当前位置:文档之家› 材料现代测试方法

材料现代测试方法

材料现代测试方法
材料现代测试方法

2011~2012第二学期材料现代测试方法深度解析

第一章X射线衍射分析(XRD)

1.X射线的定义、性质。连续X射线和特征X射线的产生、特点。

答:X射线和可见光一样属于电磁辐射,但其波长比可见光短得多,介于紫外线与γ射线之间,约为0.01~1000A的范围。

波粒二相性波粒二相性公式:E=hv=h.c/λ,P=h/λ

波动性:用波长、频率、振幅、传播方向表征。一个随时间变化的正玄式振荡的电场,其垂直方向是一类似变化的磁场,即交变变化的电磁场的传播,传播方向由右手螺旋定则确定。干涉、衍射现象。

粒子性:和其它电磁波和微观粒子一样(中子、质子、电子等),x光子是具有确定能量的粒子。与物质相互作用现象,用动能和动量表征。

当高能电子与靶上原子碰撞时,高能电子突然受阻产生负加速度。按照经典电磁辐射理论,加速带电粒子辐射电磁波,从而产生连续X射线。连续X射线谱在短波方向有一个波长极限,称为短波限λ0.它是由光子一次碰撞就耗尽能量所产生的X射线。它只与管电压有关,不受其它因素的影响。

高能电子撞击出靶材料原子的内层一个电子,被逐出电子的空位很快被外层的一个电子填占。而这个电子空位又被更外层来的电子占有,如此一系列步骤使该电离原子恢复正常状态。每一步的电子跃迁产生特征X射线。根本原因:原子内层电子的跃迁

2.X射线与物质的相互作用。信号种类及应用。

答:就其能量转换而言,一束X射线通过物质时,可分为三部分:一部分被散射,一部分被吸收,一部分透过物质继续沿原来的方向传播。

一、散射X射线:相干的、非相干的二、透射X射线

三、吸收:热能、荧光X射线、俄歇效应、光电效应

产生物理、化学和生化作用,引起各种效应,如:使一些物质发出可见的荧光;使离子固体发出黄褐色或紫色的光;破坏物质的化学键,使新键形成,促进物质的合成;引起生物效应,导致新陈代谢发生变化;x射线与物质之间的物理作用,可分为X射线散射和吸收。

3.X射线衍射原理。布拉格方程的物理意义。

答:部分X射线遇到晶体后,改变其前进的方向,与原来的入射方向不一致,这些X射线实际上是晶体中各个原子对X射线的相干散射波干涉叠加而成的。

布拉格方程可以反映出晶体结构中晶胞大小及形状的变化,但是并未反映出晶胞中原子的品种和位置。Bragg方程仅确定方向,不能确定强度,符合Bragg 方程的衍射不一定有强度。即布拉格方程是X射线在晶体产生衍射的必要条件而非充分条件。

4.试推导Bragg方程,并对方程中的主要参数的范围确定进行讨论。

答:推倒布拉格方程三点假设:①入射线与衍射线都是平面波;x射线与晶体的距离、衍射线源(晶体)与观察点的距离远比原子间距大,因此实际上的球面波可近似看成平面波;②晶胞中只有一个原子,即晶胞是简单的;③原子尺寸忽落不计,原子中各电子发出的相干散射波是由原子中心点发出的。

δ=2d.sinθ→2d.θsin=n.λ→sinθ=nλ/2d≦1→n≦2d/λ

λ:波长δ:光程差d:晶面间距(与晶面取向、晶胞长度有关)

θ:布喇格角或半衍射角(入射线与衍射线的交角2θ称为衍射角)面间距为dHKL的晶面并不一定是晶体中的原子面,而是为了简化布拉格方

程所引入的反射面,我们把这样的反射面称为干涉面。干涉面的面指数称为干涉指数。

5.X射线衍射实验方法。粉末衍射仪的工作方式、工作原理。

答:衍射方法λθ实验条件

劳厄照相法变不变连续x射线照射固定单晶体

转动晶体法不变部分变化单色x射线照射转动单晶体

粉晶法不变变单色x射线照射转动粉晶或多晶晶体衍射仪法不变变单色x射线照射多晶体或转动的单晶体工作方式:⑴连续扫描使探测器以一定的角速度在选定的角度范围内进行连续扫描,并将探测器的输出通过计数率仪输入到纸带记录仪,把各个角度下的衍射强度记录在纸带上,画出衍射图谱。从衍射图上可方便的地看出衍射线的峰位、线形和强度等。

优点:快速方便。VS缺点:由于机械设备及计数率仪等的滞后效应和平滑效应,使记录纸上描出的衍射信息总是落后于探测器接收到的,造成衍射线峰位想扫描方向移动、分辨率降低、线形畸变等⑵步进扫描(阶梯扫描)使探测器以一定的角度间隔(步长)逐步移动,对衍射峰强度进行逐点测量。探测器每移动一步,就停留一定的时间,并以定标器测定该时间段内的总计数,然后再移动一步,重复测量。测得各角位置的计数值可用打印机打出来,还可转换成记录仪上的线形高度,画出峰形来。

特点:与连续扫描法相比,无滞后及平滑效应,衍射峰位正确、分辨力好,可以使计数的均方偏差足够小,减少统计涨落对强度的影响。工作原理:应用了一种不断变化聚焦圆半径的聚焦法原理,采用了线状的发散光源和平板状试

样,使衍射线具有一定的聚焦作用,增强了衍射线的强度。扇形发散光束照到平板式样上后,由于同一族晶面的衍射角2θ对试样表面各点都相同,因而衍射线束会聚焦在狭缝RS处。在衍射仪中使光源和探测器至试样的距离都保持不变,始终等于测角仪圆的半径。聚焦圆是一个通过焦点S、测角仪O和接受狭缝RS 的假想的圆,它的大小随衍射角而变化。当衍射角2θ接近于0时,聚焦圆半径接近无穷大,而2θ为180时,聚焦圆半径最小,等于衍射仪半径的1/2,因此将试样制成平板状,而且在衍射仪运行过程中,使入射光束中心线和衍射光束中心线的角平分线始终与试样平面法线一致,近似满足聚焦条件。

6.X射线粉末衍射法物相定性分析过程及注意的问题。

答:步骤:先将试样用粉晶法或衍射仪法测定各衍射线条的衍射角,将它换算为晶面间距d,再用显微黑度计、计数管或肉眼估计等方法,测出各条衍射线的相对强度,然后与各种结晶物质的标准衍射花样进行比较鉴别。

注意事项:⑴d值的数据比相对强度的数据重要;⑵低角度区域的衍射数据比高角度区域的衍射数据重要;⑶了解试样的来源、化学成分和物理特性等对于作出正确的结论是十分有帮助的;⑷在进行多相混合试样的分析时,不能要求将所有主要衍射线都能核对上,因为它们可能不是同一物相产生的;⑸尽量将X射线物相分析法和其他相分析法结合起来,利用偏光显微镜、电子显微镜等手段进行配合;⑹要确定试样中含量较少的相时,可用物理方法或化学方法进行富集浓缩。

7.X射线粉末多晶衍射仪法测定物质晶体结构与单晶衍射法测定物质晶体结构的比较。

答:粉末多晶衍射仪法:可以用来进行物相分析、定量分析、测定晶体结构、晶粒大小及应力状态,亦可用来精密测定晶格常数等

单晶衍射法:A、劳厄法测定晶体的取向,亦可用来观察晶体的对称性,鉴定晶体是否是单晶以及粗略地观察晶体的完整性B、转晶法测定单晶试样的晶胞常数,亦可用来观察晶体的系统消光规律,以确定晶体的空间群C、魏森堡照相法和旋进照相法测定晶体的结构

8.X射线衍射试验主要有那些方法,他们各有那些应用。

答:参照题5、题7

第二章电子显微分析

1、显微镜的分辨率(分辨能力)

答:显微镜的分辨率是指能被显微镜清析区分的两个物点的最小距离。

2、影响可见光学显微镜分辨率的因素

答:主要在物镜组,有像差、衍射和光噪声等,照明也有一定的影响

3、影响透射电镜(TEM)分辨率的因素

答:样品台的选择

4、透射电镜中,获得高分辨率的方法

答:选用顶插式样品台点分辨率为0.23~0.25nm线分辨率为0.104~0.14 5、解释透射电镜图像的主要难点

答:⑴制备出适合透射电镜观察用的试样,即能制备出厚度仅为100~200nm,甚至几十纳米的对电子束“透明的试样”;⑵建立阐明各种电子图像的衬度理论。6、解释透射电镜中取样难的原因,怎样克服

答:试样的厚度很薄,仅几十到几百nm,需放在专用的电镜样品铜网上,然后装入电镜的样品杯或样品杆中送入电镜观察。制备方法有:粉末样品制备、薄膜样品制备和复型样品的制备。

7、引起透射电镜样品损坏的主要原因

答:热损伤...

