当前位置:文档之家› 霍尔元件

霍尔元件

霍尔元件
霍尔元件

霍尔元件实验

霍尔元件实验

【实验背景】

?霍尔效应这一现象由美国物理学家霍尔于1879年在研究金属的导电机制时发现的。当载流体置于磁场中,如果电流方向与磁场方向垂直,则在垂直电流和磁场的方向会产生一电场,此现象称为霍尔效应。?在霍尔效应发现约100年后,德国物理学家克利青等在研究极低温度和强磁场中的半导体时发现了量子霍尔效应,克利青为此获得了1985年的诺贝尔物理学奖。之后,美籍华裔物理学家崔琦和美国物理学家劳克林、施特默在更强磁场下研究量子霍尔效应时发现了分数量子霍尔效应,这个发现使人们对量子现象的认识更进一步,他们为此获得了1998年的诺贝尔物理学奖。

?复旦校友、斯坦福教授张首晟与母校合作开展了“量子自旋霍尔效应”的研究。“量子自旋霍尔效应”最先由张首晟教授预言,之后被实验证实,这一成果是美国《科学》杂志评出的2007年十大科学进展之一。

?由清华大学薛其坤院士领衔,清华大学、中科院物理所和斯坦福大学研究人员联合组成的团队在量子反常霍尔效应研究中取得重大突破,他们从实验中首次观测到量子反常霍尔效应,这是中国科学家从实验中独立观测到的一个重要物理现象,也是物理学领域基础研究的一项重要科学发现。

【实验目的】

(1)了解霍尔元件的基本原理;

(2)通过测量得到霍尔元件的霍尔电压与工作电流(励磁电流)、霍尔电压与电磁铁线圈工作电流之间的关系;

(3)学习用霍尔元件测量磁感应强度的方法;

(4)测量室温下霍尔元件的基本参数。

【实验仪器】

霍尔效应实验装备包括ZKY-HS 霍尔效应实验仪和ZKY-HC 霍尔效应测试仪两部分。

【实验原理】

一、霍尔效应

一半导体片(霍尔片)长宽高分别为L ,d ,b ,沿Z 方向加一均匀磁场B ,沿x 方向加一稳恒工作电流Is 后,半导体中载流子(空穴或电子)在沿x 方向运动的同时,将受到洛伦兹力F B 的作用,F B =ev B,这个力使电荷堆积形成一个y方向的电场,即霍尔电场,对载流I S 调节旋钮 测 试 仪 二维移动尺 C 形电磁铁 面板标示牌 双刀双

掷开关 I S 输出端 U H 输入端 I M 输出端 I M 调节

旋钮 电源开关 实 验 仪 I S 输入端 U H 输出端 I M 输入端

霍尔电压量程切换

按钮

子产生一个静电力FE=eEH,当载流子受力平衡时(FB=FE ),有 qvB=qEH

其中, EH=UH/d , 霍尔片x方向横截面积 S=db。设霍尔片单位体积电荷数为n,则电流密度 j=nqv,电流强度 IS=jS=nqvdb,即 v=IS/nqdb,所以可得霍尔电压 UH=1/nq*ISB/b

二、基本参数

半导体基本参数只决定于材料本身,可以通过测量得到。基本参数包括霍尔系数RH、霍尔元件的灵敏度KH、载流子浓度n、电导率δ、迁移率μ等。

1、霍尔系数定义式 RH=1/nq

则霍尔电压=RHISB/b

半导体霍尔系数测量式 RH=UHb/ISB

定义霍尔元件灵敏度 KH=1/nqb,表示霍尔元件在单位 Z X Y + + + + + + - - - - - - U H E H F m F e B I s d D C L l a

v

磁感应强度和单位工作电流下霍尔电压的大小。

KH测量公式KH=UH/BIS

若KH已知。可求磁感应强度得B=UH/ISKH

2、电阻R=ρL/S=L/δS

在霍尔片x方向上相距为L的两点间电阻为R,则两点电位差为U1=RIS=LIS/δS=LIS/δdb

即可求出δ=LIS/U1db

载流子浓度n和迁移率μ可用霍尔系数计算得出。

n=1/RHq

迁移率=RHδ

三、实验中产生的附加效应及消除方法

本实验中存在一些系统误差主要是在霍尔电压UH的测量中,这些附加效应有:不等位面的电位差U0、能斯托效应UN、额廷豪森效应UE、里纪-勒杜克效应UR。主要由于半导体材料,焊接技术等原因产生。可改变磁场B和电流IS的方向进行测量来消减这些附加效应的影响

UH≈1/4[Ua-Ub+Uc-Ud]

【实验内容】

1、测量U H-I S关系,室温下霍尔元件的霍尔系数,计算载流子密度该步骤中涉及到霍尔电压U H的测量,所以要进行四次测量。根据最后的U H和工作电流I S,绘制UH-I S曲线,我们可以看到U S、I S 成正比关系,求出其斜率k1。

根据公式R H=UHb/ISB,将k1=UH/IS和b、B的值带入计算霍尔系数RH,当RH为正值时,半导体为P型半导体,当RH为负值时,半导体为N型半导体。

根据式n=1/RHq计算出载流子浓度。

2、测量霍尔电压UH与励磁电流IM的关系

同样该步骤中涉及到霍尔电压U H的测量,所以要进行四次测量。根据最终的UH与励磁电流IM,绘制UH-IM曲线,从图线看出,UH与IM成正比关系。

3、测量电磁铁气隙中磁感应强度 B 的大小

由于实验中所需要的B要由公式B=UH/KHIS,计算得出,所以直接测量的数据是UH,仍然要分四次测量求得UH。最后由x与UH的对应关系得到x与B的对应关系,得到B-x曲线。

