当前位置:文档之家› 无机化学:第八章配位化合物讲解

无机化学:第八章配位化合物讲解

无机化学:第八章配位化合物讲解
无机化学:第八章配位化合物讲解

第八章配位化合物

一、配合物的基本概念

1、配位化合物的定义及其组成

?定义:把由一定数目的阴离子或中性分子与阳离子或原子以配位键形成的复杂分子或离子称配合单元。含有配合单元(配位键)

简单化合物反应生成的复杂化合物。

配合单元相对稳定,存在于晶体及溶液中,在溶液中不能完全离解为简单组成的部分。

?配位键——由配体单方面提供电子对给中心原子(离子)而形成的共价键。

?

组成中心离子的元素种类:

◆能充当中心离子的元素几乎遍及元素周期表的各个区域,但常见的是金属离子,尤其

是一些过渡金属离子,如[Co(NH3)6]3+、[Fe(CN)6]4—、[HgI4]2—。

◆高氧化态非金属元素原子:如B、Si、P等形成[ BF4]—、[SiF6]2—、PF6—。

◆金属元素电中性原子:如[ Ni(CO)4]、[ Fe(CO)5]、[Cr(CO)6]

?配合物的组成:配合物由内界和外界组成。内界为配合物的特征部分(即配位个体),是一个在溶液中相当稳定的整体,在配合物的化学式中以方括号表明。方括号以外的离子构成配合物的外界。内外界之间以离子键结合,故在水溶液中易解离出外界离子,而内界即配合单元很难发生离解。

如[Cu (NH3)4] SO4

↓↓↓

中心原子,配位体,外界

?在配合物中同中心原子/离子配位的分子如NH3、H2O或阴离子如Cl—、CN—、SCN—称

配体属于Lewis碱,都含有孤对电子,是电子对的给予体。中

?配位体中与中心离子(或原子)直接成键的离子称为配位原子。配位体所提供的孤对电子即是配位原子所具有的孤对电子。常见的配位原子有:F、Cl、Br、

?配位体分类——单齿配体和多齿配体

单齿配体:一个配位体只提供1个孤对电子与1个中心离子结合形成1个配位键。如NH3、—OH(羟基)、H2O:、:X—等。

多齿配体:一个配位体中含有2个或更多个配位原子,与一个中心离子形成2个或2 个以上的配位键。例如:乙二胺(en)NH2–CH2–CH2–NH2、草酸根C2O42—是

双齿配体。乙二胺四乙酸根EDTA(Y4—) 是六齿配体,其结构式如下:

螯合物:多齿配体与中心离子形成的具有闭合环状结构的配合物。螯合物具有很高的稳定性,此外,螯合物还具有特征颜色、难溶于水而易溶于有机溶剂等特点,因而被广泛用于沉淀分离、溶剂萃取、比色测定、容量分析等分离、分析工作。

?配位数——配合物分子中直接与同一中心离子(原子)成键的配位原子数目称为中心离子(原子)的配位数(用表示)。可为1~14,常见6。本质上,配位数就是中心原子与配体形成配位键的数目。

=i?

配位数配位体的数目齿数

如[Ag(NH3)2]+ C.N.=2;[Cu(NH3)4]2+ C.N.=4;[Pt(en)2]2+ C.N.=4

单齿配体形成的配合物:中心离子的配位数=配体的数目

多齿配体形成的配合物:中心离子的配位数≠配体的数目, 配位原子数=配位数

配位数金属离子实例

2 Ag+、Cu+、Au+[Ag(NH3)2]+、[Cu(CN)2]—

4

Cu2+、Zn2+、Cd2+、Hg2+、

Al3+、Sn2+、Pb2+、Co2+、

Ni2+、Pt4+、Fe3+、Fe2+

[HgI4]2—、[Zn (CN)4] 2—、

[Pt(NH3)2Cl2]

6 Cr3+、Al3+、Pt4+、Fe3+、Fe2+、

Co2+、Ni2+、Pt4+

[PtCl] 2—、[Co(NH3) 3(H2O)]、

[Fe(CN)6] 3—、[Ni(NH3) 6] 2+、

[CrCl2(NH3) 4] +

☆☆配位数(C.N)的影响因素:

①电荷数→∞,C.N→∞。如:

Ag(NH3)2+ C.N=2 PtCl42- C.N= 4

Cu(NH3)42+ C.N=4 PtCl62- C.N= 6

②半径r→∞,C.N→∞。如:

中心离子 C.Nmax

[BF4]—第二周期 4

[AlF6]3—第三、四周期 6

[La(H2O)]83+第五、六周期10

③外层电子构型:

d 0 C.N= 6 [AlF6]3-

d 1 C.N= 6 [Ti(H2O)6]3+

d 8 C.N= 4 [Ni(CN)4]2-

d 9 C.N= 4 [Cu(NH 3)4]2+

B 、配体性质(电荷、半径)

①负电荷数→∞,C.N 0→(互斥作用→∞)。如:

[Zn(NH 3)6]2+ [ZnCl 4]2-

NH 3 Cl -

②半径 r →∞,C.N 0→(空间位阻)。如:

[AlF 6]3- [AlCl 4]-

C 、配合物生成条件(浓度、温度)

① 配体浓度→∞,C.N →∞

Fe 3+ + x SCN - = [Fe(NCS)x ](x-3)- (x = 1 – 6)

② 温度→∞,C.N 0→(加速配合物离解)

? 配离子电荷数——等于中心原子和配位体总电荷的代数和。 —

号相反,所以由外界离子的电荷可以推测出配离子的电荷及中心原子的氧化值。如 K 4[Fe(CN)6]6-4?中心原子铁的氧化值为Fe (Ⅱ)。

二、配合物的系统命名法与分类

1、配合物的系统命名法

①阴离子前,阳离子后;

②配合单元

配体数目(汉字)+ 配体名 + 合 + 中心离子名(氧化态,用罗马数字)(多种配体,以 ? 分隔)。

例:[Cu (NH 3)4]SO 4 硫酸四氨合铜(II )

③配体顺序

a 、先无机,后有机:

例: cis —[PtCl 2(ph 3P) 2] 顺-二氯?二三苯基膦合铂(Ⅱ)

读作”顺式二氯两个三苯基膦合铂(Ⅱ)”

b 、无机配体: 先阴离子、后阳离子,最后中性分子:

例: K[PtCl 3 NH 3] 三氯?氨合铂(Ⅱ)酸钾

c 、同类配体: 按配位原子元素符号的英文字母顺序:

例:NH 3前,H 2O 后 : [CO(NH 3)5H 2O] Cl 3 三氯化五氨?水合钴(Ⅲ)

d 、同类配体、同配位原子:含较少原子的配体在前,含较多原子的配体在后:

例:[Pt(NO 2—) (NH 3) (NH 2OH)Py] Cl 氯化硝基?氨?羟氨?吡啶合铂(Ⅱ)

e 、同类配体、同配位原子 :

例:NH 2—前,NO 2—后 (比较与配位原子相连的原子的元素符号的英文字母顺序)

[PtNH 2—NO 2—(NH 3)2] 氨基?硝基?二氨合铂(Ⅱ)

f 、同类配体、同配位原子,且原子数目也相同:NCS —前,SCN —后;NO 2—硝基前,ONO —亚硝酸根后

④多核配合物

例如:()()33555[NH Cr-OH -Cr NH ]Cl - 五氯化μ—羟?二[五氨合铬(Ⅲ)] ( μ -表示

“桥联基团” )

2

、配合物的分类

①单核配合物:分子中只有1个中心原子(离子)的配合物。

a、简单配合物: 如[Cu (NH3)4]SO4 , K3[Fe(CN)6]

b、螯合物: 多齿配体与中心原子(离子)形成螯环。如[Pt(en)2]2+ (左) , [Co(EDTA)]- (右)

②多核配合物:分子中有多于1个中心原子(离子)的配合物

三、配合物的结构和空间异构现象

两种或更多种化合物,有相同的化学式,但结构和性质均不相同,则互称“同分异构体”,这种现象称为“同分异构现象”。

1、结构异构

?定义:原子间连接方式不同引起的异构现象

?分类:键合异构、电离异构、水合异构和配位异构

a、键合异构——多原子配体分别以不同配位原子与中心原子键合所形成的配位化合物互为键

合异构。如[Co(NO2)(NH3)5]Cl2硝基,黄褐色,酸中稳定

[Co(ONO)(NH3)5]Cl2亚硝酸根,红褐色,酸中不稳定

b、电离异构——电离异构是指组成相同的配合物,在水溶液中解离得到不同离子的现象。

()

??

