当前位置:文档之家› 操作系统存储器管理

操作系统存储器管理

操作系统存储器管理
操作系统存储器管理

存储器管理(固定分区、可变分区与分页式分配算法)

一、目的

本课题实验的目的是,使学生实验存储器管理系统的设计方法;加深对所学各种存储器管理方案的了解;要求采用一些常用的存储器分配算法,设计一个存储器管理模拟系统并调试运行。

二、实验内容

模拟固定分区分内存的动态分配和回收,并编程实现。

三、要求及提示

(1)建立相关的数据结构,作业控制块、已分配分区及未分配分区

(2)实现一个固定分区分配算法(实现多个分区只设置一个后备作业队列, 而每个分区设置一个后备作业队列 ,留给大家实现)

(3)实现一个分区回收算法

(4)要求采用一种常用的存储器分配算法,设计一个存储器管理模拟系统。允许进行多次的分配和释放,并可向用户反馈分配和释放情况及当前内存的情况;采用“命令菜单”选择和键盘命令输入的会话方式,根据输入请求调用分配模块,或回收模块,或内存查询模块,或最终退出系统。

(5)编程实现。

(6)工具:C语言或其它高级语言

四、实验报告

1、列出调试通过程序的清单,并附上文档说明。

2、总结上机调试过程中所遇到的问题和解决方法及感想。

五参考代码:

// memdos.cpp : 定义控制台应用程序的入口点。

//以下代码为4种分区,8K分区四块,16K分区3块,32分区2块, 64分区1块, 共10块

#include "stdafx.h"

#include

#include

//#include

#define TRUE 1

#define FALSE 0

void InitCSolid( );

void ExitSolid();

int MallocArea(int nSize,char* sName);//申请一个分区函数

int FreeArea(char *sName); //释放一个分区函数

void ShowArea( );//显示所有分区状态函数

{

char *pmem; //每分区内存的起始地址

int size; // 每分区的大小

int useSize; //已使用大小,若为0 ,表示此分区尚未使用

char jobName[20]; //此分区的作业(进程)名

};

int nSizes[4];//共4种分区,每种分区的大小为 8k,16k,32k,64k ,每K为1024字节

char *pmems; //起始分区内存地址

Solid *psolids;

int snum; //定义总的内存分区数

int main( )

{

int jobCount=1; //已申请的作业个数

char str[100];

char jobName[14];

int nSize; //申请的作业大小

InitCSolid( ); //初始化数据

while(1)

{

ShowArea( ); //显示内存的分配与使用情况

printf(" 固定分区内存管理\n x退出 1申请内存 2释放内存\n");

scanf("%s",str);

if(strlen(str)!=1) continue;

if(str[0]=='x' || str[0]=='X')

break; //退出

if(str[0]=='1') //申请内存

while(1)

{

printf("请输入申请内存的大小 (按x退出,按0返回上一级): ");

scanf("%s",str);

if(strlen(str)==1)

{

if(str[0]=='x' || str[0]=='X')

goto exit; // 退出

if(str[0]=='0')

break; //返回上一级

}

nSize=atoi(str);//获取申请的内存大小 (atoi函数功能为字符串转换成数字类型)

if(nSize<=0) { printf("输入错误! ");continue;}

sprintf(jobName,"作业%03d",jobCount); //自动定义一个作业名

if( !MallocArea(nSize,jobName)) //分配内存,并判断是否成功

{

printf( "申请内存大小为%d,但没有空间可分配,请重新输入\n",nSize);

}

jobCount++; //已申请的作业个数

ShowArea(); //显示内存的分配与使用情况

}

if(str[0]=='0')

continue; //返回上一级

}

if(str[0]=='2') //释放内存

{

printf("请输入释放内存的作业名 (按x退出,按0返回上一级): ");

while(1)

scanf("%s",str);

if(strlen(str)==1)

{

if(str[0]=='x' || str[0]=='X')

goto exit; // 退出

if(str[0]=='0')

break; //返回上一级

}

if(strlen(str)==3)

sprintf(jobName,"作业%s",str); //获取作业名

else strcpy(jobName,str);

if(FreeArea(jobName)) //根据作业名释放内存,并判断是否释放成功

{

printf("已释放%s所占用的内存\n\n\n",str);

ShowArea();

printf("请输入释放内存的作业名 (按x退出,按0返回上一级): ");

}

else printf("无此作业,请重新输入释放内存的作业名 (按x退出,按0返回上一级): ");

}

if(str[0]=='0')

continue;

}

}

exit:ExitSolid(); //释放资源

//

//getchar();

return 0;

}

void InitCSolid( ) //生成初始数据

{

//this->snum=sNum;

int i,ntotalSize=0;

snum=10; //总共分成10分区

psolids=(Solid *)malloc(sizeof(Solid)*snum); //new Solid[snum];//申请堆内存

nSizes[0]=8192;nSizes[1]=16384;nSizes[2]=32768;nSizes[3]=65536; //nSizes[4]=165536;

psolids[0].size=nSizes[0]; psolids[0].useSize=0; //其中8K分区4块,并设置其大小与使用标志为0, 表示未使用

psolids[1].size=nSizes[0]; psolids[1].useSize=0;

psolids[2].size=nSizes[0]; psolids[2].useSize=0;

psolids[3].size=nSizes[0]; psolids[3].useSize=0;

psolids[4].size=nSizes[1]; psolids[4].useSize=0; //其中16K分区3块

psolids[5].size=nSizes[1]; psolids[5].useSize=0;

psolids[6].size=nSizes[1]; psolids[6].useSize=0;

psolids[7].size=nSizes[2]; psolids[7].useSize=0;//其中32K分区2块

psolids[8].size=nSizes[2]; psolids[8].useSize=0;

psolids[9].size=nSizes[3]; psolids[9].useSize=0; //其中64K分区1块

for(i=0;i

ntotalSize+=psolids[i].size; //获取总的内存大小

pmems=(char *)malloc(ntotalSize);

psolids[0].pmem=pmems; //设置每分区的起始地址

for(i=1;i

{

psolids[i].pmem=psolids[i-1].pmem +psolids[i-1].size;

}

}

void ExitSolid() //释放

// delete []psolids;

free(psolids);//释放内存

free(pmems);

}

//申请内存函数,参数nrSize为要申请的内存大小,参数sName为申请的作业名称,申请成功返回TRUE, 否则返回FALSE

int MallocArea(int nrSize,char *sName)