4、测量半导体电导率δ和载流子迁移率μ

该步骤中主要涉及IS与U1的关系,所以只需要测量一次。通过绘制IS-U1曲线,求得其斜率k2=IS/U1。再根据公式

电导率=LIS/U1db求得电导率δ。进而再根据迁移率=RHδ求得载流子迁移率μ。

【实验注意事项】

(1)霍尔元件性脆易碎,电极很细易断,忌撞击,忌触摸。

(2)不能将测试仪上的I M输出端错接到霍尔元件引线上,否则一旦通电,霍尔元件会被损坏。

(3)注意涉及到霍尔电压的测量时,改变B和I M的方向,四次测量

消减附加效应。

【学习拓展】

霍尔效应研究领域之所以屡获大奖,是因为它在应用技术中特别重要。利用霍尔效应制作成霍尔元件,在测量技术(磁场、电流、微小位移、加速度等测量)、自动控制与信息处理等许多方面都有广泛的应用。半导体具有较显著的霍尔效应,所以一般用半导体材料制作霍尔元件。人类日常生活中常用的很多电子器件都来自霍尔效应,举个例子,仅汽车上广泛应用的霍尔器件就包括:信号传感器、ABS系统中的速度传感器、汽车速度表和里程表、液体物理量检测器、各种用电负载的电流检测及工作状态诊断、发动机转速及曲轴角度传感器等。由此可见霍尔效应及其相关研究的重要性,以及我们大学阶段了解它的必要性。

霍尔元件分类及其特性

二:霍尔传感器 由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。 霍尔传感器也称为霍尔集成电路,其外形较小,如下图所示,是其中一种型号的 外形图 三:霍尔传感器的分类 霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种: 1.线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组 成,它输出模拟量。 2.开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

配合差分放大器使用霍尔元件产生的电势差很小,一般在毫伏量级,所以在使用时要进行一定的放大处理(如下图) 配合触发器用在上述电路的基础上,再添加一个施密特触发器用作阈值检测,则可以使霍尔器件输出数字信号,结构图如下: 集成场效应管在上述电路的基础上添加一个场效应管,可以

增强霍尔开关的驱动能力(可以直接驱动LED、继电器等) 四:霍尔传感器的特性 1.线性型霍尔传感器的特性 2.开关型霍尔传感器的特性 如图4所示,其中BOP为工 作点“开”的磁感应强度,BRP 为释放点“关”的磁感应强度当 外加的磁感应强度。超过动作点 Bop时,传感器输出低电平,当磁感应强度降到动作点Bop以下时,传感器输出电平不变,一直要降到释放点BRP时,传感器才由低电平跃变为高电平。Bop 与BRP之间的滞后使开关动作更为可靠。

A3144是开关霍尔传感器 五:开关型霍尔传感器 开关型霍尔传感器主要用于测转数、转速、风速、流速、接近开关、关门告知器、报警器、自动控制电路等。 1.测转速或转数 如图所示,在非磁性材料的圆盘边上粘一块磁钢,霍尔传感器放在靠近圆盘边缘处,圆盘旋转一周,霍尔传感器就输出一个脉冲,从而可测出转数(计数器),若接入频率计,便可测出转速。

霍尔传感器工作原理

半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。 半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。

霍尔元件技术指标参考

霍尔元件技术指标 1相关参数 1.1封装形式 TO-92(三脚插片),SOT-23(三脚贴片)。还有SIP-4(四脚插片),SOT-143 (四脚贴片)和SOT-89(四脚贴片) 1.2电源 有3.5~24V ,2.5~3.5V ,2.5~5V 1.3灵敏度Kh 数量级在C m /103 3 ,且数值越大灵敏度越高 1.4霍尔电势温度α α越小,设备精确度越大(必要时可以增加温度补偿电路) 1.5额定控制电流 c I 一般在几mA~几十mA ,尺寸越大其值越大(尺寸大的可达几百mA ) 1.6型号 开关型的、线性的、单极性的、双极性的。双极开关霍尔元件:177A 、177B 、 177C 单极霍尔开关元件:AH175、732、1881、S41、SH12AF 、3144、44E 、3021、137、AH137、AH284线性霍尔元件:3503、S496B 、49E 锁定霍尔元件:ATS175、AH173、SS413A 、3172、3075互补双输出开关霍尔元件:276A 、276B 、276C 、277A 、277B 、277C 信号霍尔元件:211A 、211B 、211C 微功耗霍尔元件:TEL4913、TP4913、A3212、A3211。(具体霍尔开关元件见附录) 1.7输入电阻和输出电阻 一般在几Ω到几百Ω,且输入电阻要大于输出电阻 1.8外接上拉电阻 一般大于1K Ω。对一般TTL 电路,由于其高电平电压较低,用于 驱动CMOS 电路时,增加上拉电阻,可以提高其高电平的电压。常用的阻值是4.7k 或10k 。上拉电阻的是接在1脚电源Vcc 和3脚信号输出Vout 之间。 1.9功能分类 按照霍尔器件的功能可将它们分为: 霍尔线性器件 和 霍尔开关器件 。前者 输出模拟量,后者输出数字量。都是输出高电平脉冲信号,不同的是开关型相当于到GS 设定值时电平反转;线性的可能是电压逐渐变化,到一定时使后处理电路输出反电平。一般建议用线性的,开关型常因为温度等原因使得设定值漂移,导致灵敏度下降。 1.10霍尔工作点 霍尔的工作点一般在:单极开关60到200,双极锁定在100内(单位GS )。 1.11霍尔工作频率 一般霍尔的工作频率在100KHZ 以上

霍尔传感器的分类、霍尔效应与霍尔传感器的应用

霍尔传感器的分类、霍尔效应与霍尔传感器的应用 霍尔传感器是一种磁传感器。用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔传感器以霍尔效应为其工作基础,是由霍尔元件和它的附属电路组成的集成传感器。霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,18551938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。 霍尔效应如图1所示,在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为UH的霍尔电压, 它们之间的关系为。 式中d 为薄片的厚度,k称为霍尔系数,它的大小与薄片的材料有关。上述效应称为霍尔效应,它是德国物理学家霍尔于1879年研究载流导体在磁场中受力的性质时发现的。 霍尔传感器由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。 霍尔传感器也称为霍尔集成电路,其外形较小,如图2所示,是其中一种型号的外形图。霍尔传感器的分类霍尔传感器分为线型霍尔传感器和开关型霍尔传感器两种。 (一)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。开关型霍尔传感器还有一种特殊的形式,称为锁键型霍尔传感器。 (二)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。 线性霍尔传感器又可分为开环式和闭环式。闭环式霍尔传感器又称零磁通霍尔传感器。线

