当前位置:文档之家› 极限的性质与四则运算法则

极限的性质与四则运算法则

极限的性质与四则运算法则
极限的性质与四则运算法则

第四节 极限的性质与四则运算法则

教学目的:使学生掌握极限的四则运算法则,并会利用它们求极限; 教学重点:有理函数极限的计算; 教学过程:

一、复习无穷大和无穷小的概念及性质 二、讲解新课:

一、函数极限的性质 定理1:(保号性)设A x f x x =→)(lim 0

(i ) 若)0(0<>A A ,则0>?δ,当),(0δ∧

∈x U x 时,0)(>x f )0)((

证明:(i )先证0>A 的情形。取2

A =ε,由定义,对此0,>?δε,当),(0δ∧∈x U x 时,

2)(A A x f =<-ε,即0)(2

32)(220>?=+<<-=

A A x f A A A 。

当0

A

-=ε,同理得证。

(ii )(反证法)若0

注:(i)中的“>”,“<”不能改为“≥”,“≤”。 在(ii)中,若0)(>x f ,未必有0>A 。

二、极限四则运算法则

由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且

)(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。

证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当

100δ<-

)(ε

<-A x f ,对此ε,02>?δ,当2

00δ<-

)(ε

<

-B x g ,取},m in{21δδδ=,当δ<-<00x x 时,有

εε

ε

=+

<

-+-≤-+-=+-+2

2

)()())(())(()())()((B x g A x f B x g A x f B A x g x f

所以B A x g x f x x +=+→))()((lim 0

其它情况类似可证。

注:本定理可推广到有限个函数的情形。

定理2:若B x g A x f ==)(lim ,)(lim ,则)()(lim x g x f ?存在,且

)(lim )(lim )()(lim x g x f AB x g x f ?==。

证明:因为B x g A x f ==)(lim ,)(lim ,?,)(,)(βα+=+=B x g A x f (βα,均为无穷小))())(()()(αβαββα+++=++=?B A AB B A x g x f ,记

αβαβγ++=B A , γ?为无穷小, AB x g x f =?)()(lim 。 推论1:)(lim )](lim[x f c x cf =(c 为常数)。 推论2:n n x f x f )]([lim )](lim [=(n 为正整数)。 定理3:设0)(lim ,)(lim ≠==B x g A x f ,则)

(lim )

(lim )()(lim

x g x f B A x g x f ==。 证明:设βα+=+=B x g A x f )(,)((βα,为无穷小),考虑差:

)

()()(ββ

αβα+-=-++=-B B A B B A B A B A x g x f 其分子βαA B -为无穷小,分母0)(2≠→+B B B β,我们不难证明

)

(1β+B B 有界(详细过程见书上))(ββα+-?

B B A B 为无穷小,记为γ,所以γ+=B

A

x g x f )()(,

B

A

x g x f =?)()(lim

。 注:以上定理对数列亦成立。

定理4:如果)()(x x ψ?≥,且b x a x ==)(lim ,)(lim ψ?,则b a ≥。 【例1】b ax b x a b ax b ax x x x x x x x x +=+=+=+→→→→00

lim lim lim )(lim 。

【例2】n

n x x n x x x x x 0]lim [lim 0

==→→。

推论1:设n n n n a x a x a x a x f ++++=--1110)( 为一多项式,当

)()(lim 0011

1000

x f a x a x a x a x f n n n n x x =++++=--→ 。

推论2:设)(),(x Q x P 均为多项式,且0)(0≠x Q ,则)

()

()()(lim 000x Q x P x Q x P x x =→。

【例3】31151105(lim 221

-=+?-=+-→x x x 。

【例4】33

009070397lim 53530-=+--?+=+--+→x x x x x (因为03005

≠+-)。 注:若0)(0=x Q ,则不能用推论2来求极限,需采用其它手段。

【例5】求3

22

lim 221-+-+→x x x x x 。

解:当1→x 时,分子、分母均趋于0,因为1≠x ,约去公因子)1(-x ,

所以 5

3

322lim 322lim 12

21=++=-+-+→→x x x x x x x x 。 【例6】求)1

3

11(

lim 31+-+-→x x x 。

解:当1

3

,11,13

++-→x x x 全没有极限,故不能直接用定理3,但当1-≠x 时, 1

2)1)(1()2)(1(1311223+--=+-+-+=+-+x x x x x x x x x x ,所以 11

)1()1(2112lim )1311(

lim 22131

-=+-----=+--=+-+-→-→x x x x x x x 。 【例7】求2

lim 2

2-→x x x 。

解:当2→x 时,02→-x ,故不能直接用定理5,又42→x ,考虑:

042

22lim

2

2

=-=-→x

x x , ∞=-?→2

lim

2

2x x x 。 【例8】若3)

1sin(lim 221=-++→x b

ax x x ,求a ,b 的值。

当1→x 时,1~)1sin(2

2

--x x ,且0)(lim 2

1

=++→b ax x x

10, =(1)a b b a ++=-+

222

(1)(1)(1)

1(1)(1)(1)(1)

x ax b x ax a x x a x x x x x +++-+-++==--+-+ 2212

lim 3124, 5

x x ax b a x a b ->+++==-==- 【例9】设n m b a ,,0,000≠≠为自然数,则

????

?

????>∞

<==++++++--∞→时

当时当时当m n m n m n b a b x b x b a x a x a m m m n n n x 0lim

001101

10 。 证明:当∞→x 时,分子、分母极限均不存在,故不能用§1.6定理5,先变形:

m

m

n n m n x m m m n n n x x b x b b x a x a

a x

b x b x b a x a x a ++++++?=++++++-∞→--∞→ 1010110110lim lim

???????????>++++++?∞<++++++?=++++++?

=时

当时当时当m n b a m n b a m n b a 0

000000

00000010000

00 【例10】求)21(

lim 2

22n n n n n +++∞→ 。

解:当∞→n 时,这是无穷多项相加,故不能用定理1,先变形:

原式2

1

21lim 2)1(1lim )21(1lim 22=+=+?=+++=∞→∞→∞→n n n n n n n n n n 。

【例11】证明[][]x x

x x ,1lim

=∞→为x 的整数部分。

证明:先考虑[][]x x x x x -=-

1,因为[]x x -是有界函数,且当∞→x 时,01→x

,所

以由有界量与无穷小量的乘积是无穷小,得

[][][]1lim

0)1(lim 0lim =?=-?=-∞→∞→∞→x x x

x x x x x x x 。 三、课堂练习: 四、布置作业:

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)

极限的四则运算教案(1)

2.4 极限的四则运算(一) 古浪五中---姚祺鹏 【教学目标】 (一)知识与技能 1.掌握函数极限四则运算法则; 2.会用极限四则运算法则求较复杂函数的极限; 3.提高问题的转化能力,体会事物之间的联系与转化的关系; (二)过程与方法 1.掌握极限的四则运算法则,并能使用它求一些复杂数列的极限. 2.从函数极限联想到数列极限,从“一般”到“特殊”. (三)情态与价值观 1.培养学习进行类比的数学思想 2.培养学习总结、归纳的能力,学会从“一般”到“特殊”,从“特殊”到“一般”转化的思想.同时培养学生的创新精神,加强学生的的实践能力。 (四)高考阐释: 高考对极限的考察以选择题和填空题为主,考察基本运算,此类题目的特点在于需要进行巧妙的恒等变形,立足课本基础知识和基本方法 【教学重点与难点】 重点:掌握函数极限的四则运算法则; 难点:难点是运算法则的应用(会分析已知函数由哪些基本函数经过怎样的运算结合而成的). 【教学过程】 1.提问复习,引入新课 对简单函数,我们可以根据它的图象或通过分析函数值的变化趋势直接写出它们的极

限.如 1lim ,2121lim 1 1==→→x x x x . 让学生求下列极限: (1)x x 1lim →; (2)x x 21lim 1→; (3))12(lim 21+→x x ; (4)x x 2lim 1→ 对于复杂一点的函数,如何求极限呢?例如计算??? ? ?+→x x x 21lim 1即x x x 212lim 21+→,显然通过画图或分析函数值的变化趋势找出它的极限值是不方便的.因此、我们有必要探讨有关极限的运算法则,通过法则,把求复杂函数的极限问题转化为求简单函数的极限. 板书课题:极限的四则运算. 2.特殊探路,发现规律 考察x x x 212lim 21+→完成下表: 根据计算(用计算器)和极限概念,得出2 3212lim 21=+→x x x ,与1lim 2121lim 11==→→x x x x 、 对比发现:2321121lim lim 21lim 212lim 11121=+=+=??? ? ?+=+→→→→x x x x x x x x x x . 由此得出一般结论:函数极限的四则运算法则: 如果b x g a x f x x x x ==→→)(lim ,)(lim 0 0,那么 []b a x g x f x x ±=±→)()(lim 0 []b a x g x f x x ?=?→)()(lim 0 )0()()(lim 0≠=??????→b b a x g x f x x 特别地:(1)[])(lim )(lim 0 0x f C x f C x x x x →→?=?(C 为常数) (2)[])N ()(lim )(lim *00∈??????=→→n x f x f n x x n x x