??

?

?

?

??

?

?

?

??

?

电离异构、水合异构

结构异构

配位异构、键合异构

同分异构

几何异构重点

空间异构

旋光异构

如[Co(SO4)(NH3)5]Br和[CoBr(NH3)5] SO4互为电离异构。前者可电离出Br—

使Ag+沉淀;后者可电离出SO42—,使Ba2+沉淀。

c、水合异构——H2O经常作为配体出现在内界,也经常存在于外界。由于H2O分子在内外

可以解离出不同的配位单元。如[Cr(H2O)6]Cl3,紫色;[CrCl(H2O)5]Cl2·H2O

亮绿色;[CrCl2(H2O)4]Cl ·2H2O,暗绿色。

d、配位异构——内界之间交换配体,得到的异构体称为配位异构。如[Co(en)3][Cr(ox)3]与

[Cr(en)3][Co(ox)3]互为配位异构。如果两个配体互为异构体,那么由它们分

别形成的相应的配位化合物互为配位异构。

2、空间异构

?定义:配体在空间排列位置不同引起的异构现象

?分类:几何异构(重点)和旋光异构

a、几何异构——几何异构又叫顺反异构,其特点是配位化合物中键联关系相同,但配体相互

位置关系不同。

如配位数为4的平面正方形结构的[PtCl2(NH3)2],有几何异构现象。如图所示:

顺式cis - PtCl2(NH3)2反式trans - PtCl2(NH3)2

极性μ≠ 0 μ = 0

水中溶解度0.2577 0.0366g / 100 g H2O

反应性+ Ag2O + C2O42-→生成草酸配合物~ → 不生成草酸配合物

抗癌药效有无

?顺式异构的特点是,同种配体位于正方形的同一边上。反式异构的特点是,同种配体位于正方形的对角上。

?[PtCl2(NH3)2]可以抽象成MA2B2型正方形配位单元。其M表示中心原子,A、B表示不同种类的配位原子。MA2B2型正方形配位单元有顺反异构,而MA3B型正方形配位单元则没有顺反异构。对于配位数为4的正四面体结构的配位单元无论是MA2B2型还是MA3B型均不会有顺反异构。

?一般来说,配体数目→∞,种类→∞?异构现象越复杂

b、旋光异构

?两种异构体互为镜象,但永远不能完全重叠(类似左、右手关系),称为一对“对映体”,也称“手性分子”。

?平面偏振光通过这两种异构体时,发生相反方向的偏转(右旋d, 左旋l)。

如l-尼古丁(天然)毒性大,d-尼古丁(人工)毒性小

?旋光异构体的熔点相同,但光学性质不同。不同的旋光异构体在生物体内的作用不同。

?MA2B2C2型有5种几何异构体, 但只有全顺异构体有旋光异构现象。

四、配位化合物的化学键理论

1、价键理论

A、理论要点

?中心原子(M)是有与配体对称性匹配、能量相近的空的价电子轨道,是电子对的接受体,属Lewis酸。

?配位体(L)有孤对电子,是电子对给予体,属Lewis碱,。

?M与L形成σ配位键,M←L。σ配位键的数目=配位数。

?中心原子(离子)的价电子以某种杂化轨道与配体轨道重叠成键,故配合单元有确定的几何构型。

?杂化方式与配合物空间构型和配位键型有关。

?配合物空间构型,取决于中心原子所提供杂化轨道的数目和类型

配位数杂化轨道参与杂化的原子轨道空间构型

2 sp s,p z直线形

3 sp2s,p x,p y三角形

4 sp3s,p x,p y,p z正四面体

dsp2d x2-y2,s,p x,p y平面正方形

5 dsp3d z2,s,p x,p y,p z三角双锥

d2sp2d z2,d x2-y2,s,p x,p y四方锥

6 d2sp3,sp3d2d z2,d x2-y2,s,p x,p y,p z八面体

B

配合物是内轨型还是外轨型,主要取决于中心离子的电子构型、离子所带的电荷和配位原子的电负性大小。

①外轨配键与外轨型配合物

?中心原子以最外层的空轨道(ns, np, nd)组成杂化轨道,包括sp,sp2,sp3或sp3d2等杂化轨道,然后和配位原子形成的配位键,叫外轨配键。

?含有外轨配键的配离子叫做外轨型配离子;它们的配合物叫做外轨型配合物。

?外轨配合物的特点:配合物具有最大可能的未成对电子数。因此,这类配合物又称为高自旋型配合物。

?外轨型配合物的稳定性低,其为顺磁性物质。

例如:[Ni(NH3)4]2+,sp33N提供,形成正四面体形外轨配离子。

②内轨配键与内轨型配合物

?中心离子用部分次外层空轨道接纳配体的孤对电子而形成dsp2,dsp3,d2sp3等内层杂化轨道的配离子叫做内轨型配离子;它们的配合物叫做内轨型配合物。

?内轨配合物的特点:配合物具有最小可能的未成对电子数。因此,这类配合物又称为低自旋型配合物。

例如:[Ni(CN)4]2+,dsp2杂化,电子由CN-中C提供,形成平面正方形内轨配离子。

③外、内轨型配合物的差别

当形成相同配位数的配离子时,一般地有如下规律:

? 配位键的键能:内轨型>外轨型

? 配合物的稳定性:内轨型>外轨型

? 稳定常数: 内轨型>外轨型

④内、外轨型配合物的判断

a 、由中心离子价电层结构判断

? 中心离子内层d 轨道已全满,只能形成外轨型配离子。如Ag +(3d 10) 、Zn 2+(3d 10) 、

Cd 2+(4d 10)、Hg 2+(5d 10) 。

? 中心离子(n -1)d 电子数≤3时,至少有2个(n -1)d 空轨道,如Cr 3+(3d 3)、 Ti 3+(3d 1) ,

易形成内轨型配离子。具d 8构型的离子多形成内轨型。

? 中心离子内层d 轨道为d 4~d 9,内外轨型配离子都可形成,决定于配位体的类型。 b 、由中心离子的电荷量判断

? 中心离子的电荷:NH 3、Cl —两种类型都可能形成, 与中心离子有关。同种配体与同一

过渡元素中心离子形成的配合物,中心离子正电荷越多,越有利于形成内轨。例

[Co(NH 3)6]2+外轨型,[Co(NH 3)6]3+内轨型。

c 、由配位体判断

? 一般说来,电负性较大的配位原子如F 、O ,不易给出孤对电子,形成配位键的能力较

弱,称弱场配体,易形成外轨型配合物。F —、H 2O 、OH —易形成外轨型 。如[FeF 6]3— (sp 3d 2)。

? 电负性较小的配位原子如C 、N ,容易给出孤对电子,形成配位键的能力较强,称强场

配体,中心原子的(n -1)d 电子影响较大,(n -1)d 电子发生重排,空出(n -1)d 轨道形成内轨型配合物。CN –、CO 、NO 2 – 等易形成内轨型。如[Fe(CN)6]3- (d 2sp 3)。

? 光谱化学序列: I –<Br –<S 2–<SCN –<Cl ?<NO 3?<N 3?<F ?<OH ?<C 2O 42?<H 2O <

NCS ?<CH 3CN <py (吡啶)<NH 3<en (乙二胺)<NO 2?<CN ?<CO

d 、由配合物的磁性判断

配合物磁性的测定是判断配合物结构的一个重要手段。

? 磁矩μ与中心原子中未成对电子数n (即单电子数)有关,可以用近似的关系式表示

为: ()2B n n μμ≈+?