8、电压大于等于100KV时,计算时该考虑哪些影响?为什么?

答:穿透本领、分辨本领、成像衬度、电子衍射精度、样品室环境...

9、透射电镜中怎样使图像聚焦

答:采用聚光镜,它为磁透镜,用来把电子枪射出的电子汇聚照射在样品上。调节光镜励磁电流(即改变透镜的聚焦状态)就可以调节照明强度和孔径角的大小。

10、为了获取高的放大率,样品该紧密放置在物镜的哪里

答:对于顶插式样品台,电镜样品先放入样品杯,然后通过传动机构计入样品室,再下降至样品台中定位,使样品处于物镜极靴中间某一精确位置;对于侧插式样品台,电镜样品先放在插入杆前端的样品座上,并用压环固定,插入杆从镜筒侧面插入样品台,使得样品杆的前端联通样品处于物镜上、下极靴间隙中。

11、定义“欠焦”和“过焦”

答:...

12、为什么物镜是透射电镜中最重要的

答:物镜是成像系统的第一级放大透镜,它的分辨率对整个成像系统的分辨率影响最大,因此通常为短焦距、高放大倍数低像差的强磁透镜。

13、为什么在透射电镜中使用光阑

答:物镜光阑改善了衬度;选区光阑选择特定像区的各级衍射束成谱;第二聚光镜光阑孔直径决定会聚束电子衍射的会聚角。

14、什么引起球差?怎样减小

答:球差是由于电磁透镜磁场的近轴区和远轴区对电子束的汇聚能力不同而造成

的。减小透镜的孔径半角,可提高透镜的分辨本领。

15、特征X射线的特点

答:①波长不同;②能量不同

16、重要的电离能

答:...

17、影响特征X射线能量和波长的因素

答:波长:衍射晶面间距d和布喇格角θ的范围;...

18、定义“弹性散射”和“非弹性散射”

答:散射过程中,如果入射电子的能量损失可以忽略不计,那么称电子的这种散射为弹性的。电子的方向可能发生改变,但电子的能量基本不变;散射过程中,能量发生变化的散射即为非弹性散射。

19、说出透射电镜三个主要部件

答:①样品台;②电子束倾斜与平移装置;③光阑;④聚光镜光阑;⑤物镜光阑;

⑥选区光阑...看图

20、怎样形成平行光束?为什么要生成平行光束?为什么它不是严格平行?答:...

21、什么是选区电子衍射?与会聚束电子衍射有什么不同?

答:选区电子衍射就是选择特定像区的各级衍射束成谱。选区是通过置于物镜像平面专用选区光阑进行的,而会聚电子束衍射是用会聚成会聚角的电子束对试样进行衍射,会聚角有第二聚光镜光阑孔直径决定。

22、透射电镜最重要的光阑是什么?为什么?

答:物镜光阑可提高反差、改善衬度、选择衍射成像、选择衍射束数目

23、怎样改变透射电镜中图像放大倍数?

答:通过改变中间镜放大倍数可以在相当范围内改变电镜的总放大倍数。

24、什么引起质厚衬度

答:对于无定形或非晶体试样,电子图像的衬度是由于试样各部分的密度ρ(或原子序数Z)和厚度t不同形成的,这种衬度称为质量厚度衬度(ρt),简称质厚衬度。

25、质厚衬度对什么材料最有用

答:适用于一般成像方法对非晶态薄膜和复型膜试样所成图像的解释

26、影响质厚衬度分辨率的因素

答:...

27、显微镜操作怎样影响质厚衬度

答:在一定加速电压下,减小物镜光阑孔径(即减小ɑ物)衬度增加;在一定物镜光阑孔径下,随着加速电压增加,衬度减小。

28、什么是衍射衬度

答:基于晶体薄膜内各部分满足衍射条件的程度不同而形成的衬度。

29、衍射衬度与相位衬度的区别

答:相位衬度:如果设法引入附加的相位差,使散射波长变∏/2个相位,那么透射波与合成波的振幅就有了较大的差别,从而产生衬度。引入相位差的最常用的办法是利用物镜的球差和散焦。在加速电压、物镜和球差一定时,适当选择散焦量使这两种效应引起的附加相位变化是(2n-1)∏/2时,就可以使相位差变成强度差,显现出来。...

30、物镜光阑的作用

答:提高反差、改善衬度、选择衍射成像、选择衍射束数目

31、影响扫描电镜(SEM)分辨率的因素

答:⑴入射电子束束斑的大小。扫描电镜图像的分辨本领不可能小于电子束斑直径⑵成像信号。二次电子像的分辨率最高,X射线像的分辨率最低。

32、扫描电镜的三个衬度

答:⑴形貌衬度:由于试样表面形貌差别而形成的衬度。

⑵原子序数衬度:由于试样表面物质原子序数(或化学成分)差别而形成的衬度。⑶电压衬度:由于试样表面电位差别而形成的衬度。

33、ZAF校正

答:基体效应包括:①对电子散射和阻挡的原子序数效应;②对X射线吸收的效应;③产生荧光X射线的荧光效应。引入原子序数校正因子Zi、吸收校正因子Ai和荧光校正因子Fi分别校正。Ci=ZiAiFiKi Ci----元素i的质量百分浓度34、电子显微分析及目的

答:电子显微分析是利用聚焦电子束与试样物质相互作用产生的各种物理信号,分析试样物质的微区形貌、晶体结构和化学组成。包括用透射电子显微镜进行的透射电子显微分析;用扫描电子显微镜进行的扫描电子显微分析;用电子探针仪进行的X射线显微分析。

第三章热分析

...

第四章振动光谱

1、σ为波数,即单位长度内波的数目,常用单位为cm-1

2、能级跃迁是量子化的,因此只有光子的能量恰等于两个能级之间的能量差时

(即ΔE )才能被吸收

3、中红外区(middle infrared) 400~4000 cm-1

4、中红外光波波长的能量恰在分子振动能级间距范围,因此红外光谱又称为振动光谱。

5、当一束连续红外波长的光照射到物质上时,其中某些波被吸收了,形成了吸收谱带,把透过光按波长及强度记录下来,就形成了红外吸收光谱。

6、在红外光谱图中的吸收均称为谱带,而不称为峰

7、对于某一分子来说,只能吸收某些特定的频率,从而引起分子转动或振动能级的变化,产生特征的分子光谱。谱中被吸收的光的波长对于不同分子或原子基团都是特征的。

8、

9、发生振动能级跃迁需要能量的大小取决于键两端原子的折合质量μ和键的力常数k ,即取决于分子的结构特征。即 上式为红外光谱测定化合物结构的理论依据

10、伸缩振动是指原子沿着价键方向来回运动,即振动时键长发生变化,键角不

变。它又分为对称伸缩振动和不对称伸缩振动。 11、变形振动又称弯曲振动,它是指基团键角发生周期性变化而键长不变的振动。

12、特征频率 分子中某一特定基团的振动频率总是可能在一个范围较窄 的频率区域出现。在不同分子内,和一个特定的原子对或原子群有关的振动频率基本

μμπλσμπνk

k c k h h E 130721

12=====?