极限四则运算法则

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

极限四则运算法则

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

数列极限四则运算法则的证明

数列极限四则运算法则的证明 设limAn=A,limBn=B,则有 法则1:lim(A n+B n)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An ? Bn)=AB 法则4:lim(An/Bn)=A/B. 法则5:lim(An的k次方)=A的k次方(k是正整数) (n T+R的符号就先省略了,反正都知道怎么回事.) 首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于?£> 0(不论它多么小),总存在正数N,使得对于满足n > N的一切Xn,不等式|Xn-A| v &都成立, 则称常数A是数列{Xn}的极限,记作limXn=A. 根据这个定义,首先容易证明:引理1: limC=C.(即常数列的极限等于其本身) 法则1的证明: ?/ limAn=A,二对任意正数 &存在正整数N?,使n > N?时恒有|An-A| v&①(极限定义)同理对同一正数&存在正整数N?,使n>N?时恒有|Bn-B| v 设N=max{N ?,N?},由上可知当n > N时①②两式全都成立. 此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)| < |An-A|+|Bn-B| v & + & =2 &. 由于&是任意正数,所以2&也是任意正数. 即:对任意正数2 &存在正整数N,使n > N时恒有|(An+Bn)-(A+B)| v 2 &. 由极限定义可知,lim(An+Bn)=A+B. 即:对任意正数C&存在正整数N,使n > N时恒有|C ? An-CA|v C&. 由极限定义可知,lim(C ? An)=C?A若C=0的话更好证) 法则2的证明: lim(A n-B n) =limA n+lim(-B n)(法则1) =limAn+(-1)limBn (引理2) =A-B. 为了证明法则3,再证明1个引理. 引理3:若limAn=0,limBn=0,则lim(An ? Bn)=0. 证明:?/ limAn=0,二对任意正数 &存在正整数N?,使n>N?时恒有|An-0| v &③(极限定义)同理对同一

高二数学上册 7.7《极限的运算法则》教案 沪教版

7.7 (2)极限的运算法则 一、教学内容分析 本小节的教学内容是在理解无穷数列极限的概念的基础上学习数列极限的运算性质及四个重要的极限,鉴于高二学生现有的数学基础,教材采取从实际的例子引入,给出数列极限的运算性质及四个重要极限的结论,然后通过例题加以说明的方式. 教学重点是数列极限的运算性质,教学中要强调运算性质成立的条件是两个数列的极限都存在. 教学难点是数列极限的运算性质及四个重要极限结论的灵活运用,会进行恒等变形,运算性质可从两个数列推广到有限个数列,注意有限与无限的本质区别. 二、教学目标设计 掌握数列极限的运算性质,会利用这些性质计算数列的极限. 知道数列极限的四个重要结论,并会用它们来求有关数列的极限; 会运用式的恒等变形,把分子、分母极限不存在的分式转化为若干个极限存在的数列的代数和,从而求出极限,提高观察,分析以及等加转换的能力. 三、教学重点及难点 重点:数列极限的运算性质. 难点:数列极限的运算性质及重要极限的灵活运用. 四、教学流程设计 五、教学过程设计 课堂小结并布置作业 实例 引入 极限概念 数列极限的结论 运用与深化(例题分析,巩固练习) 极限的运算性质

一、复习回顾 1、数列极限的定义. 2、已知1 23-= n n a n 试判断数列{}n a 是否有极限,如果有,写 出它的极限. 二、讲授新课 1、实例引入 计算由抛物线x y =2 ,x 轴以及直线x=1所围成的区域 面积S :26) 12)(1(lim lim n n n S S n n n --==∞→∞ → 2、数列极限的运算性质 (1)数列极限的运算性质 如果B b A a n n n n ==∞ →∞ →lim ,lim ,那么 (1)B A b a b a n n n n n n n ±=±=±∞ →∞ →∞ →lim lim )(lim ; (2)B A b a b a n n n n n n n ?=?=?∞ →∞ →∞ →lim lim )(lim ; (3)B A b a b a n n n n n n n ==∞ →∞ →∞→lim lim lim ; (2)的推论:若C 是常数,则A C a C b C n n n n n ?=?=?∞ →∞ →∞ →lim lim )(lim 说明:1、运算性质成立的条件 2、在数列商的极限中,作为分母的数列的项及其极 限都不为零. (2)常用的数列极限的几个结论 (1)对于数列{}n q ,当1