? n =0 , μ=0,电子完全配对,反磁性,被磁场排斥 。

? n > 0 , μ > 0,如O 2、NO 、NO 2 ,顺磁性,被磁场吸引。

未成对 电子数

0 1 2 3 4 5

磁矩(μ)B ·M

0 1.73 2.83 3.87 4.90 5.92 C ①配位数为2的配合物

氧化数为+1的中心原子通常形成配位数为2的配离子,如[Ag(NH 3)2]+,[AgCl 2]—。一般配

大学无机化学第十七章试题及答案教学资料

大学无机化学第十七章试题及答案

第十八章 氢 稀有气体 总体目标: 1.掌握氢及氢化物的性质和化学性质 2.了解稀有气体单质的性质及用途 3.了解稀有气体化合物的性质和结构特点 各节目标: 第一节 氢 1.掌握氢的三种成键方式 2.掌握氢的性质、实验室和工业制法及用途 3.了解离子型氢化物、分子型氢化物和金属性氢化物的主要性质 第二节 稀有气体 1.了解稀有气体的性质和用途 2.了解稀有气体化合物的空间构型 习题 一 选择题 1.稀有气体不易液化是因为( ) A.它们的原子半径大 B.它们不是偶极分子 C.它们仅仅存在较小的色散力而使之凝聚 D.它们价电子层已充满 2.用VSEPR 理论判断,中心原子价电子层中的电子对数为3的是( ) A .PF 3 B.NH 3 C.-34PO D.-3NO 3.用价电子对互斥理论判断,中心原子周围的电子对数为3的是( )(吴成鉴《无机化学学习指导》) A.SCl 2 B.SO 3 C .XeF 4 D. PF 5 4.用价电子对互斥理论判断,中心原子价电子层中的电子对数为6的是( )

A.SO2 B. SF6 C. 3 AsO D. BF3 4 5. XeF2的空间构型是() A.三角双锥 B.角形 C. T形 D.直线型 6.下列稀有气体的沸点最高的是() (吴成鉴《无机化学学习指导》) A.氪 B.氡 C.氦 D.氙 7.能与氢形成离子型氢化物的是() (吴成鉴《无机化学学习指导》) A.活泼的非金属 B.大多数元素 C.不活泼金属 D.碱金属与碱土金属 8.稀有气体原名惰性气体,这是因为() A.它们完全不与其它单质或化合物发生化学反应 B.它们的原子结构很稳定,电离势很大,电子亲合势很小,不易发生化学反应 C.它们的价电子已全部成对 D.它们的原子半径大 9.下列各对元素中,化学性质最相似的是() (吉林大学《无机化学例题与习题》) A.Be 与Mg B.Mg与Al C Li与Be D.Be与Al 10.下列元素中,第一电离能最小的是() (吉林大学《无机化学例题与习题》) A.Li B.Be C. Na D.Mg 11.下列化合物中,在水中的溶解度最小的是()(吉林大学《无机化学例题与习题》) A.NaF B.KF C.CaF2 D.BaF2 12.下列氢化物中,最稳定的是() (吉林大学《无机化学例题与习题》) A.LiH B.NaH C.KH D.RbH

最新大学无机化学第八章试题及答案

第八章 沉淀溶解平衡 各小节目标: 第一节:溶度积常数 1;了解溶度积常数及其表达式,溶度积和溶解度的关系。 2:学会用溶度积原理来判断沉淀是产生、溶解还是处于平衡状态(饱和溶液),3:大致了解盐效应和同离子效应对溶解度的影响。 第二节:沉淀生成的计算 利用溶度积原理掌握沉淀生成的有关计算。(SP Q K θ>将有沉淀生成) 第三节:沉淀的溶解和转化 1:利用溶度积原理掌握沉淀溶解和转化的计算(SP Q K θ<沉淀溶解) 2:可以判断溶液中哪种物质先沉淀。 用KSP 的表达式,计算溶液中相关离子的浓度。 习题 一 选择题 1. Ag 3PO 4在0.1 mol/L 的Na 3 PO 4溶液中的溶解度为( )(《无机化学例题与习题》吉大版)(已知Ag 3PO 4的K 0sp = 8.9×10-17) A. 7.16×10-5 B.5.7×10-6 C. 3.2×10-6 D. 1.7×10-6 2.已知Sr 3(PO 4)2的溶解度为1.7×10-6 mol/L ,则该化合物的容度积常数为( )(《无机化学例题与习题》吉大版) A. 1.0×10-30 B. 1.1×10-28 C. 5.0×10-30 D. 1.0×10-12 3.已知Zn (OH )2的容度积常数为3.0×10-17,则Zn (OH )2在水中的容度积为 ( )(《无机化学例题与习题》吉大版) A. 2.0×10-6mol/L B. 3.1×10-6 mol/L C. 2.0×10-9 mol/L D. 3.1×10-9 mol/L 4.已知Mg (OH )2的K 0sp = 5.6×10-12,则其饱和溶液的pH 为( )(《无机化学例题与习题》吉大版) A. 3.65 B3.95 C. 10.05 D. 10.35 5.下列化合物中,在氨水中溶解度最小的是( )(《无机化学例题与习题》吉大版) A. Ag 3PO 4 B. AgCl C. Ag Br D. AgI 6.CaCO 3在相同浓度的下列溶液中溶解度最大的是( )(《无机化学例题与习题》吉大版) A. NH 4Ac B. CaCl 2 C. NH 4Cl D. Na 2CO 3

大学无机化学方程式整理

第一章氢及稀有气体 1.氢气的制备 实验室:Zn+2HCl=ZnCl2+H2↑ 军事上:CaH2 +2H2O → Ca(OH)2 + 2H2↑ 2.稀有气体化合物 ①第一个稀有气体化合物:Xe + PtF6 → Xe+[ PtF6] (无色)(红色)(橙黄色) ②氙的氟化物水解: 2XeF2+2H2O →2Xe↑+4HF+ O2↑ 6XeF4 + 12H2O == 2XeO3 + 4Xe↑+3O2↑ +24HF XeF6+3H2O →XeO3+6HF ③氙的氟化物为强氧化剂: XeF2 + H2─→ Xe + 2HF XeF2 + H2O2─→ Xe + 2HF + O2↑ 第二章碱金属与碱土金属元素 一、碱金属与碱土金属(铍、镁除外)元素溶于液氨,生成溶剂合电子和阳离子成具有导电性的深蓝色溶液。 碱金属M(S) + (x+y)NH3 M+(NH3)x + e-(NH3)y 碱土金属M(S) + (x+2y)NH3 M2+(NH3)x +2e-(NH3)y 二、氢化物