上是相同的,这就是所谓的特征频率,也称基团频率。

13、Beer-Lambert 定律:A=lg1/T=kb

A- 吸光度或摩尔吸收系数b-样品厚度k-吸收系数

14、影响谱带位置(位移)的因素:⑴分子间相互作用a 诱导效应 b键应力c 氢键d共轭效应e空间效应⑵样品的物理状态

15、光栅(狭缝)光栅常数d>λ,d愈小,狭缝数愈多,角色散愈大

16、特征频率区4000cm-1~1300 cm-1 指纹谱带区1300~400 cm-1

17、制样对光谱质量的影响:⑴厚度如果薄膜过厚,许多主要谱带都吸收到顶,彼此连成一片,看不出准确的波数位置和精细结构;如果样品过薄,弱的甚至中等强度的吸收谱带显示不出来,失去了谱图的特征。⑵表面反射反射引起能量损失,造成谱带变形。并产生干涉条纹。消除的方法是使样品表面粗糙些。(3)样品不含有游离水水的存在干扰谱图的形态(4)多组分的样品应尽可能进行组分分离

材料现代分析方法试题2(参考答案)

材料现代分析方法试题4(参考答案) 一、基本概念题(共10题,每题5分) 1.实验中选择X射线管以及滤波片的原则是什么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片 答:实验中选择X射线管的原则是为避免或减少产生荧光辐射,应当避免使用比样品中主元素的原子序数大2~6(尤其是2)的材料作靶材的X射线管。 选择滤波片的原则是X射线分析中,在X射线管与样品之间一个滤波片, 以滤掉K β线。滤波片的材料依靶的材料而定,一般采用比靶材的原子序数小1或2的材料。 以分析以铁为主的样品,应该选用Co或Fe靶的X射线管,同时选用Fe和Mn 为滤波片。 2.试述获取衍射花样的三种基本方法及其用途? 答:获取衍射花样的三种基本方法是劳埃法、旋转晶体法和粉末法。劳埃法主要用于分析晶体的对称性和进行晶体定向;旋转晶体法主要用于研究晶体结构;粉末法主要用于物相分析。 3.原子散射因数的物理意义是什么?某元素的原子散射因数与其原子序数有何关系? 答:原子散射因数f 是以一个电子散射波的振幅为度量单位的一个原子散射波的振幅。也称原子散射波振幅。它表示一个原子在某一方向上散射波的振幅是一个电子在相同条件下散射波振幅的f倍。它反映了原子将X射线向某一个方向散射时的散射效率。 原子散射因数与其原子序数有何关系,Z越大,f 越大。因此,重原子对X射线散射的能力比轻原子要强。 4.用单色X射线照射圆柱多晶体试样,其衍射线在空间将形成什么图案?为摄取德拜图相,应当采用什么样的底片去记录? 答:用单色X射线照射圆柱多晶体试样,其衍射线在空间将形成一组锥心角不等的圆锥组成的图案;为摄取德拜图相,应当采用带状的照相底片去记录。

材料现代测试方法

一,名词解释 1,化学位移:共振频率发生了变化,在谱图上反映出了谱峰位置的移动。 2,特征吸收峰:通常把能代表基团存在,并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。 3,熔融指数:指在一定的温度下和规定负荷下,10min内从规定直径和长度的标准毛细管内流出的聚合物的熔体的质量,用MI表示,单位为g/10min。 4,平衡熔点:理论上将在熔点温度附近经长时间结晶得到的晶体完全熔融的温度称之为该聚合物的平衡熔点 5,普适标准曲线:流力学体积与保留体积的关系曲线具有普适性。 6,依数性:依数性是指溶液的热力学性质只与溶质的数量有关而与其性质、种类无关 7,基频性:分子吸收红外辐射后,由基态振动能级(v=0)跃迁至第一振动激发态(v=1)时,所产生的吸收峰 8,入口效应:聚合物熔体在流入一个直径较小的口模时,在管道入口处流线出现收敛,压力降突然增大。 二,填空 1,溶液的依数性包括沸点上升, 冰点下降, 蒸气压和渗透压。高分子溶液只有在浓度极低的情况下才近似与理想溶液的依数性相同利用依数性测得的分子量为数均分子量 2,测定链结构的方法有X射线衍射法、电子衍射法、中心散射法、裂解色谱-质谱、紫外吸收光谱、红外吸收光谱、拉曼光谱、微波分光法、核磁共振法、顺磁共振法、荧光光谱、偶极距法、旋光分光法、电子能谱等。测定聚集态结构的方法有X射线小角衍射、电子衍射法、电子显微镜、光学显微镜、原子力显微镜、固体小角激光光散射等。测定结晶度的方法有X射线衍射法、电子衍射法、核磁共振吸收、红外吸收光谱、密度法、热分析法。测定高聚物取向程度的方法有双折射法、X射线衍射法、圆二色性法、红外二色性法。相对分子质量的测定方法:溶液光散射法、凝胶渗透色谱法、粘度法、扩散法、超速离心法、溶液激光小角散射法、渗透压法、气相渗透压法、沸点升高法、端基滴定法。支化度的测定方法:化学反应法、红外光谱法、凝胶渗透色谱法、粘度法。交联度测定方法:溶胀法、力学测定法。相对分子质量分布的测定方法:凝胶渗透色谱法、熔体流变行为、分级沉淀法、超速离心法。 3,高聚物的力学性能主要是测定材料的强度和模量以及变形。材料本体粘流行为主要是测定粘度以及切变速率的关系、剪应力与切变速率的关系等。采用的仪器有旋转粘度计、熔融指数测定仪、各种毛细管流变仪。材料的热性能主要测材料的导热系数、比热容、热膨胀剂系数、耐热性、耐燃性、分解温度等。测试仪器有:高低温导热系数测定仪、差示扫描量热仪、量热计、线膨胀和体膨胀测定仪、马丁耐热仪、热失重仪、硅碳耐燃烧试验机。材料的电学性能主要测材料的电阻、介电常数、介电损耗角正切、击穿电压。采用仪器有高阻计、电容电桥介电性能测定仪、高压电击穿试验机。 测定材料的密度,采用密度计法和密度梯度管法。测定透光度采用透光度计。测定透气性采用透气性测定仪。测定吸湿性采用吸湿计。测定吸音系统采用声衰减测定仪。 三,问答 1,红外光谱如何表示?峰强、峰位、峰数受什么因素的影响? 答:横坐标:波数(υ)400~4000 cm-1;表示吸收峰的位置。 纵坐标:透过率(T%),表示吸收强度。T↓,表明吸收的越好,故曲线低谷表示是一个好的吸收带。 峰位——化学键的力常数越大,原子折合质量越小,键的振动频率越大,吸收峰将出现在高波数区;反之,出现在低波数区。

现代材料测试技术试题答案

一、X射线物相分析的基本原理与思路 在对材料的分析中我们大家可能比较熟悉对它化学成分的分析,如某一材料为Fe96.5%,C 0.4%,Ni1.8%或SiO2 61%, Al2O3 21%,CaO 10% ,FeO 4%等。这是材料成分的化学分析。 一个物相是由化学成分和晶体结构两部分所决定的。X射线的分析正是基于材料的晶体结构来测定物相的。 X射线物相分析的基本原理是什么呢? 每一种结晶物质都有自己独特的晶体结构,即特定点阵类型、晶胞大小、原子的数目和原子在晶胞中的排列等。因此,从布拉格公式和强度公式知道,当X射线通过晶体时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个反射晶面的晶面间距值d和反射线的强度来表征。 其中晶面网间距值d与晶胞的形状和大小有关,相对强度I则与质点的种类及其在晶胞中的位置有关。 衍射花样有两个用途: 一是可以用来测定晶体的结构,这是比较复杂的; 二是用来测定物相。 所以,任何一种结晶物质的衍射数据d和I是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相,分析的思路将样品的衍射花样与已知标准物质的衍射花样进行比较从中找出与其相同者即可。 X射线物相分析方法有: 定性分析——只确定样品的物相是什么? 包括单相定性分析和多相定性分析定量分析——不仅确定物相的种类还要分析物相的含量。 二、单相定性分析 利用X射线进行物相定性分析的一般步骤为: ①用某一种实验方法获得待测试样的衍射花样; ②计算并列出衍射花样中各衍射线的d值和相应的相对强度I值; ③参考对比已知的资料鉴定出试样的物相。 1、标准物质的粉末衍射卡片 标准物质的X射线衍射数据是X射线物相鉴定的基础。为此,人们将世界上的成千上万种结晶物质进行衍射或照相,将它们的衍射花样收集起来。由于底片和衍射图都难以保存,并且由于各人的实验的条件不同(如所使用的X射线波长不同),衍射花样的形态也有所不同,难以进行比较。因此,通常国际上统一将这些衍射花样经过计算,换算成衍射线的面网间距d值和强度I,制成卡片进行保存。