极限的四则运算

极限的四则运算(1) 【目的要求】 1. 掌握涵数极限四则运算法则的前提条件及涵数极限四则运算法则。 2. 会用极限四则运算法则求较复杂涵数的极限。 【教学过程】 1. 提问入手,导入新课 对简单涵数,我们可以根据它的图象或通过分析涵数值的变化趋势直接写出它们的极限。如 1 lim →x x 21=21, limx=1. 对于复杂一点的涵数, 如何求极限呢? 例如计算 1 lim →x (x+x 21) 1lim →x (x+x 21)即1 lim →x x x 21 22+,显然通过画图或分析涵数值的变化趋势找出 它的极限值是不方便的。因此、我们有必要探讨有关极限的运算法则,通过法则,把求复杂涵数的极限问题转化为求简单涵数的极限。 板书课题:极限的四则运算。 2.特殊探路,发现规律 考察1 lim →x x x 2122+,完成下表: 根据计算(用计算器)和极限概念,得出1 lim →x x x 21 22+=23, 与1 lim →x x 21 =21、 1 1lim →=x x 对此发现: 1 lim →x x x 21 22+=1 lim →x (X+X 21)=1 lim →x x +1 lim →x x 21 =1+21=23 .

由此得出一般结论:涵数极限的四则运算法则: 如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b, 那麽 lim x x →[ f(x)+g(x)]=a +b 0 lim x x →[f(X)?g(X)]=a b ? ][)() (0 lim X g x f x x →=b a ( b )0≠ 特别的 (1)0 lim x x →[C )(X f ?]=C ?0 lim x x →f(X) (C 为常数) (2)0 lim x x →[f(X)]n =[0 lim x x →f(X)]n (n ∈N *) (3)这些法则对X ∞→的情况仍然成立 (4)两个常用极限0 lim x x n x →=X n 0, ∞→x lim n x 1 =0 (n ∈N *) 3.应用举例, 熟悉法则 例1 求1lim →x 1 21222 32-+++x x x x 问:已知涵数中含有哪些简单涵数?它是经过怎样的运算结合而成的?是否适用法则? 适用哪一条法则?师生共同分析,边问边答规范写出解答过程。 解:1 lim →x 1212232 -+++x x x x =1 231 2)12lim() 12lim(→→-+++x x x x x x =1 1 21 311 21 1lim 2lim 1 lim lim 2lim →→→→→→-+++x x x x x x x imx l x x =1 12111122 3 2-?+++?=2 (1)讲解时注意提问每一步的依据,做到“言必有据”,培养严谨的思维。 (2)书写时,由于极限符号“lim”有运算意义,因此在未求出极限值时,丢掉符号是错误的。 点评:例1说明,求某些涵数(到底是哪些涵数,学了2。6节就知道了。激发学生学习积极性,为讲连续涵数埋下伏笔)在某一点x=x 0处的极限值时,只要把x=x 0代入涵数解析式中就可得到极限值,

数列的极限及运算法则

数列的极限及其运算法则 学习要求: 1.理解数列极限的概念。正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想 2.理解和掌握三个常用极限及其使用条件.能运用化归转化和分类讨论的思想解决数列极限问题的能力. 3.掌握数列极限的运算法则,并会求简单的数列的极限 4. 掌握无穷等比数列各项的和公式. 学习材料: 一、基本知识 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞ =,读作“当n 趋向 于无穷大时,n a 的极限等于a ” “n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思n a a →∞ =有时也记作:当n →∞时,n a →a . 理解:数列的极限的直观描述方式的定义,只是对数列变化趋势的定性说明,而不是定量化的定义.“随着项数n 的无限增大,数列的项n a 无限地趋近于某个常数a ”的意义有两个方面:一方面,数列的项 n a 趋近于a 是在无限过程中进行的,即随着n 的增大n a 越来越接近于a ;另一方面,n a 不是一般地趋近 于a ,而是“无限”地趋近于a ,即n a a -随n 的增大而无限地趋近于0. 2.几个重要极限: (1)01 lim =∞→n n (2)C C n =∞ →lim (C 是常数) (3)lim 0n n a →∞ = (a 为常数1a <),当1a =时,lim 1n n a →∞ =;当1a =-或1a >时,lim n n a →∞ 不存在。 3. 数列极限的运算法则: 与函数极限的运算法则类似, 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 特别:若C 为常数,则lim()lim n n n n C a c a CA →∞ →∞ ==g g 推广:上面法则可以推广到有限..多个数列的情,若{}n a ,{}n b ,{}n c 有极限,则 n n n n n n n n n c b a c b a ∞ →∞→∞→∞→++=++lim lim lim )(lim