霍尔元件原理及型号介绍

万联芯城销售原装进口霍尔元件,为终端客户提供一站式报价,所售电子元器件均为原装正品,现货库存,客户只需提交物料清单,即可获得优势报价,最快可当天发货。万联芯城,以良心做好良芯,上万种元件物料,轻松对应用户多种物料需求,为用户节省成本。点击进入万联芯城 点击进入万联芯城

霍尔元件是应用霍尔效应的半导体。一般用于电机中测定转子转速,如录像机的磁鼓,电脑中的散热风扇等;是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。霍尔元件灵敏度的物理意义是表示在单位磁感应强度相单位控制电流时的霍尔电势大小。 霍尔元件工作原理 霍尔元件应用霍尔效应的半导体。 所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。金属的霍尔效应是1879年被美国物理学家霍尔发现的。当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。半导体中的霍尔效应比金属箔片中更为明显,而铁磁金属在居里温度以下将呈现极强的霍尔效应。 利用霍尔效应可以设计制成多种传感器。霍尔电位差UH的基本关系为: UH=RHIB/d (1) RH=1/nq(金属)(2)

式中 RH――霍尔系数;n――单位体积内载流子或自由电子的个数;q――电子电量;I――通过的电流;B――垂直于I的磁感应强度;d――导体的厚度。 对于半导体和铁磁金属,霍尔系数表达式和式(2)不同,此处从略。 由于通电导线周围存在磁场,其大小和导线中的电流成正比,故可以利用霍尔元件测量出磁场,就可确定导线电流的大小。利用这一原理可以设计制成霍尔电流传感器。其优点是不和被测电路发生电接触,不影响被测电路,不消耗被测电源的功率,特别适合于大电流传感。 若把霍尔元件置于电场强度为E、磁场强度为H的电磁场中,则在该元件中将产生电流I,元件上同时产生的霍尔电位差和电场强度E成正比,如果再测出该电磁场的磁场强度,则电磁场的功率密度瞬时值P可由P=EH确定。 利用这种方法可以构成霍尔功率传感器。 如果把霍尔元件集成的开关按预定位置有规律地布置在物体上,当装在运动物体上的永磁体经过它时,可以从测量电路上测得脉冲信号。根据脉冲信号列可以传感出该运动物体的位移。若测出单位时间内发

霍尔元件工作原理

? ?? ?? ? _ ?? ? ? ? P ? ?? 8 ? ?? ? ? ?-? ? ) ? / % - ?? ? ? ? ? 8 ? + ? %)? ? +??/ ?,-? 8" ? _9. ? _ 9. ?? ?, ? ? 9. f..h ,h% h 6LQ?f9 -/..( ?( ? 9R( ?? ? ? ? ? γ ? < ? ? ? ? - 1

" ? - ? ?/ ?? ? ? ? ) -?ū ?ū ?? ?) ? ( ?3 ? t ? ? ? - ( ? ? 8 ? J ? ? q ? 8 ? , ¥h 9. êh-Rh6¥ .9. ?¥ -2 6¥.( ? Γ "?? ? ? J ?? 8 ?

?? ? ? c ? ? ? ?? γ( + ?,S ū ?/ ) c -? ?? ??/ ? ? ? ǎ ? ?? J ?? 8 ? JJ? ?? ( ?( + ?-? ??/ ū ??ū ? ?) ? - ?W ? ??? - #? ? ?,V - ?-? "?/ ? ?/ ?3 # ?-? ? ? - ? ?? ?,S *?/ ,V *?/ ? ,V ?H? ?? - ? ? -?,V ?),S ?,S ? ? ? ? γ/ -? / ??? ? ? " ?γ ? ??? ?"? - ? ?? ? ? ? XV - W ? ? ? ? ? ? ? s ? . ? ?

? s ? γ 1Sh,S 1Vh,V ?1S(?? ,S(?? ? 1V( ? ,V( ? ? ? ? )1S ? μ?? 1V ? ? ,V γ ? ? ? ,S ? ? $ ) ? ? ) ? ? D ? ? ( XV ? /(0? /_ ? ?? 026 ??? ,*%7 ? ? ?< ? ? ? ? J ?( XV E ? ?& ? ? & ? s Εs s ? ? ?9?/?P ? F ? ? ? ? G ?/? 2 ?? ǎ ? Z? ?? 2 H ? 3 ? ? ǎ ? ǎ I ? ? ?? a .+] ? ? ?? a .+] J ?/Z ? ??$V

霍尔效应和霍尔元件特性测定数据处理范例

霍尔效应和霍尔元件特性测定数据处理范例 1.霍尔元件的不等位电势差测定 0M I =(2)在坐标纸上作出不等位电势差与工作电流的关系曲线。 V /m V I s /mA 图1:不等位电势差与工作电流的关系曲线 2.励磁电流一定,霍尔元件灵敏度测定(仪器公差取数字仪表显示数据末位的5倍,如霍尔工作电流示值误差: 0.05S I m mA ?=;霍尔电压示值误差: 0.05H V m mV ?=; 励磁电流示值误差:0.005M I m A ?=) ⑴ 霍尔电压与霍尔电流关系测试数据表: H S V I -500M I mA =0.25 0.28 -0.23 0.22 -0.29 0.26 0.50 0.56 -0.44 0.44 -0.56 0.50 0.75 0.85 -0.67 0.67 -0.85 0.76 1.00 1.12 -0.88 0.88 -1.12 1.00 1.25 1.41 -1.10 1.11 -1.41 1.26 1.50 1.69 -1.32 1.32 -1.68 1.50 1.75 1.97 -1.54 1.54 -1.96 1.75

