当前位置:文档之家› 微电子器件(3-3)

微电子器件(3-3)

均匀基区相关知识点
I pE
I pC
I pr
I nE
I nr

相关公式
β?
W B2 τb =1? =1? 2 2 LB τB
D EW B N B WBρE γ = 1? D W N = 1? W ρ B E E E B
? W B2 α =? ?1 ? 2 L2 B ?
2 B 2 B
R口E = 1? R口B1
?? R口E ? W B2 R口E ? ?? ? ≈ 1 ? 2 L2 ? R ?1 ? R ? 口 B1 ? B 口 B1 ??
?W R口E ? β ≈? + R口B1 ? 2L
? ? ? ?
?1

§3-3 缓变基区晶体管的放大系数
以NPN 管为例,结电压为 VBE 与 VBC 。
现代晶体管,如双扩散外延平面管 属缓变基区晶体管,由于载流子在 基区主要是以漂移运动在传输,故 它又称为 漂移晶体管。

N+
0
P
N
杂质浓度分布图:
x jE x jC
WB = x jC ? x jE
N E ( x) N B ( x)
NC
0
x jE x jC
x

1、基区内建电场的形成与求解 形成的物理机理
(以P型基区的Xmb-Xjc段为例)
xjE 和xjC为发射结 和集电结结深, xmB为杂质补偿后 基区净杂质浓度 的极值位置
杂质浓度高的地方留下不 可移动的电离杂质电荷 (NA-),杂质浓度低的地 方积累多子(空穴)
杂质(NA) 浓度梯度
杂质电离
多子(空 穴) 浓度梯度
多子(空 穴) 扩散
正负电荷 分离
内建电场

内建电场的作用 漂移晶体管
电场方向:指向发射结 加速场 电场作用: 基区的少子(电子) 向集电结方向漂移运 动,对少子有加速作用 向发射结方向漂移运动, 抵消多子扩散运动 多子电流等于零
基区的多子(空穴)

xjE到xmB段,将产生一个与EB方向相反的自建电场EB’,它将阻止 基区中少子(电子)流向集电结,称阻滞电场,该部分基区称阻 滞区。 一般情况下,相对与整个基区而言,阻滞区很窄,一般可以忽略。

请从以下几方面总结半导体器件中的内建电场
① 掺杂不均匀产生的内建电场 ~ 产生机理? 对多数载流子运动的影响? 对少数载流子运动的影响? ② 大注入产生的内建电场 ~ 产生机理? 对多数载流子运动的影响? 对少数载流子运动的影响 ? ③ p-n结中的内建电场 ~ 产生机理? 势垒区(阻挡层)→阻挡多数载流子还是阻挡少数载流子? 耗尽层近似?→ 耗尽什么种类的载流子?

三个内建电场形成机理的比较
内建电场种类
形成原因 P区与N区刚接触 时冶金结两边存 在自由载流子浓 度差 大注入时中性区 多子具有浓度梯 度分布
电荷分离的表现形式 冶金结两边自由载流子扩散,留下不 可移动的电离施主和受主杂质电荷在 空间上分离 多子与少子同时扩散,但由于多子扩 散得不到补充,最终使得靠近耗尽区 少子浓度高于多子浓度,远离耗尽区 边界少子浓度低于多子浓度,最终多 子与少子电荷在空间上分离 多子浓度扩散,使得靠近发射结耗尽 区的电离杂质电荷高于多子,靠近集 电结耗尽区的电离杂质电荷低于多 子,造成电离杂质电荷与多子电荷在 空间上分离
作用 载流子的扩散运 动等于漂移运动
PN结空间电 荷区内建电 场 大注入PN结 中性区中的 内建电场 (自建场) 缓变基区BJT 中基区内建 电场
多子的扩散运动 与漂移运动抵 消,加强少子扩 散运动 多子的扩散运动与 漂移运动抵消,少 子在基区以漂移运 动为主
掺杂原子具有浓 度梯度,多子具 有相同的浓度梯 度分布

基区内建电场表达式的推导 设基区杂质浓度分布为:
NB (0)
NB (x)
? ηx ? N B ( x ) = N B ( 0 ) exp ? ?? W ? ? B ? ? 式中 η 是表征基区内杂质
变化程度的一个参数:
NB (WB )
0
WB
x
N B (W B ) = N B ( 0 ) exp (? η )
N B (0) η = ln N B (W B )
当 η = 0 时为均匀基区。 在实际的缓变基区晶体管中, η = 4 ~ 8 。
η由基区两边界的 杂质浓度决定

小注入时,基区中总的多子浓度即为平衡多子浓度:
pB ( x) = pBO ( x) = N B ( x)
在动态平衡时,基区中多子(空穴)的漂移电流与扩 散电流大小相等,方向相反,即基区多子电流为零:
dp B ( x ) J p = ? qD p + qμ p p B ( x ) E = 0 dx
得内建电场为:
dp B ( x ) Dn 1 dN B ( x ) 1 ? ? E= = ? ? μ p p B ( x ) dx μn N B ( x) dx
dN B < 0 , E < 0 ,故对电子起加速作用,称为 由于 dx
加速场 。
Dp

2、基区少子分布与少子电流 下面的说话正确吗?
由于基区宽度远小于少子扩散长度,所以缓变基区中的 少子分布呈线性分布。
缓变基区中的少子分布可以通过求解基区中的(1-21)或 (1-23)少子扩散方程得到。

基区少子分布 缓变基区的电子电流密度方程为
dnB ( x) J nE ( x) = ?qDB ? qμ n nB ( x) E ( x) dx
将基区的内建电场
dN B ( x ) 1 ? ? E ( x) = μ n N B ( x) dx
代入电子电流密度方程,有
Dn
dnB ( x) nB ( x) dN B ( x) J nE ( x) = ?qDB ? qDB ? dx N B ( x) dx

dnB ( x) nB ( x) dN B ( x) J nE ( x) = ?qDB ? qDB ? dx N B ( x) dx
将上式整理为
dN B ( x ) ? dn B ( x ) ? + nB ( x ) J nE ( x ) N B ( x ) = ? qDB ? N B ( x ) ? dx ? dx ? d (nB ( x ) N B ( x ) ) = ? qDB dx
由于中性基区很薄,少子在基区中的复合很少,可以假设 JnE(x)在整个中性基区中为常数JnE,则从中性基区中任意位置开 始积分, 有
J nE ∫
WB
x
N B ( x )dx = ? qD B ∫
WB
x
d (n B ( x ) N B ( x ) )

J nE ∫
WB
x
N B ( x )dx = ? qD B ∫
WB
x
d (n B ( x ) N B ( x ) )
= ? qD B [n B (W B ) N B (W B ) ? n B ( x ) N B ( x ) ]
n B (W B )
? ? qV BC = n B 0 ? exp ? ? kT ?
? ? ? ? 1? ? ?
对集电结短路情形,VBC=0,则
n B (W B ) = 0
从而有
J nE ∫
WB
x
N B ( x )dx = qD B n B ( x ) N B ( x )