材料现代分析方法试题及答案1

一、单项选择题(每题 2 分,共10 分) 3.表面形貌分析的手段包括【 d 】 (a)X 射线衍射(XRD)和扫描电镜(SEM)(b) SEM 和透射电镜(TEM) (c) 波谱仪(WDS)和X 射线光电子谱仪(XPS)(d) 扫描隧道显微镜(STM)和 SEM 4.透射电镜的两种主要功能:【b 】 (a)表面形貌和晶体结构(b)内部组织和晶体结构 (c)表面形貌和成分价键(d)内部组织和成分价键 二、判断题(正确的打√,错误的打×,每题2 分,共10 分) 1.透射电镜图像的衬度与样品成分无关。(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。(√)3.透镜的数值孔径与折射率有关。(√)4.放大倍数是判断显微镜性能的根本指标。(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角 速度的二倍。(√) 三、简答题(每题5 分,共25 分) 1. 扫描电镜的分辨率和哪些因素有关?为什么? 和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。 1.透射电镜中如何获得明场像、暗场像和中心暗场像? 答:如果让透射束进入物镜光阑,而将衍射束挡掉,在成像模式下,就得到明场象。如果把物镜光阑孔套住一个衍射斑,而把透射束挡掉,就得到暗场像,将入射束倾斜,让某一衍射束与透射电镜的中心轴平行,且通过物镜光阑就得到中心暗场像。 2.简述能谱仪和波谱仪的工作原理。 答:能量色散谱仪主要由Si(Li)半导体探测器、在电子束照射下,样品发射所含元素的荧光标识X 射线,这些X 射线被Si(Li)半导体探测器吸收,进入探测器中被吸收的每一个X 射线光子都使硅电离成许多电子—空穴对,构成一个电流脉冲,经放大器转换成电压脉冲,脉冲高度与被吸收的光子能量成正比。最后得到以能量为横坐标、强度为纵坐标的X 射线能量色散谱。 在波谱仪中,在电子束照射下,样品发出所含元素的特征x 射线。若在样品上方水平放置一块具有适当晶面间距 d 的晶体,入射X 射线的波长、入射角和晶面间距三者符合布拉格方程时,这个特征波长的X 射线就会发生强烈衍射。波谱仪利用晶体衍射把不同波长的X 射线分开,即不同波长的X 射线将在各自满足布拉格方程的2θ方向上被检测器接收,最后得到以波长为横坐标、强度为纵坐标的X射线能量色散谱。 3.电子束与试样物质作用产生那些信号?说明其用途。 (1)二次电子。当入射电子和样品中原子的价电子发生非弹性散射作用时会损失其部分能量(约30~50 电子伏特),这部分能量激发核外电子脱离原子,能量大于材料逸出功的价电子可从样品表面逸出,变成真空中的自由电子,即二次电子。二次电子对试样表面状态非常敏感,能有效地显示试样表面的微观形貌。 (2)背散射电子。背散射电子是指被固体样品原子反射回来的一部分入射电子。既包括与样品中原子核作用而形成的弹性背散射电子,又包括与样品中核外电子作用而形成的非弹性散射电子。利用背反射电子作为成像信号不仅能分析形貌特征,也可以用来显示原子序数衬度,进行定性成分分析。 (3)X 射线。当入射电子和原子中内层电子发生非弹性散射作用时也会损失其部分能量(约

(完整word版)教案-材料现代分析测试方法

西南科技大学 材料科学与工程学院 教师教案 教师姓名:张宝述 课程名称:材料现代分析测试方法 课程代码:11319074 授课对象:本科专业:材料物理 授课总学时:64 其中理论:64 实验:16(单独开课) 教材:左演声等. 材料现代分析方法. 北京工业大 学出版社,2000 材料学院教学科研办公室制

2、简述X射线与固体相互作用产生的主要信息及据此建立的主要分析方法。 章节名称第三章粒子(束)与材料的相互作用 教学 时数 2 教学目的及要求1.理解概念:(电子的)最大穿入深度、连续X射线、特征X射线、溅射;掌握概念:散射角(2 )、电子吸收、二次电子、俄歇电子、背散射电子、吸收电流(电子)、透射电子、二次离子。 2.了解物质对电子散射的基元、种类及其特征。 3.掌握电子与物质相互作用产生的主要信号及据此建立的主要分析方法。 4.掌握二次电子的产额与入射角的关系。 5.掌握入射电子产生的各种信息的深度和广度范围。 6.了解离子束与材料的相互作用及据此建立的主要分析方法。 重点难点重点:电子的散射,电子与固体作用产生的信号。难点:电子与固体的相互作用,离子散射,溅射。 教学内容提要 第一节电子束与材料的相互作用 一、散射 二、电子与固体作用产生的信号 三、电子激发产生的其它现象第二节离子束与材料的相互作用 一、散射 二、二次离子 作业一、教材习题 3-1电子与固体作用产生多种粒子信号(教材图3-3),哪些对应入射电子?哪些是由电子激发产生的? 图3-3入射电子束与固体作用产生的发射现象 3-2电子“吸收”与光子吸收有何不同? 3-3入射X射线比同样能量的入射电子在固体中穿入深度大得多,而俄歇电子与X光电子的逸出深度相当,这是为什么? 3-8配合表面分析方法用离子溅射实行纵深剖析是确定样品表面层成分和化学状态的重要方法。试分析纵深剖析应注意哪些问题。 二、补充习题 1、简述电子与固体作用产生的信号及据此建立的主要分析方法。 章节第四章材料现代分析测试方法概述教学 4

材料现代分析方法试题及答案1

《现代材料分析方法》期末试卷1 一、单项选择题(每题 2 分,共10 分) 1.成分和价键分析手段包括【b 】 (a)WDS、能谱仪(EDS)和XRD (b)WDS、EDS 和XPS (c)TEM、WDS 和XPS (d)XRD、FTIR 和Raman 2.分子结构分析手段包括【 a 】 (a)拉曼光谱(Raman)、核磁共振(NMR)和傅立叶变换红外光谱(FTIR)(b)NMR、FTIR 和WDS (c)SEM、TEM 和STEM(扫描透射电镜)(d)XRD、FTIR 和Raman 3.表面形貌分析的手段包括【 d 】 (a)X 射线衍射(XRD)和扫描电镜(SEM)(b) SEM 和透射电镜(TEM) (c) 波谱仪(WDS)和X 射线光电子谱仪(XPS)(d) 扫描隧道显微镜(STM)和 SEM 4.透射电镜的两种主要功能:【b 】 (a)表面形貌和晶体结构(b)内部组织和晶体结构 (c)表面形貌和成分价键(d)内部组织和成分价键 5.下列谱图所代表的化合物中含有的基团包括:【 c 】 (a)–C-H、–OH 和–NH2 (b) –C-H、和–NH2, (c) –C-H、和-C=C- (d) –C-H、和CO 二、判断题(正确的打√,错误的打×,每题2 分,共10 分) 1.透射电镜图像的衬度与样品成分无关。(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。(√)3.透镜的数值孔径与折射率有关。(√)