2.00 2.25 -1.76 1.77 -2.24 2.01 2.25 2.54 -1.97 1.99 -2.52 2.26 2.50 2.82 -2.19 2.21 -2.80 2.51 2.75 3.10 -2.41 2.44 -3.08 2.76 3.00 3.39 -2.63 2.66 -3.36 3.01 ⑵ 利用逐差法计算霍尔元件灵敏度及其不确定度(0.683p =)。 H H H S S V V K I B I B ?= = ?? a )利用逐差法计算H V ?的平均值及不确定度估算(该部分逐差法计算可用数据处理软 件的逐差法进行计算) 7182931041151261.750.26 1.49, 2.010.50 1.51,2.260.76 1.50, 2.51 1.00 1.51, 2.76 1.26 1.50, 3.01 1.50 1.51H H H H H H H H H H H H V V mV V V mV V V mV V V mV V V mV V V mV -=-=-=-=-=-=-=-=-=-=-=-= 1.50H V mV ?= 某次测量的标准偏差:0.0082H V S mV ?=,平均值的标准偏差: 0.0033H V S mV ?= 肖维涅系数 6 1.73n c c ==, 1.730.00820.014186H n V c S mV ?*=*= 根据肖维涅准则(坏值条件: *i H H H n V V c S ?-?>)检验无坏值出现。(注:如坏值 超过两个, 请说明后用作图法处理) H V ?不确定度估算: 1.110.00330.0037H A vp V u t S mV ?==?=, (0.683p =) 0.041B p u mV ==== (0.683p =) 0.041H V u mV ?=== 0.041 0.0271.50 H H V V H u E V ??= = =? b )S I ?的不确定度估算(该部分计算也可用数据处理软件的逐差法进行计算) 1.50S I mA ?= 0.029S p u k mA I ?=== (0.683p =) 0.0290.0191.50 S S I I S u E I ===? (0.683p =) c )磁感应强度B 及其不确定度的计算 螺线管参数:线圈匝数N=1800匝,有效长度2L =181mm ,等效半径R =21mm 1800 2181 N n L = = 匝/mm

霍尔元件

当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,这种现象就称为霍尔效应。两端具有的电位差值称为霍尔电势U, 其表达式为 U=K·I·B/d其中K为霍尔系数,I为薄片中通过的电流,B为外加磁场(洛伦慈力Lorrentz)的磁感应强度,d是薄片的厚度。由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比的关系。我门销售的霍尔开关就属于这种有源磁电转换器件,它是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,它可方便的把磁输入信号转换成实际应用中的电信号,同时又具备工业场合实际应用易操作和可靠性的要求。 霍尔开关的输入端是以磁感应强度B来表征的,当B值达到一定的程度(如B1)时,霍尔开关内部的触发器翻转,霍尔开关的输出电平状态也随之翻转。输出端一般采用晶体管输出,和接近开关类似有NPN、PNP、常开型、常闭型、锁存型(双极性)、双信号输出之分。霍尔开关具有无触电、低功耗、长使用寿命、响应频率高等特点,内部采用环氧树脂封灌成一体化,所以能在各类恶劣环境下可靠的工作。霍尔开关可应用于接近开关,压力开关,里程表等,作为一种新型的电器配件。 霍尔开关的功能类似干簧管磁控开关,但是比它寿命长,响应快无磨损,而且安装时要注意磁铁的极性,磁铁极性装反无法工作。

内部原理图及输入/输出的转移特性 产品3:M12霍尔式接近开关(NPN三极管驱动输出)15元一个检测距离:1~10毫米 工作电压:3~28V直流 工作电流:小于5毫安 响应频率:5000HZ 输出驱动电流:100毫安,感性负载50毫安 温度范围:-25~70度 安装方式:埋入式

霍尔传感器的原理及应用

第八章霍尔传感器 课题:霍尔传感器的原理及应用课时安排:2 课次编号:12 教材分析 难点:开关型霍尔集成电路的特性 重点:霍尔传感器的应用 教学目的和要求1、了解霍尔传感器的工作原理; 2、了解霍尔集成电路的分类; 3、掌握线性型和开关型霍尔集成电路的特性; 4、掌握霍尔传感器的应用。 采用教学方法和实施步骤:讲授、课堂互动、分析教具:各种霍尔元 件、霍尔传感器 各教学环节和内容 演示1: 将小型蜂鸣器的负极接到霍尔接近开关的OC门输出 端,正极接V cc端。在没有磁铁靠近时,OC门截止,蜂鸣 器不响。 当磁铁靠近到一定距离(例如3mm)时,OC门导通, 蜂鸣器响。将磁铁逐渐远离霍尔接近开关到一定距离(例 如5mm)时,OC门再次截止,蜂鸣器停响。 演示2: 将一根导线穿过10A霍尔电流传感器的铁芯,通入0.1~1A电流,观察霍尔IC的输出电压的变化,基本与输入电流成正比。 从以上演示,引入第一节霍尔效应、霍尔元件的工作原理。 第一节霍尔元件的工作原理及特性 一、工作原理 金属或半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过薄片时,在垂直于电流和磁场的方向上将产生电动势E H,这种现象称为霍尔效应(Hall Effect),该电动势称为霍尔电动势(Hall EMF),上述半导体薄片称为霍尔元件(Hall Element)。用霍尔元件做成的传感器称为霍尔传感器(Hall Transducer)。