J nE ∫

WB
x
N B ( x )dx = qD B n B ( x ) N B ( x )
WB J nE nB ( x) = N B ( x )dx ∫ qD B N B ( x ) x WB ? ηx? J nE ? N B (0 ) exp ? dx = ? ∫ ? ? x qD B N B ( x ) ? WB ?
J nE W B 1 ? exp [? η (1 ? x W B )] = ? qD B η

J nE W B 1 ? exp [? η (1 ? x W B )] ? nB ( x) = η qD B n B ( x ) qD B 1 ? exp [? η (1 ? x W B )] = η J nE W B
η=0相当于均匀基区的情况, η越大,电场越强,这时基区中 大部分区域的电子浓度梯度都比 较小,只有在靠近集电结处,浓 度梯度才增大,所以,电子在基 区的传输以漂移为主
对于均匀基区:
η→0
lim n B ( x ) =
J nE W B qD B
? x ? 1 ? ? WB ?
? ? x ? ? ( ) n 0 1 = ? B ? ? WB ? ?
? ? ? ?

基区少子电流密度 前面已假设JnE(x)在整个中性基区中为常数JnE,则由
J nE ∫
WB
x
N B ( x )dx = qD B n B ( x ) N B ( x )
将积分下限改为0,有
J nE ∫
WB
0
N B ( x )dx = qD B n B ( 0 ) N B ( 0 )


J nE ∫
WB
0
N B ( x )dx = qD B n B ( 0 ) N B ( 0 )
n B (0)

ni2 ? ? qV BE = exp ? ? N B (0) ? ? kT
? ? ? ? 1? ? ?
J nE =
qD B n B (0) N B (0)

WB
0
N B dx
? ? ? ? 1? ? ?
qD B ni2 ? ? qV BE = WB ?exp ? kT ? ? N dx B ∫
0

根据非均匀材料方块电阻表达式,缓变基区的方块电阻为:
R口B1 =
于是 JnE 可表示为:
1 qμ p ∫
WB 0
N B dx
积分表示基区内单位 面积的杂质原子 总数,也称Gummel数
J nE
? ? qV BE ? ? = q μ p R口 B1 D B n ? exp ? ? ? 1? ? kT ? ? ?
2 2 i
= qkT μ p μ n R
2 口 B1 i
? ? qV BE n ? exp ? ? kT ?
? ? ? ? 1? ? ?

微电子器件__刘刚前三章课后答案.

课后习题答案 1.1 为什么经典物理无法准确描述电子的状态?在量子力学 中又是用什么方法来描述的? 解:在经典物理中,粒子和波是被区分的。然而,电子和光子是微观粒子,具有波粒二象性。因此,经典物理无法准确描述电子的状态。 在量子力学中,粒子具有波粒二象性,其能量和动量是通过这样一个常数来与物质波的频率ω和波矢k 建立联系的,即 k n c h p h E ====υ ω υ 上述等式的左边描述的是粒子的能量和动量,右边描述的则是粒子波动性的频率ω和波矢k 。 1.2 量子力学中用什么来描述波函数的时空变化规律? 解:波函数ψ是空间和时间的复函数。与经典物理不同的是,它描述的不是实在的物理量的波动,而是粒子在空间的概率分布,是一种几率波。如果用()t r ,ψ表示粒子的德布洛意波的振幅,以 ()()()t r t r t r ,,,2 ψψψ*=表示波的强度,那么,t 时刻在r 附近的小体 积元z y x ???中检测到粒子的概率正比于()z y x t r ???2,ψ。

1.3 试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。 解:如图1.3所示,从能带的观点来看,半导体和绝缘体都存在着禁带,绝缘体因其禁带宽度较大(6~7eV),室温下本征激发的载流子近乎为零,所以绝缘体室温下不 能导电。半导体禁带宽度较小,只有1~2eV ,室温下已经有一定数量的电子从价带激发到导带。所以半导体在室温下就有一定的导电能力。而导体没有禁带,导带与价带重迭在一起,或者存在半满带,因此室温下导体就具有良好的导电能力。 1.4 为什么说本征载流子浓度与温度有关? 解:本征半导体中所有载流子都来源于价带电子的本征激发。由此产生的载流子称为本征载流子。本征激发过程中电子和空穴是同时出现的,数量相等,i n p n ==00。对于某一确定的半导体材料,其本征载流子浓度为kT E V C i g e N N p n n ==002 式中,N C ,N V 以及Eg 都是随着温度变化的,所以,本征载流子浓度也是随着温度变化的。 1.5 什么是施主杂质能级?什么是受主杂质能级?它们有何异同?

微电子器件原理总结

三种管子的工作原理、符号、结构、电流电压方程、电导、跨导、频率 然后还有集边效应,二次击穿 双极型晶体管: 发射极电流集边效应: (1)定义:由于p-n 结电流与结电压的指数关系,发射结偏压越高,发射极边缘处的电流较中间部位的电流越大 (2)原因:基区体电阻的存在引起横向压降所造成的 (3)影响:增大了发射结边缘处的电流密度,使之更容易产生大注入效应或有效基区扩展效应,同时使发射结面积不能充分利用 (4)限制:限制发射区宽度,定义发射极中心到边缘处的横向压降为kT /q 时所对应的发射极条宽为发射极有效宽度,记为2S eff 。S eff 称为有效半宽度。 发射极有效长度 : (1)定义:沿极条长度方向,电极端部至根部之间压降为kT/q 时所对应的发射极长度称为发射极有效长度 (2)作用:类似于基极电阻自偏压效应,但沿Z 方向,作用在结的发射区侧 二次击穿和安全工作区: (1)现象:当晶体管集电结反偏增加到一定值时,发生雪崩击穿,电流急剧上升。当集电结反偏继续升高,电流I c 增大到某—值后,cb 结上压降突然降低而I c 却继续上升,即出现负阻效应。 (2)分类: 基极正偏二次击穿(I b >0)、零偏二次击穿和(I b =0)、反偏二次击穿(I b <0)。 (3)过程:①在击穿或转折电压下产生电流不稳定性; ②从高电压区转至低电压区,即结上电压崩落,该击穿点的电阻急剧下降; ③低压大电流范围:此时半导体处于高温下,击穿点附近的半导体是本征型的; ④电流继续增大,击穿点熔化,造成永久性损坏。 (4)指标:在二次击穿触发时间t d 时间内,消耗在晶体管中的能量 ?=d t SB IVdt E 0 称为二次击穿触发能量(二次击 穿耐量)。晶体管的E SB (二次击穿触发功率P SB )越大,其抗二次击穿能力越强。 (5)改善措施: 1、电流集中二次击穿 ①由于晶体管内部出现电流局部集中,形成“过热点”,导致该处发生局部热击穿。