{

int i;

for(i=0;i<4;i++)

{

if(nrSize>nSizes[i]) continue; //根据要申请的nrSize内存大小,判断落在哪个分区(8k,16k,32k,64k分区)

break;

}

if(i==4) return false; //申请的nrSize内存太大,没有大内存分配

int n=i; //记住要分配的分区

//循环查找可用分区

for(i=0;i

{

if(psolids[i].size

continue;

if(psolids[i].useSize!=0) //此分区块已分配出去否?

continue; //是,寻找下一分区块

psolids[i].useSize=nrSize; //否,分配此块分区

strcpy(psolids[i].jobName,sName);//保存作业名

}

if(i==snum)

return FALSE; //申请不成功

return TRUE;//申请成功

}

//根据作业名释放内存,找到作业名并成功释放返回TRUE ,否则返回FALSE

int FreeArea(char *sName)

{

int i;

for(i=0;i

{

if( strcmp(sName,psolids[i].jobName)==0) //是否由此作业名?

if(psolids[i].useSize!=0){

psolids[i].useSize=0; //是 ,释放内存,即设置此块分区为未使用 return TRUE;

}

}

return FALSE;

}

void ShowArea( )//显示

{

int i=0;

printf("\n");

for(i=0;i

{

if(psolids[i].useSize==0) //此分区块是否已使用

printf("空闲区间起始地址%dK \t内存大小%dK\n", (psolids[i].pmem - psolids[0].pmem)/1024 ,psolids[i].size/1024 );

}

else { //是

printf("%s 起始地址%dK \t内存大小%dK 已使用%dK%d字节\n",

psolids[i].jobName, (psolids[i].pmem - psolids[0].pmem)/1024, psolids[i].size/1024,psolids[i].useSize/1024,psolids[i].useSize%1024 );

}

}

printf("\n");

}

操作系统内存管理复习过程

操作系统内存管理

操作系统内存管理 1. 内存管理方法 内存管理主要包括虚地址、地址变换、内存分配和回收、内存扩充、内存共享和保护等功能。 2. 连续分配存储管理方式 连续分配是指为一个用户程序分配连续的内存空间。连续分配有单一连续存储管理和分区式储管理两种方式。 2.1 单一连续存储管理 在这种管理方式中,内存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和 DOS 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求内

存空间少的程序,造成内存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的内存。 2.2 分区式存储管理 为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把内存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。 分区式存储管理引人了两个新的问题:内碎片和外碎片。 内碎片是占用分区内未被利用的空间,外碎片是占用分区之间难以利用的空闲分区(通常是小空闲分区)。 为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。

分区式存储管理常采用的一项技术就是内存紧缩(compaction)。 2.2.1 固定分区(nxedpartitioning)。 固定式分区的特点是把内存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。 优点:易于实现,开销小。 缺点主要有两个:内碎片造成浪费;分区总数固定,限制了并发执行的程序数目。 2.2.2动态分区(dynamic partitioning)。 动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程中通过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有内碎

服务器RAID知识介绍

服务器RAID知识介绍 第一章RAID知识介绍 RAID的全称是廉价磁盘冗余阵列(Redundant Array of Inexpensive Disks),于1987年由美国Berkeley 大学的两名工程师提出的RAID出现的,最初目的是将多个容量较小的廉价硬盘合并成为一个大容量的“逻辑盘”或磁盘阵列,实现提高硬盘容量和性能的功能。 随着RAID技术的逐渐普及应用,RAID技术的各方面得到了很大的发展。现在,RAID从最初的RAID0-RAID5,又增加了RAID0+1和RAID0+5等不同的阵列组合方式,可以根据不同的需要实现不同的功能,扩大硬盘容量,提供数据冗余,或者是大幅度提高硬盘系统的I/0吞吐能力。 RAID技术主要有三个特点: 第一、通过对硬盘上的数据进行条带化,实现对数据成块存取,减少硬盘的机械寻道时间,提高数据存取速度。 第二、通过对一阵列中的几块硬盘同时读取,减少硬盘的机械寻道时间,提高数据存取速度。 第三、通过镜像或者存储奇偶校验信息的方式,实现对数据的冗余保护。 经常应用的RAID阵列主要分为RAID 0,RAID 1,RAID 5和RAID 0+1。 1.1 RAID0:条带化 RAID 0 也叫条带化,它将数据象条带一样写到多个磁盘上,这些条带也叫做“块”。条带化实现了可以同时访问多个磁盘上的数据,平衡I/O负载,加大了数据存储空间和加快了数据访问速度。 RAID 0是唯一的一个没有冗余功能的RAID技术,但RAID0 的实现成本低。如果阵列中有一个盘出现故障,则阵列中的所有数据都会丢失。如要恢复RAID 0,只有换掉坏的硬盘,从备份设备中恢复数据到所有的硬盘中。 硬件和软件都可以实现RAID0。实现RAID0最少用2个硬盘。对系统而言,数据是采用分布 方式存储在所有的硬盘上,当某一个硬盘出现故障时数据会全部丢失。RAID 0 能提供很高的 硬盘I/O性能,可以通过硬件或软件两种方式实现。 1.2 RAID1 也被称为磁盘镜像。系统将数据同时重复的写入两个硬盘,但是在操作系统中表现为一个逻辑盘。所以如果一个硬盘发生了故障,另一个硬盘中仍然保留了一份完整的数据,系统仍然可以照常工作。系统可以同时从两个硬盘读取数据,所以会提高硬盘读的速度;但由于在系统写数据需要重复一次,所以会影响系统写数据的速度。硬盘容量的利用率只有50%。 1.3 RAID0+1 对RAID0阵列做镜像。这是一种Dual Level RAID,也有人称之为RAID level 10。是两组硬盘先做RAID0,组成两颗大容量的逻辑硬盘,再互相为“镜像”。在每次写入数据,磁盘阵列控制器会将资料同时写入该两组“大容量数组硬盘组”内。 同RAID level 1 一样,虽然其硬盘使用率亦只有50%,但它却是最具高效率的规划方式。 1.4 RAID5 是在RAID3和RAID4的基础上发展来的,它继承了它们的数据冗余和条带化的特点,并将数据校验信息均匀保存在阵列中的所有硬盘上。系统可以对阵列中所有的硬盘同时读写,减少了由硬盘机械系统引起的时间延迟,提高了磁盘系统的I/O能力;当阵列中的一块硬盘仿生故障,系统可以使用保存在其它硬盘上的奇偶校验信息恢复故障硬盘的数据,继续进行正常工作。