4.放大倍数是判断显微镜性能的根本指标。(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角 速度的二倍。(√) 三、简答题(每题5 分,共25 分) 1. 扫描电镜的分辨率和哪些因素有关?为什么? 和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。 2.原子力显微镜的利用的是哪两种力,又是如何探测形貌的? 范德华力和毛细力。 以上两种力可以作用在探针上,致使悬臂偏转,当针尖在样品上方扫描时,探测器可实时地检测悬臂的状态,并将其对应的表面形貌像显示纪录下来。 3.在核磁共振谱图中出现多重峰的原因是什么? 多重峰的出现是由于分子中相邻氢核自旋互相偶合造成的。在外磁场中,氢核有两种取向,与外磁场同向的起增强外场的作用,与外磁场反向的起减弱外场的作用。根据自选偶合的组合不同,核磁共振谱图中出现多重峰的数目也有不同,满足“n+1”规律 4.什么是化学位移,在哪些分析手段中利用了化学位移? 同种原子处于不同化学环境而引起的电子结合能的变化,在谱线上造成的位移称为化学位移。在XPS、俄歇电子能谱、核磁共振等分析手段中均利用化学位移。 5。拉曼光谱的峰位是由什么因素决定的, 试述拉曼散射的过程。 拉曼光谱的峰位是由分子基态和激发态的能级差决定的。在拉曼散射中,若光子把一部分能量给样品分子,使一部分处于基态的分子跃迁到激发态,则散射光能量减少,在垂直方向测量到的散射光中,可以检测到频率为(ν0 - Δν)的谱线,称为斯托克斯线。相反,若光子从样品激发态分子中获得能量,样品分子从激发态回到基态,则在大于入射光频率处可测得频率为(ν0 + Δν)的散射光线,称为反斯托克斯线 四、问答题(10 分) 说明阿贝成像原理及其在透射电镜中的具体应用方式。 答:阿贝成像原理(5 分):平行入射波受到有周期性特征物体的散射作用在物镜的后焦面上形成衍射谱,各级衍射波通过干涉重新在像平面上形成反映物的特征的像。在透射电镜中的具体应用方式(5 分)。利用阿贝成像原理,样品对电子束起散射作用,在物镜的后焦面上可以获得晶体的衍射谱,在物镜的像面上形成反映样品特征的形貌像。当中间镜的物面取在物镜后焦面时, 则将衍射谱放大,则在荧光屏上得到一幅电子衍射花样;当中间镜物面取在物镜的像面上时,则将图像进一步放大,这就是电子显微镜中的成像操作。 五、计算题(10 分) 用Cu KαX 射线(λ=0.15405nm)的作为入射光时,某种氧化铝的样品的XRD 图谱如下,谱线上标注的是2θ的角度值,根据谱图和PDF 卡片判断该氧化铝的类型,并写出XRD 物相分析的一般步骤。 答:确定氧化铝的类型(5 分) 根据布拉格方程2dsinθ=nλ,d=λ/(2sinθ) 对三强峰进行计算:0.2090nm,0.1604nm,0.2588nm,与卡片10-0173 α-Al2O3 符合,进一步比对其他衍射峰的结果可以确定是α-Al2O3。 XRD 物相分析的一般步骤。(5 分) 测定衍射线的峰位及相对强度I/I1: 再根据2dsinθ=nλ求出对应的面间距 d 值。 (1) 以试样衍射谱中三强线面间距d 值为依据查Hanawalt 索引。

材料现代分析方法练习题及答案

8. 什么是弱束暗场像?与中心暗场像有何不同?试用Ewald图解说明。 答:弱束暗场像是通过入射束倾斜,使偏离布拉格条件较远的一个衍射束通过物镜光阑,透射束和其他衍射束都被挡掉,利用透过物镜光阑的强度较弱的衍射束成像。 与中心暗场像不同的是,中心暗场像是在双光束的条件下用的成像条件成像,即除直射束外只有一个强的衍射束,而弱束暗场像是在双光阑条件下的g/3g的成像条件成像,采用很大的偏离参量s。中心暗场像的成像衍射束严格满足布拉格条件,衍射强度较强,而弱束暗场像利用偏离布拉格条件较远的衍射束成像,衍射束强度很弱。采用弱束暗场像,完整区域的衍射束强度极弱,而在缺陷附近的极小区域内发生较强的反射,形成高分辨率的缺陷图像。图:PPT透射电子显微技术1页 10. 透射电子显微成像中,层错、反相畴界、畴界、孪晶界、晶界等衍衬像有何异同?用什么办法及根据什么特征才能将它们区分开来? 答:由于层错区域衍射波振幅一般与无层错区域衍射波振幅不同,则层错区和与相邻区域形成了不同的衬度,相应地出现均匀的亮线和暗线,由于层错两侧的区域晶体结构和位相相同,故所有亮线和暗线的衬度分别相同。层错衍衬像表现为平行于层错面迹线的明暗相间的等间距条纹。 孪晶界和晶界两侧的晶体由于位向不同,或者还由于点阵类型不同,一边的晶体处于双光束条件时,另一边的衍射条件不可能是完全相同的,也可能是处于无强衍射的情况,就相当于出现等厚条纹,所以他们的衍衬像都是间距不等的明暗相间的条纹,不同的是孪晶界是一条直线,而晶界不是直线。 反相畴界的衍衬像是曲折的带状条纹将晶粒分隔成许多形状不规则的小区域。 层错条纹平行线直线间距相等 反相畴界非平行线非直线间距不等 孪晶界条纹平行线直线间距不等 晶界条纹平行线非直线间距不等 11.什么是透射电子显微像中的质厚衬度、衍射衬度和相位衬度。形成衍射衬度像和相位衬度像时,物镜在聚焦方面有何不同?为什么? 答:质厚衬度:入射电子透过非晶样品时,由于样品不同微区间存在原子序数或厚度的差异,导致透过不同区域落在像平面上的电子数不同,对应各个区域的图像的明暗不同,形成的衬度。 衍射衬度:由于样品中的不同晶体或同一晶体中不同部位的位向差异导致产生衍射程度不同而形成各区域图像亮度的差异,形成的衬度。 相位衬度:电子束透过样品,试样中原子核和核外电子产生的库伦场导致电子波的相位发生变化,样品中不同微区对相位变化作用不同,把相应的相位的变化情况转变为相衬度,称为相位衬度。 物镜聚焦方面的不同:透射电子束和至少一个衍射束同时通过物镜光阑成像时,透射束和衍射束相互干涉形成反应晶体点阵周期的条纹成像或点阵像或结构物象,这种相位衬度图像的形成是透射束和衍射束相干的结果,而衍射衬度成像只用透射束或者衍射束成像。

(完整版)材料现代分析方法第一章习题答案解析

第一章 1.X射线学有几个分支?每个分支的研究对象是什么? 答:X射线学分为三大分支:X射线透射学、X射线衍射学、X射线光谱学。 X射线透射学的研究对象有人体,工件等,用它的强透射性为人体诊断伤病、用于探测工件内部的缺陷等。 X射线衍射学是根据衍射花样,在波长已知的情况下测定晶体结构,研究与结构和结构变化的相关的各种问题。 X射线光谱学是根据衍射花样,在分光晶体结构已知的情况下,测定各种物质发出的X射线的波长和强度,从而研究物质的原子结构和成分。 2. 试计算当管电压为50 kV时,X射线管中电子击靶时的速度与动能,以及所发射的连续谱的短波限和光子的最大能量是多少? 解:已知条件:U=50kV 电子静止质量:m0=9.1×10-31kg 光速:c=2.998×108m/s 电子电量:e=1.602×10-19C 普朗克常数:h=6.626×10-34J.s 电子从阴极飞出到达靶的过程中所获得的总动能为: E=eU=1.602×10-19C×50kV=8.01×10-18kJ 由于E=1/2m0v02 所以电子击靶时的速度为: v0=(2E/m0)1/2=4.2×106m/s 所发射连续谱的短波限λ0的大小仅取决于加速电压: λ0(?)=12400/U(伏) =0.248? 辐射出来的光子的最大动能为: E0=hv=h c/λ0=1.99×10-15J 3. 说明为什么对于同一材料其λK<λKβ<λKα? 答:导致光电效应的X光子能量=将物质K电子移到原子引力范围以外所需作的功hV k = W k 以kα为例: hV kα = E L– E k