清华大学半导体器件张莉期末考题

发信人: smallsheep (final examination), 信区: Pretest 标题: 微电子器件 发信站: 自由空间 (Mon Jun 20 10:27:10 2005), 站内 填空: 一,已知af,aR,和IES,求Ics=____(互易关系) 二.bjtA和bjtB。一个集电极是N-,一个集电极是N+ 问: 哪个饱和压降大___, 那个early电压大___ 那个容易电流集边___. 哪个容易穿通电压大_____ 哪个容易击穿BVCBO.____, 三.发射结扩散电容应该包括那几个时间常数的影响 简答: 1.β和ft对Ic的特性有很大的相似之处,比如在小电流段都随Ic的减小而减小,在大电流段都随Ic的增大而减小。请解释原因 2.总结一下NN+结的作用。 大题: 1.对于杂质浓度分布为NAB(x)=NAB(0)exp(-λx/WB)的分布,用moll-rose方法推出基区少子分布和渡越时间。 2.给了WB,WE,和其它一堆参数,求β,a,hef.... 求IB,Ic, 求π模型参数,gm,go,gu.. 3.画图,上升时间t0,t1’,t2’三点处的能带图,和少子分布图 总体来说很简单。好像很多人都很得意,ft! 发信人: willow (我要我的自由), 信区: Pretest 标题: 半导体器件-张莉 发信站: 自由空间 (Wed Jun 23 21:38:40 2004), 站内 A卷 1。以下那些是由热载流子效应引起的。。。 。。。6个选项,待补充。。。 2。何谓准静态近似 3。为了加快电路开关时间参数应如何选取 。。。参数,电容,fT,beita,待补充 4。CE律的参数变化, Vt,xSiO2,N,结深 按照参数的变化规律下列效应将如何变化 (1)掺杂浓度N引起:...5种效应,待补充。。。//sigh,我把N弄反了,5个空全错

半导体器件物理 试题库

半导体器件试题库 常用单位: 在室温(T = 300K )时,硅本征载流子的浓度为 n i = 1.5×1010/cm 3 电荷的电量q= 1.6×10-19C μn =1350 2cm /V s ? μp =500 2 cm /V s ? ε0=8.854×10-12 F/m 一、半导体物理基础部分 (一)名词解释题 杂质补偿:半导体内同时含有施主杂质和受主杂质时,施主和受主在导电性能上有互相抵消 的作用,通常称为杂质的补偿作用。 非平衡载流子:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度, 额外产生的这部分载流子就是非平衡载流子。 迁移率:载流子在单位外电场作用下运动能力的强弱标志,即单位电场下的漂移速度。 晶向: 晶面: (二)填空题 1.根据半导体材料内部原子排列的有序程度,可将固体材料分为 、多晶和 三种。 2.根据杂质原子在半导体晶格中所处位置,可分为 杂质和 杂质两种。 3.点缺陷主要分为 、 和反肖特基缺陷。 4.线缺陷,也称位错,包括 、 两种。 5.根据能带理论,当半导体获得电子时,能带向 弯曲,获得空穴时,能带 向 弯曲。 6.能向半导体基体提供电子的杂质称为 杂质;能向半导体基体提供空穴的杂 质称为 杂质。 7.对于N 型半导体,根据导带低E C 和E F 的相对位置,半导体可分为 、弱简 并和 三种。 8.载流子产生定向运动形成电流的两大动力是 、 。

9.在Si-SiO 2系统中,存在 、固定电荷、 和辐射电离缺陷4种基 本形式的电荷或能态。 10.对于N 型半导体,当掺杂浓度提高时,费米能级分别向 移动;对于P 型半 导体,当温度升高时,费米能级向 移动。 (三)简答题 1.什么是有效质量,引入有效质量的意义何在?有效质量与惯性质量的区别是什么? 2.说明元素半导体Si 、Ge 中主要掺杂杂质及其作用? 3.说明费米分布函数和玻耳兹曼分布函数的实用范围? 4.什么是杂质的补偿,补偿的意义是什么? (四)问答题 1.说明为什么不同的半导体材料制成的半导体器件或集成电路其最高工作温度各不相同? 要获得在较高温度下能够正常工作的半导体器件的主要途径是什么? (五)计算题 1.金刚石结构晶胞的晶格常数为a ,计算晶面(100)、(110)的面间距和原子面密度。 2.掺有单一施主杂质的N 型半导体Si ,已知室温下其施主能级D E 与费米能级F E 之差为 1.5B k T ,而测出该样品的电子浓度为 2.0×1016cm -3,由此计算: (a )该样品的离化杂质浓度是多少? (b )该样品的少子浓度是多少? (c )未离化杂质浓度是多少? (d )施主杂质浓度是多少? 3.室温下的Si ,实验测得430 4.510 cm n -=?,153510 cm D N -=?, (a )该半导体是N 型还是P 型的? (b )分别求出其多子浓度和少子浓度。 (c )样品的电导率是多少? (d )计算该样品以本征费米能级i E 为参考的费米能级位置。 4.室温下硅的有效态密度1932.810 cm c N -=?,1931.110 cm v N -=?,0.026 eV B k T =,禁带 宽度 1.12 eV g E =,如果忽略禁带宽度随温度的变化

微电子技术前沿复习(带答案的哦)

微电子前沿复习提纲 看一些微电子技术发展的知识 1.请给出下列英文缩写的英文全文,并译出中文: CPLD: Complex Programmable Logic Device复杂可编程逻辑器件 FPGA: Field-Programmable Gate Array 现场可编程门阵列 GAL:generic array logic 通用阵列逻辑 LUT: Look-Up-Table 显示查找表 IP: Intellectual Property 知识产权 SoC: System on Chip 片上系统 2.试述AGC BJT器件实现AGC特性的工作原理; 试说明为什么 AGC BJT的工作频率范围受限? AGC 即自动增益控制(Automatic Gain Control) ? AGC BJT器件实现AGC特性的工作原理:当输入增加时,输出会同时增加,我们 可利用双极型晶体管的大注入效应和大电流下的基区扩展--kirk效应,衰减增益, 使放大系数降低,则达到了稳定输出的目的。 ?工作频率范围受限原因: 1) 、自动增益控制特性与频率特性是相矛盾,实现AGC需要基区展宽,而器件 的工作频率与基区宽度的平方成反比,要实现大范围的自动增益控制,要求 宽基区,使得工作频率范围受限。 2) 、实现AGC要求基区大注入,基区掺杂浓度低时,易于发生大注入效应,而基 区掺杂浓度动愈低,器件高频噪声愈差,使得工作频率范围受限。 3.为什么双栅MOSFET具有良好的超高频(UHF)特性? 双栅MOSFET结构如图: 1) 、双栅MOS的端口 Gl靠近源极,对应的基区宽度短,加高频信号,称信号栅,可以实现超高频。 G2靠近漏极,对应的基区宽度较宽,有良好的AGC性能,加固定偏置或AGC电压,作增益控制栅。 2) 、它通过第二个栅极G2交流接地, 可在第一个栅极G1和漏极D之间起到有效的 静电屏蔽作用, 从而使得栅极与漏极之间的反馈电容(是Miller电容)大大减小,则 提高了频率。 4.为什么硅栅、耐熔金属栅能实现源漏自对准,而铝栅不行?实现