第四章 操作系统存储管理(练习题)

第四章存储管理 1. C存储管理支持多道程序设计,算法简单,但存储碎片多。 A. 段式 B. 页式 C. 固定分区 D. 段页式 2.虚拟存储技术是 B 。 A. 补充内存物理空间的技术 B. 补充相对地址空间的技术 C. 扩充外存空间的技术 D. 扩充输入输出缓冲区的技术 3.虚拟内存的容量只受 D 的限制。 A. 物理内存的大小 B. 磁盘空间的大小 C. 数据存放的实际地址 D. 计算机地址位数 4.动态页式管理中的 C 是:当内存中没有空闲页时,如何将已占据的页释放。 A. 调入策略 B. 地址变换 C. 替换策略 D. 调度算法 5.多重分区管理要求对每一个作业都分配 B 的内存单元。 A. 地址连续 B. 若干地址不连续 C. 若干连续的帧 D. 若干不连续的帧 6.段页式管理每取一数据,要访问 C 次内存。 A. 1 B. 2 C. 3 D. 4 7.分段管理提供 B 维的地址结构。 A. 1 B. 2 C. 3 D. 4 8.系统抖动是指 B。 A. 使用计算机时,屏幕闪烁的现象 B. 刚被调出内存的页又立刻被调入所形成的频繁调入调出的现象 C. 系统盘不干净,操作系统不稳定的现象 D. 由于内存分配不当,造成内存不够的现象 9.在 A中,不可能产生系统抖动现象。 A. 静态分区管理 B. 请求分页式管理 C. 段式存储管理 D. 段页式存储管理 10.在分段管理中 A 。 A. 以段为单元分配,每段是一个连续存储区 B. 段与段之间必定不连续 C. 段与段之间必定连续 D. 每段是等长的 11.请求分页式管理常用的替换策略之一有 A 。 A. LRU B. BF C. SCBF D. FPF 12.可由CPU调用执行的程序所对应的地址空间为 D 。 A. 名称空间 B. 虚拟地址空间 C. 相对地址空间 D. 物理地址空间 13. C 存储管理方式提供二维地址结构。 A. 固定分区 B. 分页

操作系统存储器管理习题

存储器管理 单项选择题 存储管理的目的是()。 A.方便用户 B.提高内存利用率 C.方便用户和提高内存利用率 D.增加内存实际容量 外存(如磁盘)上存放的程序和数据()。 A.可由CPU直接访问 B.必须在CPU访问之前移入内存 C.是必须由文件系统管理的 D.必须由进程调度程序管理 当程序经过编译或者汇编以后,形成了一种由机器指令组成的集合,被称为()。 A.源程序 B.目标程序 C.可执行程序 D.非执行程序 4、可由CPU调用执行的程序所对应的地址空间为( D )。 A.符号名空间 B.虚拟地址空间 C.相对地址空间 D.物理地址空间 5、经过(),目标程序可以不经过任何改动而装入物理内存单元。 A.静态重定位 B.动态重定位 C.编译或汇编 D.存储扩充 6、若处理器有32位地址,则它的虚拟地址空间为()字节。 A.2GB B.4GB C.100KB D.640KB 7、分区管理要求对每一个作业都分配()的内存单元。 A.地址连续 B.若干地址不连续 C.若干连续的帧 D.若干不连续的帧 8、()是指将作业不需要或暂时不需要的部分移到外存,让出内存空间以调入其他所需数据。 A.覆盖技术 B.对换技术 C.虚拟技术 D.物理扩充 9、虚拟存储技术是()。 A.补充内存物理空间的技术 B.补充相对地址空间的技术 C.扩充外存空间的技术 D.扩充输入输出缓冲区的技术 10、虚拟存储技术与()不能配合使用。 A.分区管理 B.动态分页管理 C.段式管理 D.段页式管理 11、以下存储管理技术中,支持虚拟存储器的技术是()。 A.动态分区法 B.可重定位分区法 C.请求分页技术 D.对换技术 12、在请求页式存储管理中,若所需页面不在内存中,则会引起()。 A.输入输出中断 B. 时钟中断 C.越界中断 D. 缺页中断 13、在分段管理中,()。 以段为单位分配,每段是一个连续存储区 段与段之间必定不连续 段与段之间必定连续 每段是等长的 14、()存储管理方式提供一维地址结构。 A.固定分区 B.分段 C.分页 D.分段和段页式 15、分段管理提供()维的地址结构。 A.1 B.2 C.3 D.4 16、段页式存储管理汲取了页式管理和段式管理的长处,其实现原理结合了页式和段式管理的基本思想,即()。 用分段方法来分配和管理物理存储空间,用分页方法来管理用户地址空间。 用分段方法来分配和管理用户地址空间,用分页方法来管理物理存储空间。 用分段方法来分配和管理主存空间,用分页方法来管理辅存空间。

操作系统储存管理程序

#include #include #include #include #include #define n 10 /*假定系统允许的最大作业数为n,假定模拟实验中n值为10*/ #define m 10 /*假定系统允许的空闲区表最大为m,假定模拟实验中m值为10*/ #define minisize 100 /*空闲分区被分配时,如果分配后剩余的空间小于minisize,则将该空闲分区全部分配,若大于minisize,则切割分配*/文档收集自网络,仅用于个人学习 struct { float address; /*已分配分区起始地址*/ float length; /*已分配分区长度,单位为字节*/ int flag; /*已分配区表登记栏标志,用"0"表示空栏目*/ }used_table[n]; /*已分配区表*/ struct { float address; /*空闲区起始地址*/ float length; /*空闲区长度,单位为字节*/ int flag; /*空闲区表登记栏标志,用"0"表示空栏目,用"1"表示未分配*/ }free_table[m]; /*空闲区表*/ void allocate(char J,float xk) /*给J作业,采用最佳分配算法分配xk大小的空间*/ 文档收集自网络,仅用于个人学习 { int i,k; float ad; k=-1; for(i=0;i=xk&&free_table[i].flag==1) 文档收集自网络,仅用于个人学习 if(k==-1||free_table[i].length