图8-1霍尔元件示意图 a)霍尔效应原理图b)薄膜型霍尔元件结构示意图c)图形符号d)外形霍尔属于四端元件: 其中一对(即a、b端)称为激励电流端,另外一对(即c、d端)称为霍尔电动势输出端,c、d端一般应处于侧面的中点。 由实验可知,流入激励电流端的电流I越大、作用在薄片上的磁场强度B越强,霍尔电动势也就越高。霍尔电动势E H可用下式表示 E H=K H IB(8-1)式中K H——霍尔元件的灵敏度。 若磁感应强度B不垂直于霍尔元件,而是与其法线成某一角度θ时,实际上作用于霍尔元件上的有效磁感应强度是其法线方向(与薄片垂直的方向)的分量,即B cosθ,这时的霍尔电动势为 E H=K H IB cosθ(8-2) 从式(8-2)可知,霍尔电动势与输入电流I、磁感应强度B成正比,且当B的方向改变时,霍尔电动势的方向也随之改变。如果所施加的磁场为交变磁场,则霍尔电动势为同频率的交变电动势。 目前常用的霍尔元件材料是N型硅,霍尔元件的壳体可用塑料、环氧树脂等制造。 二、主要特性参数 (1)输入电阻R i恒流源作为激励源的原因:霍尔元件两激励电流端的直流电阻称为输入电阻。它的数值从几十欧到几百欧,视不同型号的元件而定。温度升高,输入电阻变小,从而使输入电流I ab变大,最终引起霍尔电动势变大。使用恒流源可以稳定霍尔原件的激励电流。 (2)最大激励电流I m激励电流增大,霍尔元件的功耗增大,元件的温度升高,从而引起霍尔电动势的温漂增大,因此每种型号的元件均规定了相应的最大激励电流,它的数值从几毫安至十几毫安。 提问:霍尔原件的最大激励电流I m为宜。 A.0mA B.±0.1 mA C.±10mA D.100mA (4)最大磁感应强度B m磁感应强度超过B m时,霍尔电动势的非线性误差将明显增大,B m的数值一般小于零点几特斯拉。 提问:为保证测量精度,图8-3中的线性霍尔IC的磁感应强度不宜超过为宜。 A.0T B.±0.10T C.±0.15T D.±100Gs

霍尔传感器的工作原理、分类及应用

霍尔传感器是一种磁传感器。用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔传感器以霍尔效应为其工作基 霍尔传感器是一种磁传感器。用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔传感器以霍尔效应为其工作基础,是由霍尔元件和它的附属电路组成的集成传感器。霍尔传感器在工业生产、交通运输和日常生活中有着非常广泛的应用。 一、霍尔效应霍尔元件霍尔传感器 霍尔效应 如图1所示,在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B 的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为UH的霍尔电压, 它们之间的关系为。 式中d 为薄片的厚度,k称为霍尔系数,它的大小与薄片的材料有关。上述效应称为霍尔效应,它是德国物理学家霍尔于1879年研究载流导体在磁场中受力的性质时发现的。 (二)霍尔元件 根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。它具有对磁场敏感、结构简单、

体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。 (三)霍尔传感器 由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。 霍尔传感器也称为霍尔集成电路,其外形较小,如图2所示,是其中一种型号的外形图。 二、霍尔传感器的分类 霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种。 (一)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。(二)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

第八章霍尔传感器

教师授课方案(首页) 授课班级09D电气1、电气2 授课日期 课节 2 课堂类型讲授 课题第八章霍尔传感器第一节霍尔元件的结构及工作原理第二节霍尔元件的特性参数第三节霍尔集成电路 第四节霍尔传感器的应用 教学目的与要求【知识目标】 1、了解霍尔传感器的工作原理 2、理解霍尔集成电路的特性掌握开关型的接线。 3、掌握霍尔传感器的应用。 【能力目标】培养学生理论分析及理论联系实际的能力。【职业目标】培养学生爱岗敬业的情感目标。 重点难点重点:开关型霍尔集成电路难点:开关型霍尔集成电路 教具教学辅助活动教具:霍尔传感器实物、多媒体课件、习题册教学辅助活动:提问、学生讨论 一节教学过程安排复习 因期中考试,无复习内容 分钟讲课 1、霍尔传感器的工作原理 2、霍尔传感器的特性参数 3、霍尔集成电路的特性。 4、霍尔传感器的应用。 78分钟小结 小结见内页,之后利用10分钟时间与学生互 动答疑 10分钟作业习题册第八章霍尔传感器习题2分钟 任课教师:叶睿2011年1月28日审查教师签字:年月日

教案附页【复习提问】因期中考试无复习提问 第八章霍尔传感器 第一节霍尔元件的工作原理及特性 【本节内容设计】 通过课件与教师演示讲授霍尔效应及霍尔传感器的工作原理,为霍尔传感器的学习奠定基础 【授课内容】 一、霍尔效应 金属或半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过薄片时,在垂直于电流和磁场的方向上将产生电动势E H,这种现象称为霍尔效应,该电动势称为霍尔电动势,上述半导体薄片称为霍尔元件。用霍尔元件做成的传感器称为霍尔传感器。 演示1: 将小型蜂鸣器的负极接到霍尔接近开关的OC门输出端,正极接V cc端。在没有磁铁靠近时,OC门截止,蜂鸣器不响。 当磁铁靠近到一定距离(例如3mm)时,OC门导通,蜂鸣器响。将磁铁逐渐远离霍尔接近开关到一定距离(例如5mm)时,OC门再次截止,蜂鸣器停响。 演示2: 将一根导线穿过10A霍尔电流传感器的铁芯,通入0.1~1A电流,观察霍尔IC的输出电压的变化,基本与输入电流成正比。 二、霍尔传感器的外形、结构、符号 三、霍尔传感器的工作原理 其中一对(即a、b端)称为激励电流端,另外一对(即c、d端)称为霍尔电动势输出端,c、d端一般应处于侧面的中点。 由实验可知,流入激励电流端的电流I越大、作用在薄片上的磁场强度B越强,霍尔电动势也就越高。霍尔电动势E H可用下式表示 E H=K H IB(8-1)式中K H——霍尔元件的灵敏度。 若磁感应强度B不垂直于霍尔元件,而是与其法线成某一角度θ时,实际上作用于霍尔元件上的有效磁感应强度是其法线方向(与薄片垂直的方向)的分量,即B cosθ,这时的霍尔电动势为 E H=K H IB cosθ(8-2)