氢化物共分为离子型、共价型、过渡型 离子型氢化物是极强的还原剂:TiCl 4+4NaH Ti +4NaCl +2H 2↑ LiH 能在乙醚中同B 3+ Al 3+ Ga 3+ 等的无水氯化物结合成复合氢化物,如氢化铝锂的生成。 4LiH + AlCl 3 乙醚 Li[AlH 4] + 3LiCl 氢化铝锂遇水发生猛烈反应Li[AlH 4]+4H 2O=LiOH↓+Al(OH)3↓+4H 2↑ 三、 氧化物 1、正常氧化物 碱金属中的锂和所有碱土金属在空气中燃烧时,分别生成正常氧化物Li 2O 和MO 。其他碱金属正常的氧化物是用金属与他们的过氧化物或硝酸盐相作用制得。 Na 2O 2+2Na=2Na 2O 2KNO 3+10K=6K 20+N 2↑ 碱土金属氧化物也可以由他们的碳酸盐或硝酸盐加热分解得到。 CaCO 3 CaO +CO 2↑ 2Sr(NO 3)2 2SrO +4NO 2+O 2↑ 1、 过氧化物与超氧化物 过氧化物是含有过氧基(—O —O —)的化合物,可看作是H 2O 2的衍生物。除铍外,所有碱金属和碱土金属都能形成离子型过氧化物。 2Na +O 2 Na 2O 2 除锂、铍、镁外,碱金属和碱土金属都能形成超氧化物。 K +O 2=KO 2 2、 臭氧化物 300℃~500℃ 高温 △

无机化学第四版第七章思考题与习题答案讲课教案

第七章固体的结构与性质 思考题 1.常用的硫粉是硫的微晶,熔点为11 2.8℃,溶于CS2,CCl4等溶剂中,试判断它属于哪一类晶体?分子晶体 2.已知下列两类晶体的熔点: (1) 物质NaF NaCl NaBr NaI 熔点/℃993 801 747 661 (2) 物质SiF4SiCl4SiBr4 SiI4 熔点/℃-90.2 -70 5.4 120.5 为什么钠的卤化物的熔点比相应硅的卤化物的熔点高? 而且熔点递变趋势相反? 因为钠的卤化物为离子晶体,硅的卤化物为分子晶体,所以钠的卤化物的熔点比相应硅的卤化物的熔点高,离子晶体的熔点主要取决于晶格能,NaF、NaCl、NaBr、NaI随着阴离子半径的逐渐增大,晶格能减小,所以熔点降低。分子晶体的熔点主要取决于分子间力,随着SiF4、SiCl4、SiBr4、SiI4相对分子质量的增大,分子间力逐渐增大,所以熔点逐渐升高。

3.当气态离子Ca2+,Sr2+,F-分别形成CaF2,SrF2晶体时,何者放出的能量多?为什么?形成CaF2晶体时放出的能量多。因为离子半径r(Ca2+)NaCl。所以NaF的熔点高于NaCl。 (2)BeO的熔点高于LiF;由于BeO中离子的电荷数是LiF 中离子电荷数的2倍。晶格能:BeO>LiF。所以BeO的熔点高于LiF。 (3)SiO2的熔点高于CO2;SiO2为原子晶体,而CO2为分子晶体。所以SiO2的熔点高于CO2。 (4)冰的熔点高于干冰(固态CO2);它们都属于分子晶体,但是冰分子中具有氢键。所以冰的熔点高于干冰。 (5)石墨软而导电,而金刚石坚硬且不导电。石墨具有层状结构,每个碳原子采用SP2杂化,层与层之间作用力较弱,同层碳原子之间存在大π键,大π键中的电子可以沿着层面运动。所以石墨软而导电。而金刚石中的碳原子采用SP3杂化,属于采用σ键连接的原子晶体。所以金刚石坚硬且不导电。

大学无机化学第一章试题及答案(供参考)

第一章 一些基本概念和定律 本章总目标: 1:学习物质的聚集状态分气态、固态、液态三种,以及用来表示这三种聚集态的相关概念。 2;重点掌握理想气体状态方程、道尔顿分压定律以及拉乌尔定律。 各小节目标 第一节:气体 1:了解理想气体的概念,学习理想气体的状态方程推导实际气体状态方程的方法。 2:掌握理想气体状态方程的各个物理量的单位及相关的计算。 理想气体:忽略气体分子的自身体积,将分子看成是有质量的几何点;假设分子间没有相互吸引,分子之间及分子与器璧之间发生的碰撞时完全弹性的,不造成动能损失。 3:掌握Dalton 分压定律的内容及计算。 第二节:液体和溶液 1:掌握溶液浓度的四种表示方法及计算 ○1物质的量浓度(符号:B c 单位1mol L -?):溶液中所含溶质B 的物质的量除 以溶液的体积。 ○2质量摩尔浓度(B B A n b m =,单位:1mol kg -?):溶液中溶质B 的物质的量除以溶剂的质量。 ○ 3质量分数(B B m m ω=):B 的质量与混合物的质量之比。 ○4摩尔分数(B B n n χ=):溶液中溶质的物质的量与溶液的总物质的量之比。 2:了解非电解质稀溶液的依数性及其应用。 第三节:固体 1:了解常见的四种晶体类型 2:掌握四类晶体的结构特征及对物质性质的影响,比较其熔沸点差异。 Ⅱ 习题 一 选择题:

1.如果某水合盐的蒸汽压低于相同温度下的蒸汽压,则这种盐可能发生的现象是() (《无机化学例题与习题》吉大版) A.气泡 B.分化 C.潮解 D.不受大气组成影响 2.严格的讲,只有在一定的条件下,气体状态方程式才是正确的,这时的气体称为理想气体。这条件是() A.气体为分子见的化学反应忽略不计 B.各气体的分压和气体分子本身的体积忽略不计 C.各气体分子的“物质的量”和气体分子间的引力忽略不计 D.各气体分子间的引力,气体分子的体积忽略不计 3.在300K,把电解水得到的并经干燥的H 2和O 2 的混合气体40.0克,通入60.0L 的真空容器中,H 2和O 2 的分压比为() A.3:1 B.2:1 C.1:1 D.4:1 4.在下述条件中,能使实际气体接近理想的是() A.低温、高压 B.高温、低压 C.低温、低压 D.高温、高压 5.某未知气体样品为5.0克,在温度为1000C时,压力为291KPa时体积是0.86L,该气体的摩尔质量是() A.42g/mol B.52g/mol C.62g/mol D.72g/mol 6.处于室温一密闭容器内有水及与水相平衡的水蒸气。现充入不溶于水也不与水反应的气体,则水蒸气的压力()(《无机化学例题与习题》吉大版) A.增加 B.减少 C.不变 D.不能确的 7.将300K、500KPa的氧气5L。400K、200KPa的氢气10L和200K、200KPa的氮气3L,三种气体压入10L容器中维持300K,这时气体的状态是() A.氧气的压力降低,氮气、氢气压力增加 B.氢气的压力降低,氮气、氧气的压力增加 C.氮气的压力不变,总压力比混合前低 D.氧气、氮气、氢气的压力降低,总压力比混合前低 8.土壤中NACL含量高时植物难以生存,这与下列稀溶液的性质有关的是()(《无机化学例题与习题》吉大版) A. 蒸汽压下降 B.沸点升高 C. 冰点下降 D. 渗透压 9.一种元素的相对原子质量,是该元素的一定质量与核素12 6 C的摩尔质量的1/12的比值,这一质量是() A.原子质量 B.各核素原子质量的平均质量 C.平均质量 D.1mol原子平均质量 10.在一次渗流试验中,一定物质的量的未知气体通过小孔渗相真空,需要的时间为5S,在相同条件下相同物质的量的氧气渗流需要20S。则未知气体的相对分子质量为() (《无机化学例题与习题》吉大版) A.2 B.4 C.8 D.16 11.下述理想气体常数R所用单位错误的是() mol-1?K-1 B. 8.314KJ?mol-1?K-1 C. 8.314KPa?L? mol-1?K-1 12.下列说法正确的是() A.44gCO 2和32gO 2 所含的分子数相同,因而体积不同 B.12gCO 2和12gO 2 的质量相等,因而“物质的量”相同 C.1molCO 2和1molO 2 的“物质的量”相同,因而它们的分子数相同