计算机操作系统存储管理练习题

一、选择 1.分页存储管理的存储保护是通过( )完成的. A.页表(页表寄存器) B.快表 C.存储键 D.索引动态重定 2.把作业地址空间中使用的逻辑地址变成存中物理地址称为()。 A、加载 B、重定位 C、物理化 D、逻辑化3.在可变分区存储管理中的紧凑技术可以---------------。 A.集中空闲区 B.增加主存容量 C.缩短访问时间 D.加速地址转换 4.在存储管理中,采用覆盖与交换技术的目的是( )。 A.减少程序占用的主存空间 B.物理上扩充主存容量 C.提高CPU效率 D.代码在主存中共享 5.存储管理方法中,( )中用户可采用覆盖技术。 A.单一连续区 B. 可变分区存储管理 C.段式存储管理 D. 段页式存储管理 6.把逻辑地址转换成物理地址称为()。 A.地址分配 B.地址映射 C.地址保护 D.地址越界 7.在存分配的“最佳适应法”中,空闲块是按()。 A.始地址从小到大排序 B.始地址从大到小排序 C.块的大小从小到大排序 D.块的大小从大到小排序 8.下面最有可能使得高地址空间成为大的空闲区的分配算法是()。A.首次适应法 B.最佳适应法 C.最坏适应法 D.循环首次适应法 9.那么虚拟存储器最大实际容量可能是( ) 。 A.1024K B.1024M C.10G D.10G+1M 10.用空白链记录存空白块的主要缺点是()。 A.链指针占用了大量的空间 B.分配空间时可能需要一定的拉链时间 C.不好实现“首次适应法” D.不好实现“最佳适应法” 11.一般而言计算机中()容量(个数)最多. A.ROM B.RAM C.CPU D.虚拟存储器 12.分区管理和分页管理的主要区别是()。 A.分区管理中的块比分页管理中的页要小 B.分页管理有地址映射而分区管理没有 C.分页管理有存储保护而分区管理没有 D.分区管理要求一道程序存放在连续的空间而分页管理没有这种要求。13.静态重定位的时机是()。 A.程序编译时 B.程序时 C.程序装入时 D.程序运行时 14.通常所说的“存储保护”的基本含义是() A.防止存储器硬件受损 B.防止程序在存丢失 C.防止程序间相互越界访问 D.防止程序被人偷看 15.能够装入存任何位置的代码程序必须是( )。 A.可重入的 B.可重定位

华为服务器操作系统安装指南设计

华为服务器操作系统安装指南 用户使用ServiceCD安装操作系统之前,需要做好以下三方面的准备。 ?准备安装工具和软件。 o USB光驱/内置光驱 o ServiceCD光盘 o Windows操作系统安装光盘 ?保需要安装操作系统的服务器已安装到位。 ?置设备启动顺序。 在BIOS的设备启动优先级设置中,将光驱设置为第一启动设备,硬盘设置为第二启动设备。 以Windows Server 2008操作系统为例,介绍Windows操作系统的安装过程。 1.将USB光驱插入服务器的USB接口或通过高密线缆将USB光驱连接到服务器节点, 将ServiceCD光盘放入USB光驱。 2.将服务器上电,系统启动,进入POST(Power-on Self-test)阶段。 3.ServiceCD自动引导系统进入安装启动界面(如图1),按上下方向键选择 “Microsoft Windows”选项,按“Enter”键确认。 说明: 安装启动界面只显示ServiceCD在当前服务器所支持的操作系统。因此,在不同 型号的服务器上安装时,安装启动界面中的操作系统会存在不同。

图1 选择Windows操作系统 4.此时,ServiceCD提供32位和64位的Windows Server 2003和Windows Server 2008 操作系统类型(如图2),按上下方向键选择V2服务器支持的Windows Server 2008操作系统的相应版本(下面以x86版本为例进行说明)进行安装。按“Enter”键确认,ServiceCD自动加载文件。 说明: 1.Windows Server 2008 for x86为32位操作系统。 2.Windows Server 2008 for x64为64位操作系统 图2 选择Windows Server 2008操作系统类型 文件加载完成后,进入图3界面,选择是否创建系统分区。

操作系统概论存储管理同步练习及答案

操作系统概论存储管理同步练习及答案 一、单项选择题 1.要保证一个程序在主存中被改变了存放位置后仍能正确执行,则对主存空间应采用()技术。 A.动态重定位B.静态重定位 C.动态分配D.静态分配 2.固定分区存储管理把主存储器划分成若干个连续区,每个连续区称一个分区。经划分后分区的个数是固定的,各个分区的大小()。 A.是一致的 B.都不相同 C.可以相同,也可以不相同,但根据作业长度固定 D.在划分时确定且长度保持不变 3.采用固定分区方式管理主存储器的最大缺点是()。 A.不利于存储保护B.主存空间利用率不高 C.要有硬件的地址转换机构D.分配算法复杂 4.采用可变分区方式管理主存储器时,若采用最优适应分配算法,宜将空闲区按()次序登记在空闲区表中。 A.地址递增B.地址递减C.长度递增D.长度递减 5.在可变分区存储管理中,某作业完成后要收回其主存空间,该空间可能要与相邻空闲区合并。在修改未分配区表时,使空闲区个数不变且空闲区始址不变的情况是()空闲区。A.无上邻也无下邻B.无上邻但有下邻 C.有上邻也有下邻D.有上邻但无下邻 6.在可变分区存储管理中,采用移动技术可以()。 A.汇集主存中的空闲区B.增加主存容量 C.缩短访问周期D.加速地址转换 7.页式存储管理中的页表是由()建立的。 A.操作员B.系统程序员C.用户D.操作系统 8.采用页式存储管理时,重定位的工作是由()完成的。 A.操作系统B.用户C.地址转换机构D.主存空间分配程序 9.采用段式存储管理时,一个程序如何分段是在()决定的。 A.分配主存时B.用户编程时C.装人作业时D.程序执行时 10.采用段式存储管理时,一个程序可以被分成若干段,每一段的最大长度是由()限定的。 A.主存空闲区的长度B.硬件的地址结构C.用户编程时D.分配主存空间时 11.实现虚拟存储器的目的是()。 A.扩充主存容量B.扩充辅存容量C.实现存储保护D.加快存取速度 12.LRU页面调度算法是选择()的页面先调出。 A.最近才使用B.最久未被使用C.驻留时间最长D.驻留时间最短 13.若进程执行到某条指令时发生了缺页中断,经操作系统处理后,当该进程再次占用处理器时,应从()指令继续执行。 A.被中断的前一条B.被中断的后一条C.被中断的D.开始时的第一条 14.下面的存储管理方案中,()方式可以采用静态重定位。 A.固定分区B.可变分区C.页式D.段式