新人教版四年级语文上册-单元期中期末专项练习-第八组达标检测B卷及答案

第八组达标测试卷 一、基础达标。(共43分) 1.在加点字的正确读音下画“——”。(6分) 潜.入深海(qián qiǎn) 筛.选(shān shāi) 烹. 调(pēng hēng) 例.如(lì liè) 盐碱.(jiǎn xián) 储. 存(cǔ chǔ) 崭.新(zhǎn zhàn) 船舶.(bō bó) 凌. 空(lín líng) 提供.(gōng gòng) 奇迹.(jī jì) 楷模. (mú mó) 2.比一比,再组词。(4分) ?????赖( )懒( ) ?????辐( )副( ) ?????舶( )泊( ) ?????综( )棕( ) 3.正确书写词语。(8分) 4.连一连。(8分) 5.还原下面广告中的成语,找出改动的字画圈,把正确的字写在括

号里。(3分) 服装广告:百衣百顺()蚊香广告:默默无蚊() 磁化杯广告:有杯无患() 摩托车广告:骑乐无穷() 淋浴器广告:湿出有名() 软件广告:无网不胜() 6.用正确的关联词填空。(4分) (1)科学家们提出,鸟类()和恐龙有亲缘关系,()很可能 就是一种小型恐龙的后裔。 (2)()食用,太空归来的这些特殊乘客()有很多用武之地 呢! (3)电脑根据这些气象资料,为主人提供一个()节能()舒 适的家居环境。 (4)()太空蔬菜走进了千家万户,()我们餐桌上的菜肴更 丰富了。 7.句子训练。(10分) (1)我国科学家在辽宁西部首次发现了保存有羽毛印痕的恐龙化石。 (缩句) ________________________________________________________ (2)靠什么呼风唤雨呢?靠的是现代科学技术。(仿写) ________________________________________________________ (3)满天的星星在夜空中闪烁着光芒。(改为比喻句) ________________________________________________________ (4)我走上阳台。我去看爸爸养的金鱼。(合成一句话)

微电子学概论复习题及答案(详细版)

第一章 绪论 1.画出集成电路设计与制造的主要流程框架。 2.集成电路分类情况如何? ?????????????????? ????????????????????????????????????????????????????????????????????????????????????按应用领域分类数字模拟混合电路非线性电路线性电路模拟电路时序逻辑电路组合逻辑电路数字电路按功能分类GSI ULSI VLSI LSI MSI SSI 按规模分类薄膜混合集成电路厚膜混合集成电路混合集成电路B iCMOS B iMOS 型B iMOS CMOS NMOS PMOS 型MOS 双极型单片集成电路按结构分类集成电路 3.微电子学的特点是什么? 微电子学:电子学的一门分支学科 微电子学以实现电路和系统的集成为目的,故实用性极强。 微电子学中的空间尺度通常是以微米(m, 1m =10-6m)和纳米(nm, 1nm = 10-9m)为单位的。 微电子学是信息领域的重要基础学科 微电子学是一门综合性很强的边缘学科 涉及了固体物理学、量子力学、热力学与统计物理学、材料科学、电子线路、信号处理、计算机辅助设计、测试与加工、图论、化学等多个学科 微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微

电子学发展的方向 微电子学的渗透性极强,它可以是与其他学科结合而诞生出一系列新的交叉学科,例如微机电系统(MEMS)、生物芯片等 4.列举出你见到的、想到的不同类型的集成电路及其主要作用。 集成电路按用途可分为电视机用集成电路、音响用集成电路、影碟机用集成电路、录像机用集成电路、电脑(微机)用集成电路、电子琴用集成电路、通信用集成电路、照相机用集成电路、遥控集成电路、语言集成电路、报警器用集成电路及各种专用集成电路。 5.用你自己的话解释微电子学、集成电路的概念。 集成电路(integrated circuit)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。 6.简单叙述微电子学对人类社会的作用。 可以毫不夸张地说,没有微电子技术的进步,就不可能有今天信息技术的蓬勃发展,微电子已经成为整个信息社会发展的基石。随着微电子的发展,器件的特征尺寸越来越小第二章半导体物理和器件物理基础 1.什么是半导体?特点、常用半导体材料 什么是半导体? 金属:电导率106~104(W?cm-1),不含禁带; 半导体:电导率104~10-10(W?cm-1),含禁带; 绝缘体:电导率<10-10(W?cm-1),禁带较宽; 半导体的特点: (1)电导率随温度上升而指数上升; (2)杂质的种类和数量决定其电导率; (3)可以实现非均匀掺杂; (4)光辐照、高能电子注入、电场和磁场等影响其电导率; 硅:地球上含量最丰富的元素之一,微电子产业用量最大、也是最重要的半导体材料。 硅(原子序数14)的物理化学性质主要由最外层四个电子(称为价电子)决定。每个硅原子近邻有四个硅原子,每两个相邻原子之间有一对电子,它们与两个原子核都有吸引作用,称为共价键。 化合物半导体:III族元素和V族构成的III-V族化合物,如,GaAs(砷化镓),InSb(锑化铟),GaP(磷化镓),InP(磷化铟)等,广泛用于光电器件、半导体激光器和微波器件。2.掺杂、施主/受主、P型/N型半导体(课件) 掺杂:电子摆脱共价键所需的能量,在一般情况下,是靠晶体内部原子本身的热运动提供的。常温下,硅里面由于热运动激发价健上电子而产生的电子和空穴很少,它们对硅的导电性的影响是十分微小的。室温下半导体的导电性主要由掺入半导体中的微量的杂质(简称掺杂)来决定,这是半导体能够制造各种器件的重要原因。 施主:Donor,掺入半导体的杂质原子向半导体中 提供导电的电子,并成为带正电的离子。如 Si中掺的P 和As(最外层有5个价电子) 受主:Acceptor,掺入半导体的杂质原子向半导体中 提供导电的空穴,并成为带负电的离子。如 Si中掺的B(硼)(最外层只有3个价电子)

微电子前沿复习(带答案)