大学无机化学第七章试题及答案解析

第七章 酸碱解离平衡 本章总目标: 1:了解酸碱理论发展的概况 2:了解同离子效应和盐效应对解离平衡的影响。 3:掌握酸、碱、盐以及缓冲溶液的pH 值的相关计算。 4:了解离子活度、活度因子、离子强度等概念。 5:了解缓冲溶液的组成;缓冲作用原理;缓冲溶液的性质。 各小节的目标: 第一节:弱酸和弱碱的解离平衡 1:掌握一元弱酸的解离平衡常数的意义、用途和计算。2 a H K c θ +????= 2;掌握一元弱碱的解离平衡常数的意义、用途和计算。2 0b OH K c OH θ - - ????=??-?? 当 0400b c K θ>时,OH -??=?? 3:解离度概念——平衡时已经解离的浓度与起始浓度之比。 4:同离子效应——在弱电解质的溶液中国,加入与其具有相同离子的强 电解质,使弱电解质的解离平衡左移,从而降低弱电解质的解离度。 5:掌握多元弱酸的解离平衡的计算。 6:了解水的离子积常数、溶液的pH 等基本概念。 7:熟练掌握缓冲溶液pH 值的计算: lg a pH pK θ=-(c 酸/c 盐);lg b pOH pK θ =-(C 碱/C 盐) 8:可以解释缓冲溶液可以达到缓冲目的的原因。 第二节:盐的水解

1:掌握水解平衡常数的计算:1.弱酸强碱盐:W h a K K K θθ θ=;2.强酸弱碱盐: W h b K K K θθ θ=;3.弱酸弱碱盐:W h a b K K K K θθ θθ= 2:可以运用公式——2112 11 ln ()K H K R T T θ θ?=-来解释升温促进水解的原因。 3:掌握单水解过程的计算— —OH - ??== ?? ,H +??== ?? 4;掌握双水解pH 值的计算:H + ??= ??第三节:电解质溶液理论和酸碱理论的发展 1:掌握离子强度、活度的概念和离子强度的计算21 2 i i I b z =∑。 2:理解盐效应对弱电解质解离度的影响。 3:了解酸碱质子理论、酸碱溶剂体系理论和酸碱电子理论。 Ⅱ习题 一 选择题 1.某弱酸HA 的Ka= 2.0×10-5,若需配制pH=5.00的缓冲溶液,与100ml ,1.0mol/L 的NaAc 相混合的1.0mol/LHA 体积应为( ) A. 200ml B.50ml C.100ml D.150ml 2.已知相同浓度的盐NaA ,NaB,,NaC ,NaD 的水溶液的pH 依次增大,则

大学无机化学第八章试题及答案

第八章 沉淀溶解平衡 各小节目标: 第一节:溶度积常数 1;了解溶度积常数及其表达式,溶度积和溶解度的关系。 2:学会用溶度积原理来判断沉淀是产生、溶解还是处于平衡状态(饱和溶液),3:大致了解盐效应和同离子效应对溶解度的影响。 第二节:沉淀生成的计算 利用溶度积原理掌握沉淀生成的有关计算。(SP Q K θ>将有沉淀生成) 第三节:沉淀的溶解和转化 1:利用溶度积原理掌握沉淀溶解和转化的计算(SP Q K θ<沉淀溶解) 2:可以判断溶液中哪种物质先沉淀。 用KSP 的表达式,计算溶液中相关离子的浓度。 习题 一 选择题 1. Ag 3PO 4在 mol/L 的Na 3 PO 4溶液中的溶解度为( )(《无机化学例题与习题》吉大版)(已知Ag 3PO 4的K 0sp = ×10-17) A. 7.16×10-5 -6 C ×10-6 D. ×10-6 2.已知Sr 3(PO 4)2的溶解度为×10-6 mol/L ,则该化合物的容度积常数为( )(《无机化学例题与习题》吉大版) A. 1.0×10-30 B. ×10-28 C. ×10-30 D. ×10-12 3.已知Zn (OH )2的容度积常数为×10-17 ,则Zn (OH )2在水中的容度积为( )(《无机化学例题与习题》吉大版) A. 2.0×10-6mol/L B. ×10-6 mol/L C. ×10-9 mol/L D. ×10-9 mol/L 4.已知Mg (OH )2的K 0sp = ×10-12,则其饱和溶液的pH 为( )(《无机化学例题

与习题》吉大版) A. B3.95 C. D. 5.下列化合物中,在氨水中溶解度最小的是()(《无机化学例题与习题》吉大版) A. Ag3PO4 B. AgCl C. Ag Br D. AgI 在相同浓度的下列溶液中溶解度最大的是()(《无机化学例题与习题》吉大版) A. NH 4Ac B. CaCl 2 C. NH 4 Cl D. Na 2 CO3 7.难溶盐Ca 3 (PO4)2在a mol/L Na3 PO4溶液中的溶解度s与容度积K0sp关系式中正确的是()(《无机化学例题与习题》吉大版) A. K0sp =108s5 B. K0sp =(3s)3 +(2s + a)2 C. K0sp = s5 D. s3·(s + a)2 8.下列难溶盐的饱和溶液中,Ag+浓度最大和最小的一组是()(《无机化学例题与习题》吉大版) A. Ag 2CrO 4 和AgCl B. Ag 2 CrO 4 和AgSCN C. AgSCN和Ag 2C 2 O 4 D. Ag 2 C 2 O 4 和AgSCN 9. AgCl和Ag 2CrO 4 的容度积分别为×10-10和×10-12,则下面叙述中正确的是() (《无机化学例题与习题》吉大版) A. AgCl与Ag 2CrO 4 的容度积相等 B. AgCl的容度积大于Ag 2CrO 4 C. AgCl的容度积小于Ag 2CrO 4 D. 都是难溶盐,容度积无意义 的相对分子质量为233,K0sp = ×10-10,把×10-3mol的BaSO 4配成10dm3溶液,BaSO 4 未溶解的质量为()(《无机化学例题与习题》吉大版) A. 0.0021g B.0.021g C.0.21g D. 2.1g

医用化学基础

《医用化学基础》课程教学大纲 一、课程说明 总时数:X学时理论:Y学时实验:Z学时 1、课程性质、地位和作用 (正文宋体,小四,20磅行距,首行缩进2字符) 生理学(Physiology)是生物学的重要分支,是一门重要的医学基础学科,是研究正常机体生命活动规律的一门科学。它以基础医学中的细胞生物学、解剖学、组织胚胎学等课程为其学习的基础,同时又为临床医学疾病的学习提供必要的理论知识,是基础医学与临床医学之间的桥梁学科。 2、教学目的与要求 (正文宋体,小四,20磅行距,首行缩进2字符) XX课程的教学目的是。。。。 通过教学学生应达到以下要求: (1)基础理论与基本知识方面 ①掌握 ②。。。 (2)基本技能方面 ①熟练使用 。。。。 4、教学方法与手段 (正文宋体,小四,20磅行距,首行缩进2字符) 理论教学主要以课堂讲授为主,适当使用多媒体教学、双语教学,以及结合录像、图片、课堂讨论、专题讲座、自学等形式给学生以丰富多样的教学形式,提高学生的学习效果和学习兴趣。同时任课教师应适当地讲述一些学科前沿进展和动态发展,使学生在获得基本理论的同时还能了解学习该学科的前沿动态。 实验教学教师应适当讲授,结合示教等手段介绍有关的理论知识及操作规则,以学生动手为主,注重培养学生的动手能力和分析问题、解决问题的能力。 5. 教学时数分配