霍尔元件及其应用

霍尔元件及其应用 霍尔元件及其应用 摘要: 霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。本文简要介绍其 工作原理,产品特性及其典型应用。 1 引言 霍尔器件是一种磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件以霍尔效应为其工作基础。 霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。 按照霍尔器件的功能可将它们分为: 霍尔线性器件和霍尔开关器件。前者输出模拟量,后者输出数字量。 按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。 2 霍尔效应和霍尔元件 2.1 霍尔效应 如图1所示,在一块通电的半导体薄片上,加上和片子表面垂直的磁场B,在薄片的横向两侧会出现一个电压,如图1中的VH,这种现象就是霍尔效应,是由科学家爱德文·霍尔在1879年发现的。VH称为霍尔电压。

(a)霍尔效应和霍尔元件 这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。这时,片子两侧建立起一个稳定的电压,这就是霍尔电压。 在片子上作四个电极,其中C1、C2间通以工作电流I,C1、C2称为电流电极,C3、C4间取出霍尔电压VH,C3、C4称为敏感电极。将各个电极焊上引线,并将片子用塑料封装起来,就形成了一个完整的霍尔元件(又称霍尔片)。 (1) 或(2) 或(3) 在上述(1)、(2)、(3)式中VH是霍尔电压,ρ是用来制作霍尔元件的材料的电阻率,μn是材料的电子迁移率,RH 是霍尔系数,l、W、t分别是霍尔元件的长、宽和厚度,f(I/W)是几何修正因子,是由元件的几何形状和尺寸决定的,I是工作电流,V是两电流电极间的电压,P是元件耗散的功率。由(1)~(3)式可见,在霍尔元件中,ρ、RH、μn决定于元件所用的材料,I、W、t和f(I/W)决定于元件的设计和工艺,霍尔元件一旦制成,这些参数均为常数。因此,式(1)~(3)就代表了霍尔元件的三种工作方式所得的结果。(1)式表示电流驱动,(2)式表示电压驱动,(3)式可用来评估霍尔片能承受的最大功率。 为了精确地测量磁场,常用恒流源供电,令工作电流恒定,因而,被测磁场的磁感应强度B可用霍尔电压来量度。 在一些精密的测量仪表中,还采用恒温箱,将霍尔元件置于其中,令RH保持恒定。 若使用环境的温度变化,常采用恒压驱动,因和RH比较起来,μn随温度的变化比较平缓,因而VH受温度变化的影响较小。 为获得尽可能高的输出霍尔电压VH,可加大工作电流,同时元件的功耗也将增加。(3)式表达了VH能达到的极限——元件能承受的最大功耗。

霍尔元件的工作原理及结构

霍尔元件的工作原理及结构 如图1所示.—块高为1、宽为5、厚为6的半导体。存外加磁场B作用下, 当商电流J流过时.运动屯子受洛伦兹力的作用而偏向一侧,使该侧形 成电子的积 累,与它对义的侧面由于电了浓度下降。出现了正电荷·。这样,在两 侧面间就形成了—‘个电场。运动 电子在受洛伦兹力的同时,又受电场力的作用.最后当这两力作用相等时,电子的积 累达到动态平衡,这时两侧之间建立电场,称霍尔电场民,相应的电压称 霍尔电压uEI。上述这种现象称霍尔效应。经分析推导得霍尔电压 式中M—半导体单位体积中的载流子数; ‘—一电子电量; K M——程尔元件灵饭度,J(M一1/MrJ。 二·、霍尔元件的材料及结构特点 根报雀尔效应原理做成的器件叫做程尔元件。霍尔元件—般采用具有N 型的锗、锑化钥

和砷化钢等十导体单品材料制成。锑化铜元件的输出较大.促受温度的影 响也较大。铬元件 的输小虽小,但它的温度性能和线性度却比较好。砷化姻元件的输出信号 没有锑化姻元件大, 但是受温度的影响印比锑化姻的要小,而且线性度也较好。因此,以砷化 钡为霍尔元件的材料 得到曾遏放用。 霍尔元件结构很简单、是‘种半导体凹端薄片,它由霍尔片、引线和壳 体组成。霍 尔片的相对两侧对称地焊上两对电极引出线,如图10—2(a)所示。其小,一对(altj端)称为激励电流 端25外一对(c、J端)称为霍尔电势输出端,引线焊接处要求接触电阻小,而量呈现纯电阻件 质(欧姆接触)。霍尔片—般用非磁件金届、陶瓷或环氧树脂封装。 (一)输入电阻R, 霍尔元件两激励电流端的直流电阻称为输入电阻。它的数值,队儿欧 到几百欧,视不问型 号的元件而定。温度升高,输入电阻变小,从而使输入电流变大,最终引 起猩尔屯势变化。 为广减少这种影响,最好采用恒流源作为激励源。 (二)输出电阻只。 两个留尔屯势输出端之间的电阻称为输出电阻,它的数值与输入电阻 属同一数量级,它也 随温度改变而改变。选择适当的负载电阻RL与之匹配,uJ以使出温度引起霍尔电势的漂移减

霍尔元件简介及应用

霍尔元件简介及应用 霍尔元件之作用原理也就是霍尔效应,所谓霍耳效应如图1所示,系指将电流I 通至一物质,并对与电流成正角之方向施加磁场B 时,在电流与磁场两者之直角方向所产生的电位差V 之现象。此电压是在下列情况下所产生的,有磁场B 时,由于弗莱铭(Fleming)左手定则,使洛仁子力(即可使流过物质中之电子或正孔向箭头符号所示之方向弯曲的力量:(Lorentz force)发生作用,而将电子或正孔挤向固定输出端子之一面时所产生。电位差V 之大小通常决定于洛仁子力与藉所发生之电位差而将电子或正孔推回之力(亦即前者之力等于后者之力),而且与电流I 乘以磁场B 之积成比例。比例常数为决定于物质之霍耳常数除以物质在磁场方向之厚度所得之值。 图1 霍尔组件之原理