微电子技术前沿复习提纲 1.请给出下列英文缩写的英文全文,并译出中文: CPLD: Complex Programmable Logic Device复杂可编程逻辑器件 FPGA: Field-Programmable Gate Array 现场可编程门阵列 GAL:generic array logic 通用阵列逻辑 LUT: Look-Up-Table 显示查找表 IP: Intellectual Property 知识产权 SoC: System on Chip 片上系统 2.试述AGC BJT器件实现AGC特性的工作原理; 试说明为什么 AGC BJT的工作频率范围受限? AGC 即自动增益控制(Automatic Gain Control) ? AGC BJT器件实现AGC特性的工作原理:当输入增加时,输出会同时增加,我们 可利用双极型晶体管的大注入效应和大电流下的基区扩展--kirk效应,衰减增益, 使放大系数降低,则达到了稳定输出的目的。 ?工作频率范围受限原因: 1) 、自动增益控制特性与频率特性是相矛盾,实现AGC需要基区展宽,而器件 的工作频率与基区宽度的平方成反比,要实现大范围的自动增益控制,要求 宽基区,使得工作频率范围受限。 2) 、实现AGC要求基区大注入,基区掺杂浓度低时,易于发生大注入效应,而基 区掺杂浓度动愈低,器件高频噪声愈差,使得工作频率范围受限。 3.为什么双栅MOSFET具有良好的超高频(UHF)特性? 双栅MOSFET结构如图: 1) 、双栅MOS的端口 Gl靠近源极,对应的基区宽度短,加高频信号,称信号栅,可以实现超高频。 G2靠近漏极,对应的基区宽度较宽,有良好的AGC性能,加固定偏置或AGC电压,作增益控制栅。 2) 、它通过第二个栅极G2交流接地, 可在第一个栅极G1和漏极D之间起到有效的 静电屏蔽作用, 从而使得栅极与漏极之间的反馈电容(是Miller电容)大大减小,则 提高了频率。 4.为什么硅栅、耐熔金属栅能实现源漏自对准,而铝栅不行?实现 源漏自对准的目的是什么?

(完整word版)微电子器件与IC设计基础_第2版,刘刚,陈涛,课后答案.doc

课后习题答案 1.1 为什么经典物理无法准确描述电子的状态?在量子力学中又是用什么方法来描述的? 解:在经典物理中,粒子和波是被区分的。然而,电子和光子是微观粒子,具有波粒二象性。因此,经典物理无法准确描述电子的状态。 在量子力学中,粒子具有波粒二象性,其能量和动量是通过这样一个常数来与物质波的频率和波矢 k 建立联系的,即 E h h p n k c 上述等式的左边描述的是粒子的能量和动量,右边描述的则是粒子波动性的频率和波矢k。 1.2量子力学中用什么来描述波函数的时空变化规律? 解:波函数是空间和时间的复函数。与经典物理不同的是,它描述的不是实在的物理量 的波动,而是粒子在空间的概率分布,是一种几率波。如果用r , t 表示粒子的德布洛意 r ,t 2 r , t 表示波的强度,那么,t 时刻在 r 附近的小体积元 波的振幅,以r ,t x y z 中检测到粒子的概率正比于 2 r ,t x y z 。 1.3 试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。 解:如图 1.3 所示,从能带的观点来看,半导体和 绝缘体都存在着禁带,绝缘体因其禁带宽度较大 (6~7eV) ,室温下本征激发的载流子近乎为零,所 以绝缘体室温下不能导电。半导体禁带宽度较小, 只有1~2eV ,室温下已经有一定数量的电子从价 带激发到导带。所以半导体在室温下就有一定的 导电能力。而导体没有禁带,导带与价带重迭在 一起,或者存在半满带,因此室温下导体就具有 良好的导电能力。 1.4 为什么说本征载流子浓度与温度有关? 解:本征半导体中所有载流子都来源于价带电子的本征激发。由此产生的载流子称为本征载流子。本征激发过程中电子和空穴是同时出现的,数量相等,n0 p0 n i。对于某一确定 的半导体材料,其本征载流子浓度为 2 n0 p0 N C N V e E g kT n i 式中, N C,N V以及 Eg 都是随着温度变化的,所以,本征载流子浓度也是随着温度变化的。

半导体物理(微电子器件基础 )知识点总结

第一章 ●能带论:单电子近似法研究晶体中电子状态的理论 ●金刚石结构:两个面心立方按体对角线平移四分之一闪锌矿 ●纤锌矿:两类原子各自组成的六方排列的双原子层堆积而成(001)面ABAB顺序堆积●禁带宽度:导带底与价带顶之间的距离脱离共价键所需最低能量 ●本征激发:价带电子激发成倒带电子的过程 ●有效质量(意义):概括了半导体内的势场作用,使解决半导体内电子在外力作用下运 动规律时,可以不涉及半导体内部势场作用 ●空穴:价带中空着的状态看成是带正电的粒子 ●准连续能级:由于N很大,每个能带的能级基本上可以看成是连续的 ●重空穴带:有效质量较大的空穴组成的价带 ●窄禁带半导体:原子序数较高的化合物 ●导带:电子部分占满的能带,电子可以吸收能量跃迁到未被占据的能级 ●价带:被价电子占满的满带 ●满带:电子占满能级 ●半导体合金:IV族元素任意比例熔合 ●能谷:导带极小值 ●本征半导体:完全不含杂质且无晶格缺陷的纯净半导体 ●应变半导体:经过赝晶生长生成的半导体 ●赝晶生长:晶格失配通过合金层的应变得到补偿或调节,获得无界面失配位错的合金层 的生长模式 ●直接带隙半导体材料就是导带最小值(导带底)和满带最大值在k空间中同一位置 ●间接带隙半导体材料导带最小值(导带底)和满带最大值在k空间中不同位置 ●允带:允许电子能量存在的能量范围. ●同质多象体:一种物质能以两种或两种以上不同的晶体结构存在的现象 第二章 ●替位杂质:杂质原子取代晶格原子而位于晶格点处。 ●间隙杂质:杂质原子位于晶格的间隙位置。 ●杂质浓度:单位体积中的杂质原子数。 ●施主(N型)杂质:释放束缚电子,并成为不可动正电荷中心的杂质。 ●受主(P型)杂质:释放束缚空穴,并成为不可动负电荷中心的杂质。