6、考核方式 生理学为考试课,实行百分制,其中理论课考试多采用闭卷考试(选题有一定的范围及难度,从题库选题),考核成绩结合课堂随即考试(开卷或闭卷)及写论文等形式,从而全面考核学生的基本理论、基本知识掌握程度,以及对生理学前言动态了解的程度,综合运用知识能力。 实验课通过平时课堂纪律、实验报告书写、课堂提问等多种形式,对学生进行全面的综合考核。成绩的构成为:实验预习A%、实验操作B%、实验纪律C%等。 (正文宋体,小四,20磅行距,首行缩进2字符) 7、参考教材 序号.作者(编著者).书名(版本).出版地:出版社,出版年份 序号.[国别]作者(编著者).书名(版本).译者(若为中文版).出版地:出版社,出版年份。(正文宋体/小四,20磅行距,首行缩进2字符) 二、理论课教学大纲 第一章绪论 [目的要求]:(宋体、小四、加粗、20磅行距,左对齐) 1.掌握。。。 2.熟悉。。。(正文宋体,小四,20磅行距,首行缩进2字符) 3.了解。。。 [教学内容]: 一、化学研究的对象 二、化学的发展史 三、化学和医药学 四、化学课程的任务 五、学习化学的方法 [教学时数]∶理论教学1学时 [教学方法和手段]: 教学方法(正文宋体,小四,20磅行距,首行缩进2字符) 1. 自学/课堂讲授 2. 自学与讲授结合 。。。。。。 教学手段(板书/录像/多媒体/网络媒体/挂图/模型/标本等) 1.。。。

大学无机化学复习题

大学无机化学复习题

目录更多期末考试资料加qq;1372324098 第一章原子结构和元素周期系 (2) 第二章分子结构 (8) 第三章晶体结构 (11) 第四章配合物 (12) 第五章化学热力学基础 (15) 第六章化学平衡常数 (19) 第七章化学动力学基础 (21) 第八章水溶液 (23) 第九章酸碱平衡 (24) 第十章沉淀溶解平衡 (26) 第十一章电化学基础 (27) 第十一章电化学基础 (30) 第十二章配位平衡 (31) 第十三章氢稀有气体 (32) 第十四章卤素 (34) 第十五章氧族元素 (37) 第十六章氮、磷、砷 (40) 第十七章碳、硅、硼 (42) 第十八章非金属元素小结 (45) 第十九章金属通论 (47) 第二十章s区金属 (49) 第二十一章p区金属 (51) 第二十二章ds区金属 (54) 第二十三章d区金属(一) (57) 第二十四章d区金属(二) (59)

第一章原子结构和元素周期系 一.是非题 1.电子在原子核外运动的能量越高,它与原子核的距离就越远.任何时候,1s电子总比2s电子更靠近原子核, 因为E2s > E1s. ………………………………………(Χ) 2.原子中某电子的各种波函数,代表了该电子可能存在的各种运动状态,每一种状态可视为一个轨道. ………………………………………………………………(√) 3.氢原子中,2s与2p轨道是简并轨道,其简并度为4;在钪原子中,2s与2p 轨道不是简并轨道, 2p x,2p y,2p z为简并轨道,简并度为3. …………………………………(√) 4.从原子轨道能级图上可知,任何原子在相同主量子数的轨道上,能量高低的顺序总是 f > d > p > s;在不同主量子数的轨道上,总是(n-1)p > (n-2)f > (n-1)d > ns. …………………………………………………………………………………(Χ) 5.在元素周期表中, 每一周期的元素个数正好等于该周期元素最外电子层轨道可以容纳的电子个数. ………………………………………………………………(Χ) 6.所有非金属元素(H,He除外)都在p区,但p区所有元素并非都是非金属元素. …………………………………………………………………………………(√) 7.就热效应而言,电离能一定是吸热的,电子亲和能一定是放热的. ……………(Χ) 8.铬原子的电子排布为Cr[Ar]4s1 3d5,由此得出: 洪特规则在与能量最低原理出现矛盾时,首先应服从洪特规则. ……………………………………………………(Χ)9.s区元素原子丢失最外层的s电子得到相应的离子,d区元素的原子丢失处于最高能级的d电子而得到相应的离子. ……………………………………………(Χ)10.在原子核里因质子数和中子数不同,就组成了不同的核素;同样在原子核里因质子数和中子数不等,就构成了同位素.可见,核素也就是同位素. ……………(Χ) 二.选择题 1.玻尔在他的原子理论中…………………………………………………………(D) A.证明了电子在核外圆形轨道上运动; B.推导出原子半径与量子数平方成反比; C.应用了量子力学的概念和方法; D.解决了氢原子光谱和电子能量之间的关系问题.

07章武汉大学无机化学课后习题答案

第七章 1. 什么是化学反应的平均速率,瞬时速率?两种反应速率之间有何区别与联系? 答 2. 分别用反应物浓度和生成物浓度的变化表示下列各反应的平均速率和瞬时速率,并表示 出用不同物质浓度变化所示的反应速率之间的关系。这种关系对平均速率和瞬时速率是否均适用? (1) N 2 + 3H 2 → 2NH 3 (2) 2SO 2 + O 2 →2SO 3 (3) aA + Bb → gG + hH 解 (1)V = t N △△][2= t H △△][2=t NH △△] [3 V 瞬= 0lim →t △t N △△][2 = 0lim →t △t H △△][2 =0lim →t △t NH △△][3 V 2N = 31V 2H =2 1 V 3NH 两种速率均适用。 (2)(3)(同1)。 3. 简述反应速率的碰撞理论的理论要点。 答 4. 简述反应速率的过渡状态理论的理论要点。 答

3级,910K时速率常数为5.反应C2H6→C2H4+ H2,开始阶段反应级数近似为2 γ(以 1.13dm1.5·mol5.0-·s1-。试计算C2H6(g)压强为1.33×104Pa时的起始分解速率 0 [C2H6]的变化表示)。 解 6.295K时,反应2NO + Cl2→2 NOCl,其反应物浓度与反应速率关系的数据如下: (2)写出反应的速率方程; (3)反应的速率常数为多少? 解

7.反应2 NO(g)+ 2 H2(g)→N2(g)+ 2 H2O其速率方程式对NO(g)是二次、 对H2(g)是一次方程。 (1)写出N2生成的速率方程式; (2)如果浓度以mol·dm—3表示,反应速率常数k的单位是多少? (3)写出NO浓度减小的速率方程式,这里的速率常数k和(1)中的k的值是否相同,两个k值之间的关系是怎样的? 解 8.设想有一反应Aa + bB + cC →产物,如果实验表明A,B和C的浓度分别增加1倍后, 整个反应速率增为原反应速率的64倍;而若[A]与[B]保持不变,仅[C]增加1倍,则反应速率增为原来的4倍;而[A]、[B]各单独增大到4倍时,其对速率的影响相同。求a,b,c的数值。这个反应是否可能是基元反应? 解

无机化学第八章

8-1已知HAc的解离平衡常熟=1.8×10-5,求0.010mol·dm-3HAc的[H+]、溶液的解离度。 解:HAc?H++Ac- 起始浓度/ (mol·dm-3)0.010 0 0 平衡浓度/ (mol·dm-3)0.010-xxx X为平衡时已解离的HAc浓度 == ==5.6×102>400 可以近似计算,0.010-x≈0.010 故==1.8×10-5 解得x=4.2×10-4 即[H+]=4.2×10-4mol·dm-3 PH=3.4 解离度α=×100%=4.2% 8-2 已知1.0mol·dm-3NH·H2O的[OH]-为4.24×10-3mol·dm-3,求NH·H2O 的解离平衡常数。 解:NH·H2O ? + OH- 起始浓度/(mol·dm-3) 1.0 0 0 平衡浓度/(mol·dm-3)1.0-4.24×10-34.24×10-3 4.24×10-3 ===1.8×10-5 故NH·H2O的解离平衡常数为1.8×10-5。