h e = W k – W L = hV k – hV L ∴h V k > h V k α∴λk<λk α以k β 为例:h V k β = E M – E k = W k – W M =h V k – h V M ∴ h V k > h V k β∴ λk<λk βE L – E k < E M – E k ∴hV k α < h V k β∴λk β < λk α 4. 如果用Cu 靶X 光管照相,错用了Fe 滤片,会产生什么现象? 答:Cu 的K α1,K α2, K β线都穿过来了,没有起到过滤的作用。 5. 特征X 射线与荧光X 射线的产生机理有何不同?某物质的K 系荧光X 射线波长是否等于它的K 系特征X 射线波长? 答:特征X 射线与荧光X 射线都是由激发态原子中的高能级电子向低能级跃迁时,多余能 量以X 射线的形式放出而形成的。不同的是:高能电子轰击使原子处于激发态,高能级电子回迁释放的是特征X 射线;以 X 射线轰击,使原子处于激发态,高能级电子回迁释放 的是荧光X 射线。某物质的K 系特征X 射线与其K 系荧光X 射线具有相同波长。6. 连续谱是怎样产生的?其短波限 与某物质的吸收限 有何不同(V 和 V K 以kv 为单位)? 答:当X 射线管两极间加高压时,大量电子在高压电场的作用下,以极高的速度向阳极轰 击,由于阳极的阻碍作用,电子将产生极大的负加速度。根据经典物理学的理论,一个带 负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电 磁波,或至少一个电磁脉冲。由于极大数量的电子射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续X 射线谱。 在极限情况下,极少数的电子在一次碰撞中将全部能量一次性转化为一个光量子,这 个光量子便具有最高能量和最短的波长,即短波限。连续谱短波限只与管压有关,当固定

习题集-材料现代研究方法15.12.17概要

第一章 X 射线衍射分析 1、什么是X 射线?什么是特征X 射线(标识X 射线)谱?特征X 射线可用于对材料进行哪两方面的分析? X 射线与可见光一样,也是电磁波,其波长范围在0.001nm~100nm 之间; 在X 射线谱中,有若干条特定波长的谱线,这些谱线只有当管电压超过一定的数值时才会产生,而这种谱线的波长与管电压、管电流等工作条件无关,只决定于阳极材料,不同元素制成的阳极材料发出不同波长的谱线,因此称之为特征X 射线谱或标识X 射线谱。 特征X 射线谱—元素分析——电子探针X 射线显微分析的依据。 2、根据波尔的原子结构壳层模型,阐述K 系特征X 射线的产生(画图说明)。 3、推导莫塞来定律。 4、什么是X 射线强度? X 射线作为一种电磁波,在其传播过程中是携带着一定的能量的,多带能量的多少,即表示其强弱的程度。208E c I π = 5、X 射线衍射分析在无机非金属材料研究中有哪些应用? (1)物相分析:定性、定量(2)结构分析:a 、b 、c 、α、β、γ、d (3)单晶分析:对称性、晶面取向—晶体加工、籽晶加工(4)测定相图、固溶度(5)测定晶粒大小、应力、应变等情况 6、X 射线管中焦点的形状分为哪两种?各适用于什么分析方法? 点焦点,照相法;线焦点,衍射仪法。 7、目前常用的X 射线管有哪两种? 封闭式X 射线管,旋转阳极X 射线管。 8、元素对X 射线的吸收限?简述元素X 射线吸收限的形成机理。 9、单色X 射线采用的阳极靶材料的哪种特征X 射线、滤波片材料的原子序数与阳极靶材料的原子序数关系如何?滤波片吸收限λk 与阳极靶材料的特征X 射线波长是什么关系? 采用K α射线;滤波片材料的原子序数一般比X 射线管把材料的原子序数小1或2 10、K α是由那两条X 射线合成的?怎样合成的? 11、X 射线与物质相互作用时,产生哪两种散射?各有什么特点?哪种散射适用于X 射线衍射分析? 相干散射,非相干散射。相干散射:不改变波长;非相干散射:改变波长。相干衍射 12、什么叫X 射线的光电效应?什么叫荧光X 射线?什么叫俄歇电子? (1)光电效应:当X 射线波长足够短时,X 射线光子的能量就足够大,能把原子中处于某一能级的电子打出来,而它本身则被吸收,它的能量就传给该电子,使之成为具有能量的光电子,并使原子处于高能的激发态。这种过程就称为光电吸收或光电效应。 (2)荧光X 射线:因为光电吸收后,原子处于高能激发态,内层出现了空位,外层电子往此跃迁,就会产生标识X 射线,这种由X 射线激发出的X 射线称为荧光X 射线。 (3)俄歇电子:当外层电子跃迁到内层空位时,其多余的能量传递给其他外层的电子,使之脱离原子,这样的电子称为俄歇电子。 13、X 射线衍射分析的基本原理? X 射线照射物体时,产生相干散射与非相干散,由于相干散射产生的次级X 射线具有相同的波长,如果散射物质内的原子或分子排列具有周期性(晶体物质)则会发生相互加强的干涉现象,这就是X 射线衍射分析的基本原理。 14、写出布拉格方程,说明其含义。什么是布拉格定律? X 射线的几何条件是d 、θ、λ必须满足布拉格公式。其数学表达式为:λθ=sin d 2 其中d 是晶面间距,θ是布拉格角,即入射线与晶面间的交角。2θ是衍射角。λ是入射X 射线的波长。 布拉格方程表明,用波长λ的X 射线照射晶面间距为d 的晶体时,在λθn sin d 2=方向产生衍射。对于一定波长的X 射线而言,晶体中能产生衍射的晶面数是有限的,即2d λ≥得晶面才能产生衍射。 布拉格定律:布拉格方程和光学反射定律加在一起就是布拉格定律。

材料现代分析测试方法复习

XRD X 射线衍射 TEM 透射电镜—ED 电子衍射 SEM 扫描电子显微镜—EPMA 电子探针(EDS 能谱仪 WPS 波谱仪) XPS X 射线光电子能谱分析 AES 原子发射光谱或俄歇电子能谱 IR —FT —IR 傅里叶变换红外光谱 RAMAN 拉曼光谱 DTA 差热分析法 DSC 差示扫描 量热法 TG 热重分析 STM 扫描隧道显微镜 AFM 原子力显微镜 测微观形貌:TEM 、SEM 、EPMA 、STM 、AFM 化学元素分析:EPMA 、XPS 、AES (原子和俄歇) 物质结构:远程结构(XRD 、ED )、近程结构(RAMAN 、IR )分子结构:RAMAN 官能团:IR 表面结构:AES (俄歇)、XPS 、STM 、AFM X 射线的产生:高速运动着额电子突然受阻时,随着电子能量的消失和转化,就会产生X 射 线。产生条件:1.产生并发射自由电子;2.在真空中迫使电子朝一定方向加速运动,以获得 尽可能高的速度;3.在高速电子流的运动路线上设置一障碍物(阳极靶),使高速运动的电 子突然受阻而停止下来。 X 射线荧光:入射的X 射线光量子的能量足够大将原子内层电子击出,外层电子向内层跃迁, 辐射出波长严格一定的X 射线 俄歇电子产生:原子K 层电子被击出,L 层电子如L2电子像K 层跃迁能量差不是以产生一 个K 系X 射线光量子的形式释放,而是被临近的电子所吸收,使这个电子受激发而成为自由 电子,即俄歇电子 14种布拉菲格子特征:立方晶系(等轴)a=b=c α=β=γ=90°;正方晶系(四方)a=b ≠c α=β=γ=90°;斜方晶系(正交)a ≠b ≠c α=β=γ=90°;菱方晶系(三方)a=b=c α=β=γ≠90°;六方晶系a=b ≠c α=β=90°γ=120°;单斜晶系a ≠b ≠c α=β=90°≠ γ;三斜晶系a ≠b ≠c α≠β≠γ≠90° 布拉格方程的推导 含义:线照射晶体时,只有相邻面网之间散 射的X 射线光程差为波长的整数倍时,才能 产生干涉加强,形成衍射线,反之不能形成 衍射线。λθn d hkl =sin 2 讨论 1.当λ一定,d 相同的晶面,必然在θ相 同的情况下才能获得反射。 2.当λ一定,d 减小,θ就要增大,这说 明间距小的晶面,其掠过角必须是较大的,否则它们的反射线无法加强,在考察多晶体衍射 时,这点由为重要。 3.在任何可观测的衍射角下,产生衍射的条件为:d 2≤λ,但波长过短导致衍射角过 小,使衍射现象难以观测,常用X 射线的波长范围是0.25~0.05nm 。 4.波长一定时,只有2/λ≥d 的晶面才能发生衍射—衍射的极限条件。 X 射线衍射方法:1.劳埃法,采用连续的X 射线照射不动的单晶体,用垂直入射的平板底片 记录衍射得到的劳埃斑点,多用于单晶取向测定及晶体对称性研究。2.转晶法:采用单色X 射线照射转动的单晶体,并用一张以旋转轴为轴的圆筒形底片来记录,特点是入射线波长不 变,靠旋转单晶体以连续改变个晶体与入射X 射线的θ角来满足布拉格方程。转晶法可以确 定晶体在旋转轴方向的点阵周期,确定晶体结构。3.粉末法,采用单色X 射线照射多晶试样, 利用多晶试样中各个微晶不同取向来改变θ角来满足布拉格方程。用于测定晶体结构,进行 物相定性、定量分析,精确测量警惕的点阵参数以及材料的应力、织构、晶粒大小。 谢乐公式:30.890.89cos cos N d L λ βθθ==说明了衍射线宽度与晶块在反射晶面法线方向上尺度