微电子技术物理基础的问题解答

(1)为什么元素周期表上的第13号元素Al是金属、而第14号元素Si却是半导体? 答:虽然它们的原子序数只差一个,但是性质却截然不同,这主要是由于其原子负电性不同,导致晶体能带结构不同的缘故。因为Al的负电性较小,价电子容易失去,则在形成晶体时倾向于采用金属键,故价电子所形成的能带没有禁带——属于金属。而Si的负电性较大,价电子不容易失去,则倾向于形成共价键,成为共价晶体,从而价电子能带存在禁带,并且禁带宽度正好不大(~1.12eV),所以属于半导体。 (2)为什么半导体中载流子的平均自由程往往要比晶体的晶格常数大得多? 答:晶格常数是结晶学原胞的边长,一般比原子间距要大一些.平均自由程是指载流子在运动过程中相继两次遭受散射(或碰撞)之间的距离.因为按照能带理论,排列规则、且不动的原子构成的晶格周期性势场,决定了电子的能量状态,即决定了能带结构;但是这种严格周期性的势场并不引起电子状态的改变,即不散射电子.这就意味着,排列规则、且不动的原子本身也并不散射电子.所以载流子的平均自由程往往要比晶体的晶格常数大数十到数百倍.(注意:排列不规则或者运动的原子,即不具有周期性的晶格势场,或者说杂质和缺陷所产生的势场,将要散射电子.) (3)为什么Si、Ge等半导体的禁带宽度(Eg)将随着温度(T)的升高而下降? 答:因为Si、Ge等半导体的价带、导带和禁带都是由原子外层的s态和p态价电子通过杂化而形成的;当许多原子靠近而构成晶体、原子外层的价电子——公有化电子形成能带时,并不是导带对应于原子的s 态电子、价带对应于原子的p态电子,所以禁带宽度也就不是随着原子间距的减小而变窄.因此,当温度升高时,原子间距增大,禁带宽度也就不是随之变宽,相反却是变窄.实际上,只有少数几种半导体的价带和导带是分别对应于原子的单一电子状态,这种半导体的禁带宽度确实是随着温度的升高而增大的. (4)为什么在半导体的禁带中可以存在有杂质、缺陷等的能级? 答: 半导体禁带这个能量范围,是晶体中的价电子所不能具有的能量;而价电子是属于整个晶体所有的,即是所谓公有化电子.这就意味着,禁带中不能存在公有化电子状态,但是这并不排斥在禁带中可以出现非公有化电子状态——杂质和缺陷等所谓局域性的电子状态.因此,在禁带中可以有杂质、缺陷等的能级. (5)为什么Si可以吸收光、并产生电子-空穴对?但是为什么Si中电子-空穴对的复合却一般不能够发出光来? 答: 因为Si的能带是间接跃迁的结构,即价带顶与导带底不在Brillouin区的同一点处.这也就是说,价带顶处的电子(或空穴),与导带底处的电子具有不同的动量(或不同的波矢).电子在价带与导带之间跃迁时需要满足能量守恒和动量守恒.当价带顶处的电子吸收了能量足够高的光子后,即可跃迁到导带去,至于跃迁前后动量的差别可以在电子进入导带以后再通过弛豫过程来调整解决,所以这种吸收光的过程是可以发生的.但是,如果导带底电子下落到价带时,除了放出能量以外,还要同时放出动量,这时若把能量以光子的形式发射出来,但是还必须要有第三者来接受所放出的动量(因为光子的动量=0),而这个第三者主要就是晶体中的声子(晶格振动的能量量子);因此,当电子-空穴对复合时,由于声子在接受动量的同时,也可以接受能量,即复合所释放出的动量和能量都将可能交给声子,从而一般也就不再发出光子了. (6)为什么价带中的许多价电子不能导电? 答: 因为填满价带的电子都是被原子束缚的电子——价电子,在电场作用下不能改变其能量状态,故不能导电。只有当它们摆脱价键的束缚(即本征激发)而成为导带电子以后才能够导电,与此同时在价带中留下价键空位。导带中的电子和价带中的空位——空穴就是载流子。 (7)为什么半导体中载流子浓度不大时,可以近似认为它们是服从Boltzmann统计的(即为非简并半导体)?

电子科技大学微电子器件习题

第二章PN结 填空题 1、若某突变PN结的P型区的掺杂浓度为N A=1.5×1016cm-3,则室温下该区的平衡多子浓度p p0与平衡少子浓度n p0分别为()和()。 2、在PN结的空间电荷区中,P区一侧带()电荷,N区一侧带()电荷。内建电场的方向是从()区指向()区。 3、当采用耗尽近似时,N型耗尽区中的泊松方程为()。由此方程可以看出,掺杂浓度越高,则内建电场的斜率越()。 4、PN结的掺杂浓度越高,则势垒区的长度就越(),内建电场的最大值就越(),内建电势V bi就越(),反向饱和电流I0就越(),势垒电容C T就越(),雪崩击穿电压就越()。 5、硅突变结内建电势V bi可表为(),在室温下的典型值为()伏特。 6、当对PN结外加正向电压时,其势垒区宽度会(),势垒区的势垒高度会()。 7、当对PN结外加反向电压时,其势垒区宽度会(),势垒区的势垒高度会()。 8、在P型中性区与耗尽区的边界上,少子浓度n p与外加电压V之间的关系可表示为()。若P型区的掺杂浓度N A=1.5×1017cm-3,外加电压V= 0.52V,则P型区与耗尽区边界上的少子浓度n p为()。 9、当对PN结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度();当对PN结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度()。 10、PN结的正向电流由()电流、()电流和()电流三部分所组成。 11、PN结的正向电流很大,是因为正向电流的电荷来源是();PN结的反向电流很小,是因为反向电流的电荷来源是()。 12、当对PN结外加正向电压时,由N区注入P区的非平衡电子一边向前扩散,一边()。每经过一个扩散长度的距离,非平衡电子浓度降到原来的()。 13、PN结扩散电流的表达式为()。这个表达式在正向电压下可简化为(),在反向电压下可简化为()。 14、在PN结的正向电流中,当电压较低时,以()电流为主;当电压较高时,以()电流为主。 15、薄基区二极管是指PN结的某一个或两个中性区的长度小于()。在薄基区二极管中,少子浓度的分布近似为()。 16、小注入条件是指注入某区边界附近的()浓度远小于该区的()浓度,因此该区总的多子浓度中的()多子浓度可以忽略。 17、大注入条件是指注入某区边界附近的()浓度远大于该区的()浓度,因此该区总的多子浓度中的()多子浓度可以忽略。 18、势垒电容反映的是PN结的()电荷随外加电压的变化率。PN 结的掺杂浓度越高,则势垒电容就越();外加反向电压越高,则势垒电容就越()。 19、扩散电容反映的是PN结的()电荷随外加电压的变化率。正向电流越大,则扩散电容就越();少子寿命越长,则扩散电容就越()。 20、在PN结开关管中,在外加电压从正向变为反向后的一段时间内,会出现一个较大

