。每片纳^米管是一个碳原子通过SP2 杂化与周围三个碳原子^完全键合而成的、由六边形平面组成的圆柱面; 其平^面六角晶胞边长为2146A °, 最短的碳2碳键长^1142A °, 接近原子堆垛距离(1139A °)。多层纳米碳^管的层间接近ABAB ?堆垛, 片间距一般为^0134A °, 与石墨片间距基本相当。各单层管的顶端^由五边形或七边形参与封闭。由于其直径接近富勒^烯而长度很长(可达Lm 级) , 也可将它看作拉长的^富勒烯。用电弧法制备的纳米碳管外径一般为20— ^30nm [9 ] , 内径为1—3nm。用催化法时, 其片层少甚^至单层管(直径为112nm ) [4 ]. 纳米碳管长度一般可^达1Lm, 长径比100—1000, 完全可认为是一维分^子。纳米碳管多为多层管, 封闭而弯曲, 这是因为六^边形中引入了五边形和七边形。在生长过程中, 六边^形环需要在周边结点上加二个碳原子, 如碳供应减^少, 只进入一个碳原子, 结果形成五边形环, 引起正^弯曲; 反之, 碳原子高速流利于形成七边形环, 其有^三个碳原子进入成键, 引起负弯曲。纳米碳管的弯管^处引入五边形环和七边形整体才连续, 从拓扑学分^析在弯曲处五边形与七边形环应成对出现。^纳米碳管分螺旋和非螺旋两种。螺旋角指碳2碳^键与垂直于圆柱轴的平面所成的最小角。非螺旋的^纳米碳管指碳2碳键垂直于圆柱轴(螺旋角H= 0°) ,^此时卷曲方向[ 10 10 ]^3^; 或碳2碳键平行于 圆柱轴^(螺旋角H= 30°) , 此时卷曲方向[11 20 ]^3^。非螺旋的^

富勒烯C60衍生物的结构、性质、-----制备及其应用综述

有机化学课程小论文 课题名称:富勒烯C60衍生物的结构、性质、制备及 其应用综述 学生: 学号: 指导教师: 2011年1月13日

目录 摘要: ...................................................................... I 关键词: .................................................................... I Abstract: .............................................................. II Key world: ............................................................. II 1.前言 . (1) 1.1概述 (1) 1.2选题的意义 (1) 2.富勒烯C60衍生物的结构、性质、制备及其应用 (2) 2.1富勒烯C60衍生物的结构 (2) 2.1.1金属富勒烯的结构 (2) 2.1.2 C60吲哚衍生物的结构 (3) 2.1.3 C60杂环衍生物的结构 (3) 2.1.4 C60含氮衍生物的结构 (4) 2.1.5 C60-TTF衍生物结构 (4) 2.2富勒烯C60衍生物的性质 (4) 2.2.1 金属富勒烯的性质 (4) 2.2.2 C60吲哚衍生物的性质 (5) 2.2.3 C60杂环衍生物的性质 (5) 2.2.4 C60含氮衍生物的性质 (5) 2.2.5 C60-TTF衍生物的性质 (5) 2.3富勒烯C60衍生物的制备 (5) 2.3.1 C60吲哚衍生物的制备 (5) 2.3.2 C60杂环衍生物的制备 (6) 2.3.3 C60含氮衍生物的制备 (8) 2.3.4 多受阻酚富勒烯衍生物的合成 (8) 2.3.5 布基球烯衍生物C60Br24和LaC60的高效制备 (8) 2.3.6亚甲基[6,6]-Fullerene[C60]单羧酸衍生物的合成 (9) 2.4富勒烯C60衍生物的表征、分离、自组装 (9) 2.4.1 C60衍生物的表征 (9) 2.4.2 C60衍生物的分离 (10) 2.4.3 C60衍生物的自主装 (10) 2.5富勒烯C60衍生物的应用 (11) 2.5.1 C60衍生物在生物领域的应用 (11) 2.5.2 C60衍生物在光、电、磁方面的开发应用 (11) 2.5.3 C60高分子衍生物在摩擦学方面的应用 (12) 2.5.4 新型C60衍生物/Ag复合纳米材料 (12) 2.5.5C60衍生物在其它方面的应用 (12) 3.结语与展望 (13) [参考文献] (14)