在平板半导体介质中,电子移动(有电场)的方向,将因磁力的作用(有磁场),而改变电子行进的方向。若电场与磁场互相垂直时,其传导的载子(电子或电洞),将集中于平板的上下两边,因而形成电位差存在的现象。该电位差即霍尔电压(霍尔电压)在实际的霍尔组件中,一般使用物质中之电流载子为电子的N 型半导体材料。将一定之输入施加至霍尔组件时之输出电压,利用上述之关系予以分析时,可以获致下列的结论: (1) 材料性质与霍尔系数乘以电子移动度之积之平方根成正比。 (2) 材料之形状与厚度之平方根之倒数成正比。 由于上述关系,实际的霍尔组件中,可将霍尔系数及电子移动度大的材料加工成薄的十字形予以制成。 图2系表示3~5 端子之霍尔组件的使用方法,在三端子霍尔元件之输出可以产生输入端子电压之大致一半与输出信号电压之和的电压,而在四端子及五端子霍尔组件中,在原理上虽然可以免除输入端子电压的影响,但实际上即使在无磁场时,也有起因于组件形状之不平衡等因素之不平衡电压存在。

霍尔元件的工作原理及结构

霍尔元件的工作原理及结构-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

霍尔元件的工作原理及结构 如图1所示.—块高为1、宽为5、厚为6的半导体。存外加磁场B作用下, 当商电流J流过时.运动屯子受洛伦兹力的作用而偏向一侧,使该侧形成电子的积 累,与它对义的侧面由于电了浓度下降。出现了正电荷·。这样,在两侧面间就形成了—‘个电场。运动 电子在受洛伦兹力的同时,又受电场力的作用.最后当这两力作用相等时,电子的积 累达到动态平衡,这时两侧之间建立电场,称霍尔电场民,相应的电压称霍尔电压uEI。上述这种现象称霍尔效应。经分析推导得霍尔电压 式中M—半导体单位体积中的载流子数; ‘—一电子电量; K M——程尔元件灵饭度,J(M一1/MrJ。 二·、霍尔元件的材料及结构特点 根报雀尔效应原理做成的器件贴片钽电容叫做程尔元件。霍尔元件—般采用具有N型的锗、锑化钥 和砷化钢等十导体单品材料制成。锑化铜元件的输出较大.促受温度的影响也较大。铬元件 的输小虽小,但它的温度性能和线性度却比较好。砷化姻元件的输出信号没有锑化姻元件大, 但是受温度的影响印比锑化姻的要小,而且线性度也较好。因此,以砷化钡为霍尔元件的材料 得到曾遏放用。

霍尔元件结构很简单、是‘种半导体凹端薄片,它由霍尔片、引线和壳体组成。霍 尔片的相对两侧对称地焊上两对电极引出线,如图10—2(a)所示。其小,一对(altj端)称为激励电流 端25外一对(c、J端)称为霍尔电势输出端,引线焊接处要求接触电阻小,而量呈现纯电阻件 质(欧姆接触)。霍尔片—般用非磁件金届、陶瓷或环氧树脂封装。 (一)输入电阻R, 霍尔元件两激励电流端的直流电阻称为输入电阻。它的数值,队儿欧到几百欧,视不问型 号的元件而定。温度升高,输入电钽电容阻变小,从而使输入电流变大,最终引起猩尔屯势变化。 为广减少这种影响,最好采用恒流源作为激励源。 (二)输出电阻只。 两个留尔屯势输出端之间的电阻称为输出电阻,它的数值与输入电阻属同一数量级,它也 随温度改变而改变。选择适当的负载电阻RL与之匹配,uJ以使出温度引起霍尔电势的漂移减 至最小。 (三)最大激励电流JM 由于霍尔电势随激励电流增大而沼大,故在应用中总希望选用较大的激励电流,但激励电 流增大.霍尔元件的功耗增大,元件的温度升高,从而引起霍尔电势的温漂增大,因此每种型号 的元件均规定丁相应的最大激励电流,它的数值为几毫安至几百毫安。 (曰)R敏曰xH f(M=ZH/(J.B),它的数值约为10 n、V/(1nA.I’)。 (五]最大磁感应强废Bm 磁感应强度为BMDf,霍尔吧势的非线性误差将明显增大 (六)不等位电努 在额定激励电流卜,当斯麦迪电子外加磁场为零时,霍尔输出端之间的开路电压称为不等位电势,这是

霍尔传感器特性研究及其应用

实验十二 霍尔传感器特性研究及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场。这个现象是霍尔于1879年发现的,后被称为霍尔效应。霍尔效应不仅是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔传感器已被广泛应用于非电量电测、自动控制和信息处理。 【实验目的】 1. 了解霍尔效应原理及以及研究霍尔传感器的特性。 2. 学习用“对称测量法”消除霍尔传感器副效应的影响。 3. 学会测定霍尔传感器的导电类型,会计算载流子浓度和迁移率。 【实验原理】 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被束缚在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的积累。从而形成附加的横向电场。对于图12-1所示的霍尔传感器,若在x 方向通以电流,在Z 方向加磁感应强度为B 的磁场,则在Y 方向即A 、A /两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向决定于材料的导电类型。显然,该电场阻止载流子继续向侧面移动,当载流子所受的横向电场力eE H 和洛仑兹力evB 相等时,样品两侧电荷的积累就达到平衡,故有 e E H =e b V H = e v B (12-1) 其中E H 称为霍尔电场,v 是载流子在 电流方向上的平均漂移速度。 设霍尔传感器的宽度为b ,厚度为d ,载流子浓度为n ,则 I = n e v b d (12-2) 由(12-1).(12-2)两式可得 d IB R d IB ne b E V H h H == =1 ne I R H = (12-3)