微电子技术概论期末试题

《微电子技术概论》期末复习题 试卷结构: 填空题40分,40个空,每空1分, 选择题30分,15道题,每题2分, 问答题30分,5道题,每题6分 填空题 1.微电子学是以实现电路和系统的集成为目的的。 2.微电子学中实现的电路和系统又称为集成电路和集成系统,是微小化的。 3.集成电路封装的类型非常多样化。按管壳的材料可以分为金属封装、陶瓷封装和塑料封装。 4.材料按其导电性能的差异可以分为三类:导体、半导体和绝缘体。 5. 迁移率是载流子在电场作用下运动速度的快慢的量度。 6.PN 结的最基本性质之一就是其具有单向导电性。 7.根据不同的击穿机理,PN 结击穿主要分为雪崩击穿和隧道击穿这两种电击穿。 8.隧道击穿主要取决于空间电荷区中的最大电场。 9. PN结电容效应是PN结的一个基本特性。 10.PN结总的电容应该包括势垒电容和扩散电容之和。 11.在正常使用条件下,晶体管的发射结加正向小电压,称为正向偏置,集电结加反向大电压,称为反向偏置。 12.晶体管的直流特性曲线是指晶体管的输入和输出电流-电压关系曲线, 13.晶体管的直流特性曲线可以分为三个区域:放大区,饱和区,截止区。 14.晶体管在满足一定条件时,它可以工作在放大、饱和、截止三个区域中。 15.双极型晶体管可以作为放大晶体管,也可以作为开关来使用,在电路中得到了大量的应用。 16. 一般情况下开关管的工作电压为 5V ,放大管的工作电压为 20V 。 17. 在N 型半导体中电子是多子,空穴是少子; 18. 在P 型半导体中空穴是多子,电子是少子。 19. 所谓模拟信号,是指幅度随时间连续变化的信号。 20. 收音机、收录机、音响设备及电视机中接收、放大的音频信号、电视信号是模拟信号。 21. 所谓数字信号,指在时间上和幅度上离散取值的信号。 22. 计算机中运行的信号是脉冲信号,但这些脉冲信号均代表着确切的数字,因而又叫做数字信号。 23. 半导体集成电路是采用半导体工艺技术,在硅基片上制作包括电阻、电容、二极

微电子器件复习题

一、填空题 1.突变PN 结低掺杂侧的掺杂浓度越高,则势垒区的长度就越 小 ,建电场的最 大值越 大 ,建电势V bi 就越 大 ,反向饱和电流I 0就越 小 , 势垒电容C T 就越 大 ,雪崩击穿电压就越 小 。P27 2.在PN 结的空间电荷区中,P 区一侧带 负 电荷,N 区一侧带 正 电 荷。建电场的方向是从 N 区指向 P 区。 3.当采用耗尽近似时,N 型耗尽区中的泊松方程为 。由此方程可以看出,掺 杂浓度越高,则建电场的斜率越 大 。 4.若某突变PN 结的P 型区的掺杂浓度为183A 1.510cm N -=?,则室温下该区的平 衡多子浓度p p0与平衡少子浓度n p0分别为 和 。 5.某硅突变PN 结的153D N 1.510cm -=?,31810.51N -?=cm A ,则室温下n0n0p0n p p 、、和p0n 的分别为 、 、 和 , 当外加0.5V 正向电压时的p p ()n x -和 n n ()p x 分别为 、 ,建电 势为 。 6.当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓 度 大 ;当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处 的平衡少子浓度 小 。 7.PN 结的正向电流很大,是因为正向电流的电荷来源是 多子 ;PN 结的反向电 流很小,是因为反向电流的电荷来源是 少子 。 8.PN 结的正向电流由 空穴扩散电流 电流、 电子扩散电流 电流和 势垒区复和电流 电流三部分所组成。 9.PN 结的直流电流电压方程的分布为 。 10.薄基区二极管是指PN 结的某一个或两个中性区的长度小于 该区的少子扩散长 度 。在薄基区二极管中,少子浓度的分布近似为 线性 ;薄基区二极 管相对厚基区二极管来说,其它参数都相同,则PN 结电流会 大的多 。 11.小注入条件是指注入某区边界附近的 非平衡少子 浓度远小于该区的 平衡多子 浓度。 12.大注入条件是指注入某区边界附近的 非平衡少子 浓度远大于该区的 平衡多子 浓度。 13.势垒电容反映的是PN 结的 微分 电荷随外加电压的变化率。PN 结的掺杂浓 度越高,则势垒电容就越 大 ;外加反向电压越高,则势垒电容就越 小 。 14.扩散电容的物理含义为中性区中 非平衡载流子 随外加电压的变化率;外加 正向电压越高,则势垒电容就越 大 。

微电子器件课程复习题

1、若某突变PN 结的P 型区的掺杂浓度为163 A 1.510cm N -=?,则室温下该区的平衡多子浓度p p0与平 衡少子浓度n p0分别为(316105.1-?=cm N A )和(314105.1-?=cm N A )。 2、在PN 结的空间电荷区中,P 区一侧带(负)电荷,N 区一侧带(正)电荷。建电场的方向是从(N ) 区指向(P )区。[发生漂移运动,空穴向P 区,电子向N 区] 3、当采用耗尽近似时,N 型耗尽区中的泊松方程为(D S E u q dx d ε=→ )。由此方程可以看出,掺杂浓度越高,则建电场的斜率越(大)。 4、PN 结的掺杂浓度越高,则势垒区的长度就越(小),建电场的最大值就越(大),建电势V bi 就越(大), 反向饱和电流I 0就越(小)[P20],势垒电容C T 就越( 大 ),雪崩击穿电压就越(小)。 5、硅突变结建电势V bi 可表为(2ln i D A bi n N N q KT v =)P9,在室温下的典型值为(0.8)伏特。 6、当对PN 结外加正向电压时,其势垒区宽度会(减小),势垒区的势垒高度会(降低)。 7、当对PN 结外加反向电压时,其势垒区宽度会(增大),势垒区的势垒高度会(提高)。 8、在P 型中性区与耗尽区的边界上,少子浓度n p 与外加电压V 之间的关系可表示为()exp()(0KT qv p p p n x n =-)P18。若P 型区的掺杂浓度173A 1.510cm N -=?,外加电压V = 0.52V ,则P 型区与耗尽区边界上的少子浓度n p 为(3251035.7-?cm )。 9、当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度(大);当对 PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度(小)。 10、PN 结的正向电流由(空穴扩散)电流、(电子扩散)电流和(势垒区复合)电流三部分所组成。 11、PN 结的正向电流很大,是因为正向电流的电荷来源是(多子);PN 结的反向电流很小,是因为反向 电流的电荷来源是(少子)。 12、当对PN 结外加正向电压时,由N 区注入P 区的非平衡电子一边向前扩散,一边(复合)。每经过一个扩散长度的距离,非平衡电子浓度降到原来的(e 分之一)。

{推荐}微电子器件刘刚前三章课后答案

微电子器件刘刚前三章课后答案

课后习题答案 1.1为什么经典物理无法准确描述电子的状态?在量子力学中又是用什么方法来描述的? 解:在经典物理中,粒子和波是被区分的。然而,电子和光子是微观粒子,具有波粒二象性。因此,经典物理无法准确描述电子的状态。 在量子力学中,粒子具有波粒二象性,其能量和动量是通过这样一个常数来与物质波的频率和波矢建立联系的,即 上述等式的左边描述的是粒子的能量和动量,右边描述的则是粒子波动性的频率和波矢。 1.2量子力学中用什么来描述波函数的时空变化规律? 解:波函数是空间和时间的复函数。与经典物理不同的是,它描述的不是实在的物理量的波动,而是粒子在空间的概率分布,是一种几率波。如果用表示粒子的德布洛意波的振幅,以表示波的强度,那么,t时刻在r附近的小体积元中检测到粒子的概率正比于。 1.3试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。 解:如图1.3所示,从能带的观点来看,半导体和绝缘体都存在着禁带,绝缘体因其禁带宽度较大(6~7eV),室温下本征激发的载流子近乎为零,所以绝缘体室温下不能导电。半导体禁带宽度较小,只有1~2eV,室温下已经有一定数量的电子从价带激发