操作系统介绍与安装完整版.doc

认识操作系统 系统简介 定义 :操作系统(英语:Operating System,简称OS)是管理和控制计算机硬件与软件资源的计算机程序,是直接运行在“裸机”上的最基本的系统软件,任何其他软件都必须在操作系统的支持下才能运行。操 操作系统所处位置 作系统是用户和计算机的接口,同时也是计算机硬件和其他软件的接口。 操作系统的功能:包括管理计算机系统的硬件、软件及数据资源,控制程序运行,改善人机界面,为其它应用软件提供支持等,使计算机系统所有资源最大限度地发挥作用,提供了各种形式的用户界面,使用户有一个好

的工作环境,为其它软件的开发提供必要的服务和相应的接口。 操作系统的种类:各种设备安装的操作系统可从简单到复杂,可分为智能卡操作系统、实时操作系统、传感器节点操作系统、嵌入式操作系统、个人计算机操作系统、多处理器操作系统、网络操作系统和大型机操作系统。 按应用领域划分主要有三种: 桌面操作系统、 服务器操作系统 嵌入式操作系统。 ○1桌面操作系统 桌面操作系统主要用于个人计算机上。个人计算机市场从硬件架构上来说主要分为两大阵营,PC机与Mac 机,从软件上可主要分为两大类,分别为类Unix操作系统和Windows操作系统: 1、Unix和类Unix操作系统:Mac OS X,Linux发行

版(如Debian,Ubuntu,Linux Mint,openSUSE,Fedora等); 一个流行Linux发行版——Ubuntu桌面 Mac OS X桌面 2、微软公司Windows操作系统:Windows XP,Windows Vista,Windows 7,Windows 8等。 Windows 8 Metro Windows 8桌面 ○2服务器操作系统 服务器操作系统一般指的是安装在大型计算机上的操作系统,比如Web服务器、应用服务器和数据库服务器等。服务器操作系统主要集中在三大类: 1、Unix系列:SUN Solaris,IBM-AIX,HP-UX,

操作系统 第四章 存储管理习题

第四章存储管理习题 一、选择题 1、存储分配解决多道作业(A)的划分问题。为了解决静态和动态存储分配,需采用地址重定位,即把(B)变换成(C),静态重定位由(D)实现,动态重定位由(E)实现。 A:①地址空间②符号名空间③主存空间④虚拟空间 B、C:①页面地址②段地址 ③逻辑地址 ④物理地址⑤外存地址⑥设备地址 D~E:①硬件地址变换机构 ②执行程序 ③汇编程序 ④连接装入程序 ⑤调试程序 ⑥编译程序 ⑦解释程序 2、提高主存利用率主要是通过(A)功能实现的。(A)的基本任务是为每道程序做(B);使每道程序能在不受干扰的环境下运行,主要是通过(C)功能实现的。

A、C:①主存分配②主存保护③地址映射 ④主存扩充 B:①逻辑地址到物理地址的变换; ②内存与外存间的交换; ③允许用户程序的地址空间大于内存空间; ④分配内存 3、由固定分区方式发展为分页存储管理方式的主要推动力是(A);由分页系统发展为分段系统,进而以发展为段页式系统的主要动力分别是(B)。 A~B:①提高主存的利用率; ②提高系统的吞吐量; ③满足用户需要; ④更好地满足多道程序运行的需要; ⑤既满足用户要求,又提高主存利用率。 4、静态重定位是在作业的(A)中进行的,动态重定位是在作业的(B)中进行的。 A、B:①编译过程;②装入过程;③修改过程;④执行过程 5、对外存对换区的管理应以(A)为主要目标,对外存文

件区的管理应以(B)为主要目标。 A、B:①提高系统吞吐量;②提高存储空间的利用率;③降低存储费用;④提高换入换出速度。 6、从下列关于虚拟存储器的论述中,选出一条正确的论述。 ①要求作业运行前,必须全部装入内存,且在运行中必须常驻内存; ②要求作业运行前,不必全部装入内存,且在运行中不必常驻内存; ③要求作业运行前,不必全部装入内存,但在运行中必须常驻内存; ④要求作业运行前,必须全部装入内存,且在运行中不必常驻内存; 7、在请求分页系统中有着多种置换算法:⑴选择最先进入内存的页面予以淘汰的算法称为(A);⑵选择在以后不再使用的页面予以淘汰的算法称为(B);⑶选择自上次访问以来所经历时间最长的页面予淘汰的算法称为(C); A~D:①FIFO算法;②OPT算法;③LRU 算法;④NRN算法;⑤LFU算法。 8、静态链接是在(A)到某段程序时进行的,动态链接是

操作系统第九章习题,存储管理

第九章习题 1.在一个请求分页虚拟存储管理系统中,一个作业共有5页,执行时其访问 页面次序为: (1) 1、4、3、1、2、5、1、4、2、1、4、5。 (2) 3、2、1、4、4、5、5、3、4、3、2、1、5。 若分配给该作业三个页框,分别采用FIFO和LRU面替换算法,求出各自的缺页中断次数和缺页中断率。 答:(1) 采用FIFO为9次,9/12=75%。采用LRU为8次,8/12=67%。 (2) 采用FIFO和LRU均为9次,9/13=69%。 2.一个32位地址的计算机系统使用二级页表,虚地址被分为9位顶级页表, 11位二级页表和偏移。试问:页面长度是多少虚地址空间共有多少个页面 答:因为32-9-11=12,所以,页面大小为212B=4KB,页面个数为29+11=220个。 3.一台机器有48位虚地址和32位物理地址,若页长为8KB,问页表共有多 少个页表项如果设计一个反置页表,则有多少个页表项 答:8KB=213B.页表共有248-13=235个页表项。 反置页表,共有232-13=219个页表项。 4.一个有快表的请页式虚存系统,设内存访问周期为1微秒,内外存传送一 个页面的平均时间为5毫秒。如果快表命中率为75%,缺页中断率为10%。忽略快表访问时间,试求内存的有效存取时间。 答:快表命中率为75%,缺页中断率为10%,所以,内存命中率为15%。故内存的有效存取时间=1×75%+2×15%+(5000+2)×10%=微秒。 5.在请求分页虚存管理系统中,若驻留集为m个页框,页框初始为空,在长 为p的引用串中具有n个不同页面(n>m),对于FIFO、LRU两种页面替换算法,试给出缺页中断的上限和下限,并举例说明。 答:对于FIFO、LRU两种页面替换算法,缺页中断的上限和下限:为p和n。因为有n 个不同页面,无论怎样安排,不同页面进入内存至少要产生一次缺页中断,故下限为n次。由于m