富勒烯

姓名:秦晨学号:201130451119 富勒烯材料 前言: 富勒烯(Fullerene) 是一种碳的同素异形体。任何由碳一种元素组成,以球状,椭圆状,或管状结构存在的物质,都可以被叫做富勒烯。富勒烯与石墨结构类似,但石墨的结构中只有六元环,而富勒烯中可能存在五元环。1985年Robert Curl等人制备出了C60。1989年,德国科学家Huffman和Kraetschmer的实验证实了C60的笼型结构,从此物理学家所发现的富勒烯被科学界推向一个崭新的研究阶段。富勒烯的结构和建筑师Fuller的代表作相似,所以称为富勒烯。 1985年英国化学家哈罗德·沃特尔·克罗托博士和美国科学家理查德·斯莫利在莱斯大学制备出了第一种富勒烯,即富勒烯分子,因为这个分子与建筑学家巴克明斯特·富勒的建筑作品很相似,为了表达对他的敬意,将其命名为巴克明斯特·富勒烯。饭岛澄男早在1980年之前就在透射电子显微镜下观察到这样洋葱状的结构。自然界也是存在富勒烯分子的,2010年科学家们通过史匹哲太空望远镜发现在外太空中也存在富勒烯。“也许外太空的富勒烯为地球提供了生命的种子”。 在富勒烯的发现之前,碳的同素异形体的只有石墨、钻石、无定形碳(如炭黑和炭),它的发现极大地拓展了碳的同素异形体的数目。巴基球和巴基管独特的化学和物理性质以及在技术方面潜在的应用,引起了科学家们强烈的兴趣,尤其是在材料科学、电子学和纳米技术方面。 命名 很像足球的球型富勒烯也叫做足球烯,或音译为巴基球,中国大陆通译为富勒烯,台湾称之为球碳,香港译为布克碳;偶尔也称其为芙等;管状的叫做碳纳 为例,第一种是标准的写法,米管或巴基管。富勒烯的中文写法有三种,以C 60 即[60]富勒烯;第二种为碳60,60也不用下标,这是中文专用的写法;第三种为

富勒烯的研究应用与进展

富勒烯(C60)研究与应用现状 化工与材料学院

富勒烯(C60)研究与应用现状 (辽宁省大连市甘井子区轻工苑1号大连工业大学化工与材料学院 116034) 摘要:富勒烯发现至今只有短短20年时间,由于其独特的结构和物理、化学性质,吸引了众多科学家的目光,因此在这20 年中,使得C60化学得到了很大的发展.文章综述了富勒烯的几种合成方法,并阐述了目前常用的应用现状,最后对其未来的发展作了展望。 关键词富勒烯;合成方法;应用 引言 富勒烯的发现始于1985 年Kroto 等【1】在高真空环境下激光溅射石墨的研究。利用这种方法只能产生数以千计的富勒烯分子,根本无法进行富勒烯详细的性质表征研究, 当然更谈不上应用。1990 年,Krastchmer 等【2】发明了低压氦气环境下石墨电极电弧放电法合成富勒烯,能够得到克量级的C60 产物。由于富勒烯特殊的结构和性能,在材料、化学、超导与半导体物理、生物等学科和激光防护、催化剂、燃料、润滑剂、合成、化妆品、量子计算机等工程领域具有重要的研究价值和应用前景。1991 年富勒烯被美国《科学》杂志评为年度分子,富勒烯被列为21 世纪的新材料。此后,科学家经过不断的探索和研究,发明了更多生产富勒烯的方法,例如连续石墨电极放电法、激光配合高温石墨棒蒸发法【3】、引入铁磁性金属催化剂法【4、5】、高温等离子体石墨蒸发法【6、7】,苯高温火焰燃烧法【8-10】等。而且富勒烯在日常生活中的应用越来越广泛, 因而富勒烯产品在未来社会具有很好的发展前景。 2.富勒烯的合成方法 2.1水下放电法 水下放电法【11】将电弧室中的介质由惰性气体换为去离子水, 采用直流电弧放电, 以碳纯度为99%、直径6mm的碳棒做阳极, 直径为12mm的碳棒做阴极, 放入2. 5L 的去离子水中至其底部3mm的位置, 在电压为16 ~17V、电流为30A的条件下拉直流电弧, 产物可在水表面收集。 水下放电法不需要传统电弧法的抽气泵和高度密封的水冷真空室等系统, 免除了复杂昂贵的费用, 可进一步降低反应温度, 能耗更小, 并且产物在水表面收集而不是在整个有较多粉尘的反应室。与传统电弧法相比, 此法产率及质量均较高。此法可制备出球形洋葱富勒烯、像富勒烯似的碳纳米粒子、类似碳纳米管和富勒烯粉末。 总之, 电弧法是目前应用最广泛、有可能进一步扩大生产规模的制备方法, 其C60产率可达10% ~13% , 为其物理、化学的研究奠定了基础。电弧法制备碳纳米管产率约为30% ~70% , 在电弧放电的过程中能达到4 000K的高温, 这样的温度下碳纳米管最大程度地石墨化, 所以制备的管缺陷少, 比较能反映碳纳米管的真正性能。但由于电弧放电通常十分剧烈, 难以控制进程和产物, 合成的沉积物中存在有碳纳米颗粒、无定形炭或石墨碎片等杂质, 而且碳管和杂质融合在一起, 很难分离。 2.2CVD法 CVD是制备富勒烯的另一种典型方法。催化热分解反应过程一般是将有机气体(通常为C2 H2 )混以一定比例的氮气作为压制气体, 通入事先除去氧的石英管中, 在一定的温度下, 在催化剂表面裂解形成碳源, 碳源通过催化剂扩散,在催

相关主题
文本预览
相关文档 最新文档