到导带。所以半导体在室温下就有一定的导电能力。而导体没有禁带,导带与价带重迭在一起,或者存在半满带,因此室温下导体就具有良好的导电能力。 1.4为什么说本征载流子浓度与温度有关? 解:本征半导体中所有载流子都来源于价带电子的本征激发。由此产生的载流子称为本征载流子。本征激发过程中电子和空穴是同时出现的,数量相等,。对于某一确定的半导体材料,其本征载流子浓度为 式中,N C,N V以及Eg都是随着温度变化的,所以,本征载流子浓度也是随着温度变化的。 1.5什么是施主杂质能级?什么是受主杂质能级?它们有何异同? 解:当半导体中掺入施主杂质后,在其导带底的下方,距离导带底很近的范围内可以引入局域化的量子态能级。该能级位于禁带中,称之为施主杂质能级。同理,当半导体中掺入受主杂质后,在其价带顶的上方,距离价带顶很近的范围内也可引入局域化的受主杂质能级。 施主能级距离导带底很近,施主杂质电离后,施主能级上的电子跃迁进入导带,其结果向导带提供传导电流的准自由电子;而受主能级距离价带顶很近,受主杂质电离后,价带顶的电子跃迁进入受主能级,其结果向价带提供传导电流的空穴。 1.6试比较N型半导体与P型半导体的异同。

贵州省高一上学期化学期末考试试卷D卷

贵州省高一上学期化学期末考试试卷D卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共16题;共16分) 1. (1分) (2018高一下·北京期末) 下列物质与危险化学品标志的对应关系正确的是() A B C D 乙醇汽油浓硫酸浓硝酸 A . A B . B C . C D . D 2. (1分)下列实验操作正确的是() A . 当某实验没有准确的药品用量说明时,为看到明显现象,取用药品越多越好 B . 取用细口瓶里的试液时,先拿下瓶塞,倒放在桌上,然后标签朝外拿起瓶子,瓶口要紧挨着试管口,将液体缓缓地倒入试管 C . 胶头滴管取完一种试液后,可直接取另一种不与其反应的试液 D . 取用粉末状固体或固体小颗粒时,应用药匙或纸槽,取用块状固体时,应用镊子夹取 3. (1分) (2019高一下·长春期中) 实验室可以按如图所示的装置干燥、贮存气体M,多余的气体可用水吸收,则M是()

C . 氢气 D . 二氧化氮 4. (1分) (2017高一下·夏津期中) 在化学变化过程中,原子中的下列粒子数可能发生改变的是() A . 质子数 B . 中子数 C . 质量数 D . 电子数 5. (1分) (2016高一上·玉溪期中) 下列说法正确的是() A . 摩尔是联系宏观和微观的物理量 B . Na的摩尔质量为23g/mol C . 非标准状况下气体摩尔体积不可能为22.4 L D . 1mol氢的质量为2g 6. (1分) (2016高一下·武汉期末) 下列物质间的转化在给定条件下能实现的是() ①Al2O3 NaAlO2(aq) Al(OH)3 ②S SO3 H2SO4 ③饱和NaCl(aq) NaHCO3 Na2CO3 ④Fe2O3 FeCl3(aq)无水FeCl3 ⑤MgCl2(aq) Mg(OH)2 MgO. A . 4项

微电子器件物理答案

微电子器件物理阶段测试题 学号姓名得分 1.硅pn结,分别画出并说明正偏0.5V、反偏1.5V时的能带图。(10%) 对比平衡态能带图,得到的正偏和反偏p结能带图如下图所示。图中,扩散区长度未按比例画出。

正偏pn 结能带图说明1:在–x p 处,空穴浓度等于p 区空穴浓度,空穴准费米能级等于p 区平衡态费米能级。在耗尽区,空穴浓度下降,但本征费米能级下降,根据载流子浓度计算公式,可认为空穴浓度的下降是由本征费米能级的下降引起的,而空穴准费米能级在耗尽区近似为常数。空穴注入n 区中性区后,将与电子复合,经过几个扩散长度后,复合殆尽,最终与n 区平衡态费米能级重合。因此空穴准费米能级在n 区扩散区内逐渐升高,并最终与E Fn 合一。同理可说明电子准费米能级的变化趋势。 正偏pn 结能带图说明2:正偏pn 结耗尽区电流为常数,而正偏pn 结耗尽区载流子浓度较高,而pn 结电流n n Fn p p Fp J n E p E μμ=?=?及J ,因而耗尽区内载流子准费米能级梯度近似为常数。耗尽区外准费米能级的变化趋势与前述相同。 正偏pn 结能带图说明3:从–x p 开始,空穴准费米能级将随着空穴浓度的降低而逐步抬升,并最终在n 区扩散区几个扩散长度之后,非平衡空穴浓度降为零,空穴准费米能级与n 区费米能级合二为一。而空穴扩散长度比耗尽区宽度长得多,因而可近似认为耗尽区空穴准费米能级为常数。 同理,从x n 开始向左,电子准费米能级将随着电子浓度的降低而逐步降低,并最终在p 区扩散区几个扩散长度之后,非平衡电子浓度降为零,电子准费米能级与p 区费米能级合二为一。而电子扩散长度比耗尽区宽度长得多,因而可近似认为耗尽区电子准费米能级为常数。 反偏pn 结能带图可作类似的三种说明。 2.简述pn 结耗尽层电容和扩散电容的概念。怎样计算这两种电容?(10%) pn 结耗尽层电容:pn 结耗尽层厚度随外加电压的变化而变化,从而耗尽层电荷总量也随外加电压的变化而变化,这种效应类似于电容器的充放电。这就是耗尽层电容。耗尽层两边的中性区类似于平板电容器的两个极板,耗尽层是极板之间的介质,因此,耗尽层电容可用平板电容器公式来计算,单位面积电容等于 耗尽层介电常数除以耗尽层厚度,即0j C W εε =,其中,0εε、分别半导体的相对 介电常数和真空介电常数,W 为耗尽层厚度。 pn 结扩散电容:耗尽层外非平衡载流子扩散区内积累的非平衡电荷的总量,随着外加电压的增减而增减,这种电容效应就是扩散电容。以单边突变p+n 结为例,n 区非平衡空穴扩散区内积累的非平衡空穴电荷的总量为,J ττ为非平衡空穴寿命。扩散电容为()D d dQ d J q C J dV dV kT ττ= ==。 3.分别计算室温锗pn 结和硅pn 结的接触电势差,pn 结两边的杂质浓度 N D =5?1017 cm -3,N A =5?1016 cm -3。(103133(Si) 1.510cm ,(Ge) 2.510cm i i n n --=?=?。) (10%) 硅pn 结:

相关主题
文本预览
相关文档 最新文档