操作系统实验四存储管理

宁德师范学院计算机系 实验报告 (2014—2015学年第二学期) 课程名称操作系统 实验名称实验四存储管理 专业计算机科学与技术(非师)年级2012级 学号B2012102147 姓名王秋指导教师王远帆 实验日期2015-05-20

2) 右键单击任务栏以启动“任务管理器”。 3) 在“Windows任务管理器”对话框中选定“进程”选项卡。 4) 向下滚动在系统上运行的进程列表,查找想要监视的应用程序。 请在表4-3中记录: 表4-3 实验记录 映像名称PID CPU CPU时间内存使用 WINWORD.EXE 5160 00 0:00:10 22772k 图1 word运行情况 “内存使用”列显示了该应用程序的一个实例正在使用的内存数量。 5) 启动应用程序的另一个实例并观察它的内存需求。 请描述使用第二个实例占用的内存与使用第一个实例时的内存对比情况: 第二个实例占用内存22772K,比第一个实例占用的内存大很多 4:未分页合并内存。 估算未分页合并内存大小的最简单方法是使用“任务管理器”。未分页合并内存的估计值显示在“任务管理器”的“性能”选项卡的“核心内存”部分。 总数(K) :________220___________ 分页数:__________167___________ 未分页(K) :_________34__________

图2核心内存 还可以使用“任务管理器”查看一个独立进程正在使用的未分页合并内存数量和分页合并内存数量。操作步骤如下: 1) 单击“Windows任务管理器”的“进程”选项卡,然后从“查看”菜单中选择“选择列”命令,显示“进程”选项卡的可查看选项。 2) 在“选择列”对话框中,选定“页面缓冲池”选项和“非页面缓冲池”选项旁边的复选框,然后单击“确定”按钮。 返回Windows “任务管理器”的“进程”选项卡时,将看到其中增加显示了各个进程占用的分页合并内存数量和未分页合并内存数量。 仍以刚才打开观察的应用程序(例如Word) 为例,请在表4-4中记录: 表4-4 实验记录 映像名称PID 内存使用页面缓冲池非页面缓冲池 WINWORD.EXE 2964 37488 951 42 从性能的角度来看,未分页合并内存越多,可以加载到这个空间的数据就越多。拥有的物理内存越多,未分页合并内存就越多。但未分页合并内存被限制为256MB,因此添加超出这个限制的内存对未分页合并内存没有影响。 5:提高分页性能。 在Windows 2000的安装过程中,将使用连续的磁盘空间自动创建分页文件(pagefile.sys) 。用户可以事先监视变化的内存需求并正确配置分页文件,使得当系统必须借助于分页时的性能达到最高。 虽然分页文件一般都放在系统分区的根目录下面,但这并不总是该文件的最佳位置。要想从分页获得最佳性能,应该首先检查系统的磁盘子系统的配置,以了解它是否有多个物理硬盘驱动器。 1) 在“开始”菜单中单击“设置”–“控制面板”命令,双击“管理工具”图标,再双击“计算机管理”图标。 2) 在“计算机管理”窗口的左格选择“磁盘管理”管理单元来查看系统的磁盘配置。 如果系统只有一个硬盘,那么建议应该尽可能为系统配置额外的驱动器。这是因为:Windows 2000最多可以支持在多个驱动器上分布的16个独立的分页文件。为系统配置多个分页文件可以实现对不同磁盘I/O请求的并行处理,这将大大提高I/O请求的分页文件性能。 请在表4-5中记录: 表4-5 实验记录

计算机操作系统第四章-存储器管理

第四章存储器管理 第0节存储管理概述 一、存储器的层次结构 1、在现代计算机系统中,存储器是信息处理的来源与归宿,占据重要位置。但是,在现有技术条件下,任何一种存储装置,都无法从速度、容量、是否需要电源维持等多方面,同时满足用户的需求。实际上它们组成了一个速度由快到慢,容量由小到大的存储装置层次。 2、各种存储器 ?寄存器、高速缓存Cache:少量的、非常快速、昂贵、需要电源维持、CPU可直接访问; ?内存RAM:若干(千)兆字节、中等速度、中等价格、需要电源维持、CPU可直接访问; ?磁盘高速缓存:存在于主存中; ?磁盘:数千兆或数万兆字节、低速、价廉、不需要电源维持、CPU 不可直接访问; 由操作系统协调这些存储器的使用。

二、存储管理的目的 1、尽可能地方便用户;提高主存储器的使用效率,使主存储器在成本、速度和规模之间获得较好的权衡。(注意cpu和主存储器,这两类资源管理的区别) 2、存储管理的主要功能: ?地址重定位 ?主存空间的分配与回收 ?主存空间的保护和共享 ?主存空间的扩充 三、逻辑地址与物理地址 1、逻辑地址(相对地址,虚地址):用户源程序经过编译/汇编、链接后,程序内每条指令、每个数据等信息,都会生成自己的地址。 ●一个用户程序的所有逻辑地址组成这个程序的逻辑地址空间(也称地址空间)。这个空间是以0为基址、线性或多维编址的。 2、物理地址(绝对地址,实地址):是一个实际内存单元(字节)的地址。 ●计算机内所有内存单元的物理地址组成系统的物理地址空间,它是从0开始的、是一维的; ●将用户程序被装进内存,一个程序所占有的所有内存单元的物理地址组成该程序的物理地址空间(也称存储空间)。 四、地址映射(变换、重定位) 当程序被装进内存时,通常每个信息的逻辑地址和它的物理地址是不一致的,需要把逻辑地址转换为对应的物理地址----地址映射;