8-3 298K时。测得0.100mol·dm-3HF溶液[H+]为7.63×10-3mol·dm-3,求发反应。 HF(aq)? H+(aq)+ F-(aq) 求的Δ值。 解: HF(aq)? H+(aq)+ F-(aq)起始浓度/(mol·dm-3)0.100 0 0 平衡浓度/(mol·dm-3)0.100-7.63×10-37.63×10-37.63×10-3===6.30×10-4 Δr=-RTIn =-8.314J·mol-1K-1×298K×In6.30×10-4=18.3KJ·mol-3 8-4三元酸H3AsO4的解离常数为K1=5.5×10-3。K2=1.7×10-7,K3=5.1×10-12mol·dm-3? 解:由H3AsO4 ? 3[H+]+AsO43-得 K1K2K3= (8-4-1) 因为K2<

大学无机化学期末考试(天津大学第四版)归纳.doc

第一章 化学反应中的质量和能量关系 重要概念 1.系统:客观世界是有多种物质构成的,但我们可能只研究其中一种或若干物质。人为地将一部分物质与其他物质分开,被划分的研究对象称为系统。 2.相:系统中具有相同物理性质和化学性质的均匀部分称为相。 3.状态:是指用来描述系统的诸如压力P 、体积V 、温度T 、质量m 和组成等各种宏观性质的综合表现。 4.状态函数:用来描述系统状态的物理量称为状态函数。 5.广度性质:具有加和性,如体积,热容,质量,熵,焓和热力学能等。 6.强度性质:不具有加和性,仅决定于系统本身的性质。如温度与压力,密度等。 系统的某种广度性质除以物质的量或者质量之后就成为强度性质。强度性质不必指定物质的量就可以确定。 7.热力学可逆过程:系统经过某种过程由状态1到状态2之后,当系统沿着该过程的逆过程回到原来状态时,若原来的过程对环境产生的一切影响同时被消除(即环境也同时复原),这种理想化的过程称为热力学的可逆过程。 8.实际过程都是不可逆的,可逆过程是一种理想过程。 9.化学计量数:0=∑B VB B表示反应中物质的化学式,VB是B 的化学计量数, 量纲为一;对反应物取负值,生成物取正值。 10.化学计量数只表示当安计量反应式反应时各物质转化的比例数,并不是各反应物质在反应过程中世界所转化的量。 11.反应进度ξ:b b v /n ?=?ξ 对于化学反应来讲,一般选未反应时,0=ξ 引入反应进度这个量最大的优点是在反应进行到任意时刻时,可用任一反应物或产物来表示反反应进行的程度,所得的值总是相等的。 12.习惯对不注明温度和压力的反应,皆指反应是在298.15K ,100kPa 下进行的。 13.一般没有特别的注明,实测的反应热(精确)均指定容反应热,而反应热均指定压反应热。 14.能量守恒定律:在任何过程中,能量不会自生自灭,只能从一种形式转化为另一种形式,在转化过程中能量的总值不变。也叫做热力学第一定律。ΔU=Q+W 15.热力学能具有状态函数的特点:状态一定,其值一定。殊途同归,值变相等。周而复始,值变为零。 16.系统与环境之间由于存在温差而交换的热量称为热。若系统吸热值为正,若系统放热值为负。 17.系统与环境之间除了热以外其他形式传递的能量都称为功。系统得功为正,系统做功为负。在一定条件下由于系统体积的变化而与环境交换的功称为体积功?-=pdV W ,除体积功以外的一切功称为非体积功如电功。 18.功和热都是过程中被传递的能量,它们都不是状态函数,其数值与途径有关。而热力学第一定律中的热力学能的改变量只有过程的始态和终态决定,而与过程的具体途径无关。 19.化学反应热是指等温过程热,即当系统发生了变化后,使反应产物的温度回到反应前始态的温度,系统放出或吸收的热量。

大学无机化学第八章试题及答案

第八章 沉澱溶解平衡 各小節目標: 第一節:溶度積常數 1;了解溶度積常數及其表達式,溶度積和溶解度の關系。 2:學會用溶度積原理來判斷沉澱是產生、溶解還是處於平衡狀態(飽和溶液),3:大致了解鹽效應和同離子效應對溶解度の影響。 第二節:沉澱生成の計算 利用溶度積原理掌握沉澱生成の有關計算。(SP Q K θ>將有沉澱生成) 第三節:沉澱の溶解和轉化 1:利用溶度積原理掌握沉澱溶解和轉化の計算(SP Q K θ<沉澱溶解) 2:可以判斷溶液中哪種物質先沉澱。 用KSP の表達式,計算溶液中相關離子の濃度。 習題 一 選擇題 1. Ag 3PO 4在0.1 mol/L のNa 3 PO 4溶液中の溶解度為( )(《無機化學例題與習題》吉大版)(已知Ag 3PO 4のK 0sp = 8.9×10-17) A. 7.16×10-5 B.5.7×10-6 C. 3.2×10-6 D. 1.7×10-6 2.已知Sr 3(PO 4)2の溶解度為1.7×10-6 mol/L ,則該化合物の容度積常數為( )(《無機化學例題與習題》吉大版) A. 1.0×10-30 B. 1.1×10-28 C. 5.0×10-30 D. 1.0×10-12 3.已知Zn (OH )2の容度積常數為3.0×10-17,則Zn (OH )2在水中の容度積為 ( )(《無機化學例題與習題》吉大版) A. 2.0×10-6mol/L B. 3.1×10-6 mol/L C. 2.0×10-9 mol/L D. 3.1×10-9 mol/L 4.已知Mg (OH )2のK 0sp = 5.6×10-12,則其飽和溶液のpH 為( )(《無機化學例題與習題》吉大版) A. 3.65 B3.95 C. 10.05 D. 10.35 5.下列化合物中,在氨水中溶解度最小の是( )(《無機化學例題與習題》吉大版) A. Ag 3PO 4 B. AgCl C. Ag Br D. AgI 6.CaCO 3在相同濃度の下列溶液中溶解度最大の是( )(《無機化學例題與習題》吉大版) A. NH 4Ac B. CaCl 2 C. NH 4Cl D. Na 2CO 3

大学无机化学第十七章试题及答案

第十八章 氢 稀有气体 总体目标: 1.掌握氢及氢化物的性质和化学性质 2.了解稀有气体单质的性质及用途 3.了解稀有气体化合物的性质和结构特点 各节目标: 第一节 氢 1.掌握氢的三种成键方式 2.掌握氢的性质、实验室和工业制法及用途 3.了解离子型氢化物、分子型氢化物和金属性氢化物的主要性质 第二节 稀有气体 1.了解稀有气体的性质和用途 2.了解稀有气体化合物的空间构型 习题 一 选择题 1.稀有气体不易液化是因为( ) A.它们的原子半径大 B.它们不是偶极分子 C.它们仅仅存在较小的色散力而使之凝聚 D.它们价电子层已充满 2.用VSEPR 理论判断,中心原子价电子层中的电子对数为3的是( ) A .PF 3 B.NH 3 C.-34PO D.-3NO 3.用价电子对互斥理论判断,中心原子周围的电子对数为3的是( )(吴成鉴《无机化学学习指导》) A.SCl 2 B.SO 3 C .XeF 4 D. PF 5 4.用价电子对互斥理论判断,中心原子价电子层中的电子对数为6的是( ) A.SO 2 B. SF 6 C.-34AsO D. BF 3 5. XeF 2的空间构型是( ) A.三角双锥 B.角形 C. T 形 D.直线型