现代材料分析方法试题及答案

1. X射线衍射的几何条件是d、θ、λ必须满足什么公式?写出数学表达式,并说明d、θ、λ的意义。(5分)答:. X射线衍射的几何条件是d、θ、λ必须满足布拉格公式。(1分)其数学表达式:2dsinθ=λ(1分)其中d是晶体的晶面间距。(1分)θ是布拉格角,即入射线与晶面间的交角。(1分)λ是入射X 射线的波长。(1分) 4. 二次电子是怎样产生的?其主要特点有哪些?二次电子像主要反映试样的什么特征?用什么衬度解释?该衬度的形成主要取决于什么因素?(6分) 答:二次电子是单电子激发过程中被入射电子轰击出的试样原子核外电子。(1分) 二次电子的主要特征如下: (1)二次电子的能量小于50eV,主要反映试样表面10nm层内的状态,成像分辨率高。(1分) (2)二次电子发射系数δ与入射束的能量有关,在入射束能量大于一定值后,随着入射束能量的增加,二次电子的发射系数减小。(1分) (3)二次电子发射系数δ和试样表面倾角θ有关:δ(θ)=δ0/cosθ(1分) (4)二次电子在试样上方的角分布,在电子束垂直试样表面入射时,服从余弦定律。(1分) 二此电子像主要反映试样表面的形貌特征,用形貌衬度来解释,形貌衬度的形成主要取决于试样表面相对于入射电子束的倾角。(1分) 2. 布拉格角和衍射角: 布拉格角:入射线与晶面间的交角,(1.5 分) 衍射角:入射线与衍射线的交角。(1.5 分) 3. 静电透镜和磁透镜: 静电透镜:产生旋转对称等电位面的电极装置即为静电透镜,(1.5 分) 磁透镜:产生旋转对称磁场的线圈装置称为磁透镜。(1.5 分) 4. 原子核对电子的弹性散射和非弹性散射: 弹性散射:电子散射后只改变方向而不损失能量,(1.5 分) 非弹性散射:电子散射后既改变方向也损失能量。(1.5 分) 二、填空(每空1 分,共20 分) 1. X 射线衍射方法有劳厄法、转晶法、粉晶法和衍射仪法。 2.扫描仪的工作方式有连续扫描和步进扫描两种。 3. 在X 射线衍射物相分析中,粉末衍射卡组是由粉末衍射标准联合 委员会编制,称为JCPDS 卡片,又称为PDF 卡片。 4. 电磁透镜的像差有球差、色差、轴上像散和畸变。 5.透射电子显微镜的结构分为光学成像系统、真空系统和电气系统。 1. X射线管中,焦点形状可分为点焦点和线焦点,适合于衍射仪工作的是线焦点。 2. 在X 射线物象分析中,定性分析用的卡片是由粉末衍射标准联合委员会编制,称为JCPDS 卡片,又称为PDF(或ASTM) 卡片。 3. X射线衍射方法有劳厄法、转晶法、粉晶法和衍射仪法。 4. 电磁透镜的像差有球差、色差、轴上像散和畸变。 5. 电子探针是一种显微分析和成分分析相结合的微区分析。 二、选择题(多选、每题4 分) 1. X射线是( A D ) A. 电磁波; B. 声波; C. 超声波; D. 波长为0.01~1000?。 2. 方程2dSinθ=λ叫( A D ) A. 布拉格方程; B. 劳厄方程; C. 其中θ称为衍射角; D. θ称为布拉格角。

现代材料分析方法试题及答案

1《现代材料分析方法》期末试卷 一、单项选择题(每题 2 分,共 10 分) 1.成分和价键分析手段包括【 b 】 (a)WDS、能谱仪(EDS)和 XRD (b)WDS、EDS 和 XPS (c)TEM、WDS 和 XPS (d)XRD、FTIR 和 Raman 2.分子结构分析手段包括【 a 】 (a)拉曼光谱(Raman)、核磁共振(NMR)和傅立叶变换红外光谱(FTIR)(b) NMR、FTIR 和 WDS (c)SEM、TEM 和 STEM(扫描透射电镜)(d) XRD、FTIR 和 Raman 3.表面形貌分析的手段包括【 d 】 (a)X 射线衍射(XRD)和扫描电镜(SEM) (b) SEM 和透射电镜(TEM) (c) 波谱仪(WDS)和 X 射线光电子谱仪(XPS) (d) 扫描隧道显微镜(STM)和 SEM 4.透射电镜的两种主要功能:【 b 】 (a)表面形貌和晶体结构(b)内部组织和晶体结构 (c)表面形貌和成分价键(d)内部组织和成分价键 5.下列谱图所代表的化合物中含有的基团包括:【 c 】 (a)–C-H、–OH 和–NH2 (b) –C-H、和–NH2, (c) –C-H、和-C=C- (d) –C-H、和 CO 二、判断题(正确的打√,错误的打×,每题 2 分,共 10 分) 1.透射电镜图像的衬度与样品成分无关。(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。(√)3.透镜的数值孔径与折射率有关。(√)4.放大倍数是判断显微镜性能的根本指标。(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角 速度的二倍。(√) 三、简答题(每题 5 分,共 25 分) 1. 扫描电镜的分辨率和哪些因素有关?为什么? 和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。 2.原子力显微镜的利用的是哪两种力,又是如何探测形貌的? 范德华力和毛细力。

《材料现代分析测试方法》复习题

《近代材料测试方法》复习题 1.材料微观结构和成分分析可以分为哪几个层次?分别可以用什么方法分析? 答:化学成分分析、晶体结构分析和显微结构分析 化学成分分析——常规方法(平均成分):湿化学法、光谱分析法 ——先进方法(种类、浓度、价态、分布):X射线荧光光谱、电子探针、 光电子能谱、俄歇电子能谱 晶体结构分析:X射线衍射、电子衍射 显微结构分析:光学显微镜、透射电子显微镜、扫面电子显微镜、扫面隧道显微镜、原 子力显微镜、场离子显微镜 2.X射线与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用? 答:除贯穿部分的光束外,射线能量损失在与物质作用过程之中,基本上可以归为两大类:一部 分可能变成次级或更高次的X射线,即所谓荧光X射线,同时,激发出光电子或俄歇电子。另一部分消耗在X射线的散射之中,包括相干散射和非相干散射。此外,它还能变成热量逸出。 (1)现象/现象:散射X射线(想干、非相干)、荧光X射线、透射X射线、俄歇效 应、光电子、热能 (2)①光电效应:当入射X射线光子能量等于某一阈值,可击出原子内层电子,产 生光电效应。