第四章 服务器操作系统

第四章服务器操作系统 4.1 网络操作系统的特点 单机操作系统 网络操作系统就是用户与网络资源的接口,是负责整个网络资源和方便网络用户的软件集合,因为网络操作系统运行在服务器上,因此又称为服务器操作系统 单机操作系统是这样的一个系统软件管理着计算机的四个操作:进程、内存分布、文件操作、和设备输入输出(I/O) 进程:程序执行的一次过程。操作系统必须提供一种启动进程的机制,在DOS中,为EXEC函数,在Windows和OS/2中为CreateProcess,在单任务环境中,处理器没有分时机制,只有获得CPU控制权,才能运行。多任务环境中,操作系统必须将处理器时间轮流分配给激活的应用程序。 内存管理:实现内存的分配与回收、存储保护与扩充目标是给每个程序必须的程序。在Windows和OS/2系统还可以从硬盘环境中生成虚拟内存 文件系统:负责硬盘和其他大容量存储设备上存储的文件的管理。对于打开的文件,其唯一的识别依据是文件句柄(File Handle)操作系统能够找到文件是因为有磁盘上文件名与存储位置的记录。在DOS中是文件表FAT,Windows中是虚拟文件表VFAT在os/2中是高性能文件系统HPFS。HPFS比FAT和VFAT都好 设备管理:负责分配和回收外部设备,以及控制外部设备按照用户要求进行操作。设备是指鼠标键盘显示卡等设备 操作系统四大组件:驱动程序、内核、接口库、外围设备 驱动设备:最底层直接监控各类硬件,职责是负责隐藏硬件的具体细节,并且向其他部分提供一个抽象的通用的接口 内核:操作系统的核心部分 接口库:一系列的程序库,最接近应用程序,职责是把系统提供的基本服务装成应用程序能够识别的应用程序接口(API) 外围设备:除以上以外的其他部分。 操作系统的结构:简单结构、层次接口、微内核结构、垂直结构、虚拟机结构 简单结构各个部分混为一体早期的如MS-DOS 内核结构包括单内核、微内核、超微内核、外核等。UNIX、LINUX、Windows都是单内核,WindowsNT是基于改良的微内核 网络操作系统 网络操作系统NOS是为了网络上各个计算机方便有效的共享网络资源为用户提供各种服务的操作系统软件 网络操作系统出了单机系统功能外还有提供可靠的通信能力提供网络服务如远程管理、电子

操作系统复习-存储管理

3.1 内存管理基础 内存管理的主要任务是:为多道程序的运行提供良好的环境,方便用户使用存储器,提高存储器的利用率以及从逻辑上扩充存储器。内存管理包括:内存分配,内存保护,地址映射,内存扩充。 --------------------------------------------------------------------------------------------- 应用程序的处理一般过程:由相应的语言处理程序将源程序模块对应转换成目标模块->由链接程序将所有相关的目标模块链接到一起,整合成一个可执行程序->由装入程序将程序装入内存后予以执行。 重定位的概念: 由于编译程序无法确定目标代码在执行时所对应的地址单元,故一般从0号单元开始为其编址。这样的地址称为相对地址、程序地址或虚拟地址。因此当装入程序将可执行代码装入内存时,必须通过地址转换将逻辑地址转换成内存地址,这个过程称为地址重定位。 重定位分为静态重定位和动态重定位两种,静态重定位在装入时将所有相对地址转换成绝对地址,这种装入方式要求作业在装入时就必须分配其要求的所有空间,整个运行过程中不能在内存中移动,也不能申请新空间;动态重定位是装入时不地址转换,在执行过程中由硬件的地址转换机构转换成绝对地址,这种装入方式可以将程序分配到不连续的存储区中,不必装入所有代码就可以运行,但是需要硬件支持。 在重定位中通常设置一个重定位寄存器,里面放的是程序的基址,物理地址=基址+相对地址程序链接的方式: 静态链接:在运行前链接 装入时动态链接:边装入边链接 运行时动态链接:运行到需要处才链接,便于修改和更新,便于实现共享 程序装入的方式: 绝对装入方式:在编译时就知道程序要驻留的内存地址(和静态重定位完全不是一回事)可重定位装入方式:有静态重定位和动态重定位两种 其他方式:和分页和分段相结合 --------------------------------------------------------------------------------------------- 交换和覆盖的目的都是扩充逻辑内存 交换技术:把暂时不用的某个程序及数据部分(或全部)从内存中移到外存,或吧指定的程序或数据从外存读到内存。交换技术打破了一个程序一旦进入主存便一直运行到结束的限制。 覆盖技术:(定义略)覆盖技术要求程序员实现把一个程序划分成不同的程序段,并规定好它们的覆盖结构。打破了一个进程必须在全部信息都装入内存后才可运行的限制。 --------------------------------------------------------------------------------------------- 连续分配管理方式: (1)单一连续分配:把内存空间分为系统区和用户区,每次只装入运行一个程序,存储器利用率极低。 (2)固定分区分配:将内存用户空间划分为若干个固定大小的区域,每个分区只装一道作业,分区大小可以相等也可以不等 优点:可用于多道程序系统最简单的存储分配

机房服务器集中管理系统说明

1.机房服务器集中治理系统 1.1治理规模要求 1.2技术要求 ?支持基于硬件的集中操纵治理平台,用户操作界面支持中文界面并可依照使用者的适应方便在中文和英文界面之间切换,无需更改治理平台的设置。 ?集中操纵治理平台要有专门高的安全体系结构:双电源,双网络接口,磁盘镜像,内置MODEM的拨号备份口,支持双机冗余功能。 ?KVM切换器和串口治理设备具有较高的安全性:支持双网络接口冗余用于预防网络接口故障时的无缝切换访问;支持modem 拨号备份用于解决关于网络链路中断时的电话拨号应急访问。 ?KVM切换器支持远程电源模块的整合治理,通过整合治理操作者可方便的通过鼠标点击被治理设备来实现电源操纵,关于关键的被治理设备,要求支持双电源治理模块冗余整合治理。?单台远程数字KVM切换器支持5个独立的用户通道访问(4个远程和1个本地)