霍尔元件传感器原理

2008-01-05 18:55 一、霍尔元件的工作原理: 霍尔元件应用霍尔效应的半导体。 二、霍尔元件的特性: 1、霍尔系数(又称霍尔常数)RH 在磁场不太强时,霍尔电势差UH与激励电流I和磁感应强度B的乘积成正比,与霍尔片的厚度δ成反比,即UH =RH*I*B/δ,式中的RH称为霍尔系数,它表示霍尔效应的强弱。 另RH=μ*ρ即霍尔常数等于霍尔片材料的电阻率ρ与电子迁移率μ的乘积。 2、霍尔灵敏度KH(又称霍尔乘积灵敏度) 霍尔灵敏度与霍尔系数成正比而与霍尔片的厚度δ成反比,即KH=RH/δ,它通常可以表征霍尔常数。 3、霍尔额定激励电流 当霍尔元件自身温升10℃时所流过的激励电流称为额定激励电流。 4、霍尔最大允许激励电流 以霍尔元件允许最大温升为限制所对应的激励电流称为最大允许激励电流。 5、霍尔输入电阻 霍尔激励电极间的电阻值称为输入电阻。 6、霍尔输出电阻 霍尔输出电极间的电阻值称为输入电阻。 7、霍尔元件的电阻温度系数 在不施加磁场的条件下,环境温度每变化1℃时,电阻的相对变化率,用α表示,单位为%/℃。 8、霍尔不等位电势(又称霍尔偏移零点) 在没有外加磁场和霍尔激励电流为I的情况下,在输出端空载测得的霍尔电势差

称为不等位电势。 9、霍尔输出电压 在外加磁场和霍尔激励电流为I的情况下,在输出端空载测得的霍尔电势差称为霍尔输出电压。 10、霍尔电压输出比率 霍尔不等位电势与霍尔输出电势的比率 11、霍尔寄生直流电势 在外加磁场为零、霍尔元件用交流激励时,霍尔电极输出除了交流不等位电势外,还有一直流电势,称寄生直流电势。 12、霍尔不等位电势 在没有外加磁场和霍尔激励电流为I的情况下,环境温度每变化1℃时,不等位电势的相对变化率。 13、霍尔电势温度系数 在外加磁场和霍尔激励电流为I的情况下,环境温度每变化1℃时,不等位电势的相对变化率。它同时也是霍尔系数的温度系数。

什么是霍尔元件.

什么是霍尔元件 霍尔元件的定义 霍尔器件是一种磁 霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广 泛的应用。 霍尔线性器件的精度高、线性度好;霍尔 霍尔效应 如图1 所示,在一块通电的 (a)霍尔效应和霍尔元件 这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。这时,片子两侧建立起一个稳定的电压,这就是霍尔电压。在片子上作四个电极,其中C1、C2 间通以工作电流I,C1、C2 称为电流电极,C3、C4 间取出霍尔电压VH,C3、C4 称为敏感电极。将各个电极焊上引线,并将片子用塑料封装起来,就形成了一个完整的霍尔元件(又称霍尔片)。 或(3) 在上述(1)、(2)、(3)式中VH 是霍尔电压,ρ 是用来制作霍尔元件的材料的 为了精确地测量磁场,常用恒流源供电,令工作电流恒定,因而,被测磁场的磁感应强度B 可用霍尔电压来量度。在一些精密的测量仪表中,还采用恒温箱,将霍尔元件置于其中,令RH 保持恒定。若使用环境的温度变化,常采用恒压驱动,因和RH 比较起来,μn 随温度的变化比较平缓,因而VH 受温度变化的影响较小。为获得尽可能高的输出霍尔电压VH,可加大工作电流,同时元件的功耗也将增加。(3)式表达了VH 能达到的极限——元件能承受的最大功耗。 霍尔器件 霍尔器件分为: 霍尔元件和霍尔集成两大类,前者是一个简单的霍尔片,使用时常常需要将获得的霍尔电压进行放大。后者将霍尔片和它的信号处理集成在同一个芯片上。 霍尔元件 霍尔元件可用多种半导体材料制作,如Ge、Si、InSb、GaAs、InAs、

霍尔效应和霍尔元件特性测定数据处理范例(精)

霍尔效应和霍尔元件特性测定数据处理范例 1.霍尔元件的不等位电势差测定 0M I =(2在坐标纸上作出不等位电势差与工作电流的关系曲线。 V /m V I s /mA 图 1:不等位电势差与工作电流的关系曲线 2.励磁电流一定,霍尔元件灵敏度测定(仪器公差取数字仪表显示数据末位的 5倍, 如霍尔工作电流示值误差: 0.05S I m mA ?=;霍尔电压示值误差:

0.05H V m mV ?=; 励磁电流示值误差:0.005M I m A ?= ⑴霍尔电压与霍尔电流关系测试数据表: H S V I -500M I mA =0.25 0.28 -0.23 0.22 -0.29 0.26 0.50 0.56 -0.44 0.44 -0.56 0.50 0.75 0.85 -0.67 0.67 -0.85 0.76 1.00 1.12 -0.88 0.88 -1.12 1.00 1.25 1.41 -1.10 1.11 - 1.41 1.26 1.50 1.69 -1.32 1.32 -1.68 1.50 1.75 1.97 -1.54 1.54 -1.96 1.75 2.00 2.25 -1.76 1.77 -2.24 2.01 2.25 2.54 -1.97 1.99 -2.52 2.26 2.50 2.82 -2.19 2.21 -2.80 2.51 2.75 3.10 -2.41 2.44 -3.08 2.76 3.00 3.39 -2.63 2.66 -3.36 3.01 ⑵利用逐差法计算霍尔元件灵敏度及其不确定度(0.683p = 。

H H H S S V V K I B I B ?= = ?? a 利用逐差法计算H V ?的平均值及不确定度估算 (该部分逐差法计算可用数据处理软 件的逐差法进行计算 7182931041151261.750.261.49, 2.010.501.51, 2.260.761.50, 2.511.001.51, 2.761.261.50, 3.011.501.51H H H H H H H H H H H H V V mV V V mV V V mV V V mV V V mV V V mV -=-=-=-=-=-=-=-=-=-=-=-= 1.50H V mV ?= 某次测量的标准偏差:0.0082H V S mV ?=,平均值的标准偏差: 0.0033H V S mV ?= 肖维涅系数 61.73n c c ==, 1.730.00820.014186H n V c S mV ?*=*= 根据肖维涅准则(坏值条件: *i H

相关主题
文本预览
相关文档 最新文档