应用:光电效应产生光电子,是X射线光电子能谱分析的技术基础。光电效应 使原子产生空位后的退激发过程产生俄歇电子或X射线荧光辐射是 X射线激发俄歇能谱分析和X射线荧光分析方法的技术基础。 ②二次特征辐射(X射线荧光辐射):当高能X射线光子击出被照射物质原子的 内层电子后,较外层电子填其空位而产生了次生特征X射线(称二次特征辐射)。 应用:X射线被物质散射时,产生两种现象:相干散射和非相干散射。相干散射 是X射线衍射分析方法的基础。 3.电子与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用? 答:当电子束入射到固体样品时,入射电子和样品物质将发生强烈的相互作用,发生弹性散射和非弹性散射。伴随着散射过程,相互作用的区域中将产生多种与样品性质有关的物理信息。 (1)现象/规律:二次电子、背散射电子、吸收电子、透射电子、俄歇电子、特征X射 线 (2)获得不同的显微图像或有关试样化学成分和电子结构的谱学信息 4.光电效应、荧光辐射、特征辐射、俄歇效应,荧光产率与俄歇电子产率。 特征X射线产生机理。 光电效应:当入射X射线光子能量等于某一阈值,可击出原子内层电子,产生光电效应。 荧光辐射:被打掉了内层电子的受激原子,将发生外层电子向内层跃迁的过程,同时辐射出波长严格一定的特征X射线。这种利用X射线激发而产生的特征辐射为二次特

材料现代分析方法

《材料现代分析方法》课程教学大纲 一、课程基本信息 课程编号:13103105 课程类别:专业核心课程 适应专业:材料物理 总学时:54学时 总学分: 3 课程简介: 本课程介绍材料微观形貌、结构及成分的分析与表面分析技术主要方法及基本技术,简单介绍光谱分析方法。包括晶体X射线衍射、电子显微分析、X射线光电子谱仪、原子光谱、分子光谱等分析方法及基本技术。 授课教材:《材料分析测试方法》,黄新民解挺编,国防工业出版社,2005年。 参考书目: [1]《现代物理测试技术》,梁志德、王福编,冶金工业出版社,2003年。 [2]《X射线衍射分析原理与应用》,刘粤惠、刘平安编,化学工业出版社,2003年。 [3]《X射线衍射技术及设备》,丘利、胡玉和编,冶金工业出版社,2001年。 [4]《材料现代分析方法》,左演声、陈文哲、梁伟编,北京工业大学出版社,2001年。 [5]《材料分析测试技术》,周玉、武高辉编,哈尔滨工业大学出版社,2000年。 [6]《材料结构表征及应用》,吴刚编,化学工业出版社,2001年。 [7]《材料结构分析基础》,余鲲编,科学出版社,2001年。 二、课程教育目标 通过学习,了解X射线衍射仪及电子显微镜的结构,掌握X-射线衍射及电子显微镜的基本原理和操作方法,了解试样制备的基本要求及方法,了解材料成分的分析与表面分析技术的主要方法及基本技术,了解光谱分析方法,能够利用上述相关仪器进行材料的物相组成、显微结构、表面分析研究。学会运用以上技术的基本方法,对材料进行测试、计算和分析,得到有关微观组织结构、形貌及成分等方面的信息。 三、教学内容与要求 第一章X射线的物理基础 教学重点:X射线的产生及其与物质作用原理 教学难点:X射线的吸收和衰减、激发限 教学时数:2学时 教学内容:X射线的性质,X射线的产生,X射线谱,X射线与物质的相互作用,X射线的衰减规律,吸收限的应用

材料现代分析测试方法知识总结

名词解释: 分子振动:分子中原子(或原子团)以平衡位置为中心的相对(往复)运动。伸缩振动:原子沿键轴方向的周期性(往复)运动;振动时键长变化而键角不变。(双原子振动即为伸缩振动) 变形振动又称变角振动或弯曲振动:基团键角发生周期性变化而键长不变的振动。 晶带:晶体中,与某一晶向[uvw]平行的所有(HKL)晶面属于同一晶带,称为[uvw]晶带。 辐射的吸收:辐射通过物质时,其中某些频率的辐射被组成物质的粒子(原子、离子或分子等)选择性地吸收,从而使辐射强度减弱的现象。 辐射被吸收程度对ν或λ的分布称为吸收光谱。 辐射的发射:物质吸收能量后产生电磁辐射的现象。 作为激发源的辐射光子称一次光子,而物质微粒受激后辐射跃迁发射的光子(二次光子)称为荧光或磷光。吸收一次光子与发射二次光子之间延误时间很短(10-8~10-4s)则称为荧光;延误时间较长(10-4~10s)则称为磷光。 发射光谱:物质粒子发射辐射的强度对ν或λ的分布称为发射光谱。光致发光者,则称为荧光或磷光光谱 辐射的散射:电磁辐射与物质发生相互作用,部分偏离原入射方向而分散传播的现象 散射基元:物质中与入射的辐射相互作用而致其散射的基本单元 瑞利散射(弹性散射):入射线光子与分子发生弹性碰撞作用,仅光子运动方向改变而没有能量变化的散射。 拉曼散射(非弹性散射):入射线(单色光)光子与分子发生非弹性碰撞作用,在光子运动方向改变的同时有能量增加或损失的散射。 拉曼散射线与入射线波长稍有不同,波长短于入射线者称为反斯托克斯线,反之则称为斯托克斯线 光电离:入射光子能量(hν)足够大时,使原子或分子产生电离的现象。 光电效应:物质在光照射下释放电子(称光电子)的现象又称(外)光电效应。 光电子能谱:光电子产额随入射光子能量的变化关系称为物质的光电子能谱 分子光谱:由分子能级跃迁而产生的光谱。

材料现代分析方法试题9(参考答案)

材料现代分析方法试题9(参考答案) 一、基本概念题(共10题,每题5分) 1.为什么特征X射线的产生存在一个临界激发电压?X射线管的工作电压与其靶材的临界激发电压有什么关系?为什么? 答:要使内层电子受激发,必须给予施加大于或等于其结合能的能量,才能使其脱离 轨道,从而产生特征X射线,而要施加的最低能量,就存在一个临界激发电压。X射线 管的工作电压一般是其靶材的临界激发电压的3-5倍,这时特征X射线对连续X射线比 例最大,背底较低。 2.布拉格方程2dsinθ=λ中的d、θ、λ分别表示什么?布拉格方程式有何用途?答:d HKL表示HKL晶面的面网间距,θ角表示掠过角或布拉格角,即入射X射线或衍射线与面网间的夹角,λ表示入射X射线的波长。该公式有二个方面用途: (1)已知晶体的d值。通过测量θ,求特征X射线的λ,并通过λ判断产生特征X射线的元素。这主要应用于X射线荧光光谱仪和电子探针中。(2)已知入射X射线的波 长,通过测量θ,求晶面间距。并通过晶面间距,测定晶体结构或进行物相分析。3.多重性因子的物理意义是什么?某立方晶系晶体,其{100}的多重性因子是多少?如该晶体转变为四方晶系,这个晶面族的多重性因子会发生什么变化? 答:多重性因子的物理意义是等同晶面个数对衍射强度的影响因数叫作多重性因子。某立方晶系晶体,其{100}的多重性因子是6?如该晶体转变为四方晶系多重性因子是4;这个晶面族的多重性因子会随对称性不同而改变。 4.什么是丝织构,它的极图有何特点? 答:丝织构是一种晶粒取向轴对称分布的织构,存在于拉、轧或挤压成形的丝、棒材 及各种表面镀层中。其特点是多晶体中各种晶粒的某晶向[uvw]与丝轴或镀层表面法线 平行。 丝织构的极图呈轴对称分布 5.电磁透镜的像差是怎样产生的? 如何来消除和减少像差? 答:电磁透镜的像差包括球差、像散和色差。 球差即球面像差,是磁透镜中心区和边沿区对电子的折射能力不同引起的,其中离

相关主题
文本预览
相关文档 最新文档