?所有的通过网络传输的数据(鼠标、键盘和视频)都要通过128SSL的加密。 ?系统包括管控系统切换器、接口转换器、延长设备、用户操纵终端,通过网络进行传输。 ?管控系统设备在使用切换主机设备,用户工作站支持远程数字访问。 ?每台服务器放置一个接口转换器,其内置的键盘、鼠标防真功能,确保服务器开机时可不能出现死机和键盘、鼠标丢失; 并可依照需要在交换机本地连接键盘、鼠标和显示器。 ?系统支持基于多种硬件平台、多种操作系统的服务器如:NT 或UNIX之上的SUN、HP、DELL、COMPAQ、IBM等和串口操纵类设备(路由器/PBX),并在多种平台间“无缝”切换; ?管控系统操纵系统与被控服务器之间全部用标准5类或6类UTP线连接; ?不需要在被控设备安装任何软件; ?当操作人员的位置或职责权限变化时,或当设备位置变动或增加时,不需要对布线系统做大的调整,只需简单地通过软件的操作来调整(分组、鼠标拖拉等);

计算机操作系统5、存储管理

一、选择题 1.存储器管理的主要功能是内存分配、地址映射、内存保护和( )。 A.内存扩充 B.外存扩充 C内存和外存扩充 D.地址保护 2.把逻辑地址转变为内存的物理地址的过程称作( ) A.编译 B.连接 C.运行 D.重定位 3.物理地址对应的是( )。 A.模块中的地址 B.内存中的地址 C.外存中的地址 D.数据的起始地址4.逻辑地址对应的是( ) A.数据的起始地址 B.内存中的地址 C.模块中的地址 D.外存中的地址5.动态重定位是在( )时进行的重定位。 A.程序执行时 B.开机时 C.启动时 D.装入内存时 6.静态重定位是在( )时进行的重定位。 A.程序执行时 B.开机时 C.启动时 D.装入内存时 7.在目标程序装入内存时,一次性完成地址修改的方式是( ) A 静态重定位 B.动态重定位 C.静态连接 D.动态连接 8.下列关于缓冲技术描述正确的是( ) A.以空间换取时间的技术 B.以时间换取空间的技术 C.为了协调CPU与内存之间的速度 D.是为了提高外设的处理速度 9.可变式分区管理的分配策略中,首次适应算法是按照 ( ) 顺序排列空闲区。 A.起始地址递减 B.起始地址任意 C.起始地址递增 D.分区大小递增 10.可变式分区又称为动态分区,它是在系统运行过程中,( )时动态建立的。 A.在作业装入 B.在作业创建 C.在作业完成 D.在作业未装入 11.在可变分区存储管理中,将空闲区按照长度递增的顺序排列的分配算法是( ) A.首次适应算法 B.最佳适应算法 C.最坏适应算法 D.循环首次适应算法12.可重定位分区分配中的碎片是( ) A.磁盘的一小部分 B.外存的一小部分 C.内存中容量小、无法利用的小分区 D.内存中的小分区 13.在分页存储管理系统中,从页号到物理块号的地址映射是通过( )实现的。 A.段表 B.页表 C.PCB D.JCB 14.请求分页存储管理中,若把页面尺寸增加一倍,在程序顺序执行时,则一般缺页中断次数会( )。 A.增加 B.减少 C.不变 D.可能增加也可能减少 15.页表的作用是实现从页号到物理块号的( )。 A.逻辑映射 B.物理映射 C.地址映射 D.逻辑地址映射 16.虚拟存储器的基本特征是:虚拟扩充、部分装入、离散分配和( ) A.虚拟保护 B.虚拟装入 C.一次对换 D.多次对换 17.虚拟存储管理策略可以( )。 A.扩大物理内存容量 B.扩大物理外存容量 C.扩大逻辑内存容量 D.扩大逻辑外存容量 18.虚拟存储器受到的限制有外存的容量和( )。 A.指令中表示地址的字长 B.内存的容量 C.硬件的好坏 D.以上的观点都对19.在页式存储管理中,每当CPU形成一个有效地址时,要查页表,这—工作是由( )实现的。

操作系统 第4章 存储管理习题

1、某虚拟存储器的用户空间共有32个页面,每页1KB,主存16KB. 假定某时刻为用户的第0,1,2,3页分别分配的物理块号为5,10,4,7,试将虚拟地址0A5C和093C变换为物理地址. a.将0A5C变换为2进制为: 0000,1010,0101,1100,由于页面大小为1KB约为2的10次方, 所以0A5C的页号为2,对应的物理块号为:4,所以虚拟地址0A5C的物理地址为125C; b.将093C变换为2进制为: 0000,1001,0011,1100,页号也为2,对应的物理块号也为4, 此时虚拟地址093C的物理地址为113C. 2、在一个请求分页系统中,采用LRU页面置换算法时,假如一个作业的页面走向为4,3,2,1,4,3,5,4,3,2,1,5,当分配给该作业的物理块数M分别为3和4时,试计算访问过程中所发生的缺页次数和缺页率?比较所得结果? 答案: a.当分配给该作业的物理块数M为3时,所发生的缺页率为7,缺页率为: 7/12=0.583; b. 当分配给该作业的物理块数M为4时,所发生的缺页率为4,缺页率为: 4/12=0.333. 3、什么是抖动? 产生抖动的原因是什么? a. 抖动(Thrashing)就是指当内存中已无空闲空间而又发生缺页中断时,需要从内存中调出一页程序或数据送磁盘的对换区中,如果算法不适当,刚被换出的页很快被访问,需重新调入,因此需再选一页调出,而此时被换出的页很快又要被访问,因而又需将它调入,如此频繁更换页面,以致花费大量的时间,我们称这种现象为"抖动"; b. 产生抖动的原因是由于CPU的利用率和多道程序度的对立统一矛盾关系引起的,为了提高CPU利用率,可提高多道程序度,但单纯提高多道程序度又会造成缺页率的急剧上升,导致CPU的利用率下降,而系统的调度程序又会为了提高CPU利用率而继续提高多道程序度,形成恶性循环,我们称这时的进程是处于"抖动"状态. 【例1】可变分区存储管理系统中,若采用最佳适应分配算法,“空闲区表”中的空闲区可按(A )顺序排列 A、长度递增 B、长度递减 C、地址递增 D、地址递减 分析:最佳适应算法要求每次都分配给用户进程能够满足其要求的空闲区中最小的空闲区,所以为了提高算法效率,我们把所有的空闲区,按其大小以递增的顺序形成一空闲分区链这样,第一个找到的满足要求的空闲区,必然是符合要求中最小的所以本题的答案是A 【例2】虚拟存储技术是(B ) A、扩充主存物理空间技术 B、扩充主存逻辑地址空间技术

相关主题
文本预览
相关文档 最新文档