6.下列稀有气体的沸点最高的是()(吴成鉴《无机化学学习指导》) A.氪 B.氡 C.氦 D.氙 7.能与氢形成离子型氢化物的是()(吴成鉴《无机化学学习指导》) A.活泼的非金属 B.大多数元素 C.不活泼金属 D.碱金属与碱土金属 8.稀有气体原名惰性气体,这是因为() A.它们完全不与其它单质或化合物发生化学反应 B.它们的原子结构很稳定,电离势很大,电子亲合势很小,不易发生化学反应 C.它们的价电子已全部成对 D.它们的原子半径大 9.下列各对元素中,化学性质最相似的是()(吉林大学《无机化学例题与习题》) A.Be 与Mg B.Mg与Al C Li与Be D.Be与Al 10.下列元素中,第一电离能最小的是()(吉林大学《无机化学例题与习题》) A.Li B.Be C. Na D.Mg 11.下列化合物中,在水中的溶解度最小的是()(吉林大学《无机化学例题与习题》) A.NaF B.KF C.CaF2 D.BaF2 12.下列氢化物中,最稳定的是()(吉林大学《无机化学例题与习题》) A.LiH B.NaH C.KH D.RbH 13.下列化合物中,键能最大的是()(吉林大学《无机化学例题与习题》) A.HBr B.NH3 C.H2 D.KH 14.合成出来的第一个稀有气体化合物是()(吉林大学《无机化学例题与习题》) A.XeF2 B.XeF4 C.XeF6 D.Xe[PtF6] 15.下列化合物中,具有顺磁性的是()(吉林大学《无机化学例题与习题》) A.Na2O2 B.SrO C.KO2 D.BaO2 16.下列叙述中错误的是() (大连理工大学《无机化学习题详解》) A.氢原子可获得一个电子形成含H-的离子型化合物。 B.氢原子可以失去一个电子形成含H+的离子型二元化合物

无机化学第八章

第八章 6. 在699K 时,反应H 2(g) + I 2(g) 2HI(g)的平衡常数K p =55.3,如果将2.00molH 2和 2.00molI 2作用于4.00dm 3的容器内,问在该温度下达到平衡时有多少HI 生成? 解 7. 反应H 2 + CO 2 H 2O + CO 在1259K 达平衡,平衡时[H 2]=[CO 2]=0.44mol ·dm 3 -, [H 2O]=[CO]=0.56mol ·dm 3 -。 求此温度下反应的经验的平衡常数及开始时H 2和CO 2的浓度。 解 8. 可逆反应H 2O + CO H 2 + CO 2在密闭容器中,建立平衡,在749K 时该反应的 平衡常数K c =2.6。 (1) 求n (H 2O )/n (CO )(物质的量比)为1时,CO 的平衡转化率; (2) 求n (H 2O )/n (CO )(物质的量比)为3时,CO 的平衡转化率; (3) 从计算结果说明浓度对平衡移动的影响。 解 (1)H 2O + CO H 2 + CO 2 a-x b-x x x x 2=2.6(a-x)2 a x ? =0.617 所以CO 的平衡转化率是61.7%。 (2)H 2O + CO H 2 + CO 2 n 3n 0 0 n-x 3n-x x x ) 3)((2 x n x n x -- =2.6 n x ? =0.865

所以CO 的平衡转化率是86.5%。 9. HI 分解反应为2HI H 2 + I 2,开始时有1molHI ,平衡时有24.4%的HI 发生了分解, 今欲将分解百分数降低到10%,试计算应往此平衡系统中加若干摩I 2。 解 2HI H 2 + I 2 起始 1 0 0 转化 0.244 0.122 0.122 2 2756 .0122.0= 92 .005 .0)05.0(x + ?x=0.37mol 10. 在900K 和1.013×105Pa 时SO 3部分离解为SO 2和O 2 SO 3(g ) SO 2(g )+ 2 1O 2(g ) 若平衡混合物的密度为0.925g ·dm — 3,求SO 3的离解度。 解 PV=nRT P ρ m =nRT PM=ρRT M= P RT ρ= 5 3 10 013.1900 314.810 925.0????=68.33 SO 3(g ) SO 2(g )+ 2 1O 2(g ) x 0 0 a-x x 2 1x x x x a x x x a 2 12 13264)(80+ +-? ++-= 68.33 a x = 0.34 所以SO 3的离解度是34%。 11. 在308K 和总压1.013×105Pa ,N 2O 4有27.2%分解为NO 2。 (1)计算 N 2O 4(g ) 2 NO 2(g )反应的K θ ; (2)计算308K 时总压为2.026×105Pa 时,N 2O 4的离解百分率; (3)从计算结果说明压强对平衡移动的影响。 解 (1) N 2O 4(g ) 2 NO 2(g ) 0.272 0.544

中级无机化学[第七章元素与元素性质的周期性]-山东大学期末考试知识点复习

第七章元素与元素性质的周期性 1.周期表与元素 周期表的分区:按原子最后一个电子占据的轨道,周期表中元素可分为5个区。s区的价电子构型为ns1~2,p区的价电子构型为ns2np1~6,d区的价电子构型为(n-1)d1~9ns1~2,ds区的价电子构型为(n-1)d10ns1~2,f区的价电子构型为(n-2)f0~14(n-1)d0~2ns2。 构造原理:基态多电子原子的电子填充原子轨道的一般次序为 1s→2s→2p→3s→3p→4s→3d→4p→5s→4d→5p →6s→4f→5d→6p→7s→5f→6d→7p 构造原理的前提条件是连续轨道间具有较大的能级差,而电子间的排斥作用相对较小。对于d区元素与f区元素,由于价轨道间能级差较小,当电子间排斥作用超过轨道间能级差时,原子的价电子构型就会出现提前到达全满、半满的不符合构造原理的特殊构型。通常,亚层轨道为全满或半满时比较稳定。 2.原子性质的周期性 (1)原子半径一般规律:同一族元素,从上到下原子半径依次增大;同一周期主族元素,从左到右原子半径依次减小。 镧系收缩:从镧到镥,原子半径和三价离子半径逐渐减小。镧系收缩造成镧系后第三系列过渡元素的原子半径比一般的增大幅度小,与第二系列过渡同一族元素的原子半径接近。 d电子也具有较差的屏蔽效应,造成d区元素半径收缩。 原子半径存在不同的类型,主要有金属半径、离子半径、共价半径、van der Waals半径,使用时需要注意。 (2)电离能元素第一电离能的一般规律:同一族元素,从上到下逐渐减小;

同一周期元素,从左到右大体上依次增大。元素第一电离能最小的元素为周期表左下角的Cs,元素第一电离能最大的元素为周期表右上角的He。该规律一般可 的变化规律来解释。 用原子有效核电荷Z eff (3)电子亲和能电子亲和能的周期性变化比较复杂,变化趋势不很清晰。粗略的规律为:同一周期元素,从左到右原子电子亲和能依次增大,这可用原子有效核电荷Z 的变化规律来解释。 eff 同族元素的电子亲和能变化幅度不大。第1族元素的电子亲和能从上到下依次减小。13族,14族,16族,17族元素,同一族元素的电子亲和能是第3周期元素最大,并且由此向下依次减小。第2周期的B和O的电子亲和能在本族中最小,C和F位于本族第3周期元素之下。主族元素Be,Mg,N及18族元素的电子亲和能为吸收的能量。第2族与第15族元素的电子亲和能由吸能变为放能,并且从上到下依次增大。 (4)电负性一般规律:同一周期元素,从左到右电负性依次增大;同一族元素,从上到下电负性变小。电负性大的元素位于周期表的右上角,电负性小的元素位于为周期表的左下角。 电负性也存在不同的定义与标度,例如Pauling电负性,Mulliken电负性,Allred—Rochow电负性,Allen电负性,使用时也需注意数据的一致性。 3.主族元素性质变化的一般规律 (1)单质 熔点和沸点:同族元素从上到下,金属熔点和沸点趋向于依次降低,非金属熔点和沸点趋向于依次上升。 单质晶体结构:周期表从左到右晶体结构由金属晶体逐渐过渡到分子晶体。 (2)氧化态 s区元素:价电子构型为ns1~2,常见氧化态为M+,M2+。

相关主题
文本预览
相关文档 最新文档