极限的性质与四则运算法则

第四节 极限的性质与四则运算法则 教学目的:使学生掌握极限的四则运算法则,并会利用它们求极限; 教学重点:有理函数极限的计算; 教学过程: 一、复习无穷大和无穷小的概念及性质 二、讲解新课: 一、函数极限的性质 定理1:(保号性)设A x f x x =→)(lim 0 , (i ) 若)0(0<>A A ,则0>?δ,当),(0δ∧ ∈x U x 时,0)(>x f )0)((A 的情形。取2 A =ε,由定义,对此0,>?δε,当),(0δ∧∈x U x 时, 2)(A A x f =<-ε,即0)(2 32)(220>?=+<<-=”,“<”不能改为“≥”,“≤”。 在(ii)中,若0)(>x f ,未必有0>A 。 二、极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

极限四则运算

§1.5 极限的运算法则 极限定义为我们提供了一种求极限的方法,但这种方法使用起来很不方便,并且在大多数情形下也是不可行的.这一节我们将给出极限的若干运算法则,应用这些法则将帮助我们比较方便的进行有关极限的证明和计算. 一 无穷小的运算定理 设,,αβγ是0x x →时的无穷小,即0 lim ()0,lim ()0,lim ()0,x x x x x x x x x αβγ→→→===下面 来叙述有关无穷小的运算定理。 定理1 1)有限个无穷小的和也是无穷小; 2)有界函数与无穷小的乘积是无穷小。 推论:1)常数与无穷小的乘积是无穷小; 2) 有限个无穷小的乘积也是无穷小。 二 极限的四则运算法则 利用极限与无穷小的关系及无穷小的运算性质,下面叙述极限的极限的四则运算法则。 定理2 如果()0 lim x x f x A →=, ()0 lim x x g x B →= 则()() ()(),()(), 0() f x f x g x f x g x B g x ±≠,的极限都存在,且 (1) ()()()()0 lim lim lim ;x x x x x x f x g x f x g x A B →→→±=±=±???? (2) ()()()()0 lim lim lim ;x x x x x x f x g x f x g x AB →→→==???? (3) ()()()()000 lim lim (0).lim x x x x x x f x f x A B g x g x B →→→==≠ 证 1因为()0 lim x x f x A →=, ()0 lim x x g x B →=,所以,当0x x →时,0,01>?>?δε, 当100δ<-?δ,当200δ<-

第二章极限习题及答案:极限的四则运算

分类讨论求极限 例 已知数列{}n a 、{}n b 都是由正数组成的等比数列,公比分别为q p ,,其中q p >,且1≠p ,1≠q ,设n n n b a c +=,n S 为数列{}n C 的前n 项和,求1lim -∞→n n n S S . (1997年全国高考试题,理科难度0.33) 解: ()() 1 1 1111--+--=q q b p p a S n n n ()( )()() ()( )()( ) 1 1111 1111111111--+----+--= ---n n n n n n q p b p q a q p b p q a S S . 分两种情况讨论; (1)当1>p 时,∵ 0>>q p ,故10<< p q , ∴1 lim -∞→n n n S S ()()()()????? ? ?????????????????? ??--+???? ??--?????????? ??--+???? ??-------1111111111111111111lim n n n n n n n n n n p p q p b p q a p p p q p b p q a p ()()()()()()010110 10111111?-+--?-+--? =p b q a p b q a p ()() p q a q a p =--? =1111 (2)当1

最新1.4极限的性质与四则运算法则

1.4极限的性质与四 则运算法则

第四节极限的性质与四则运算法则 教学目的:使学生掌握极限的四则运算法则,并会利用它们求极限; 教学重点:有理函数极限的计算; 教学过程: 一、复习无穷大和无穷小的概念及性质 二、讲解新课: 一、函数极限的性质 定理1:(保号性)设?Skip Record If...?, (i)若?Skip Record If...?,则?Skip Record If...?,当?Skip Record If...?时,?Skip Record If...??Skip Record If...?。 (ii)若?Skip Record If...?,必有?Skip Record If...?。 证明:(i)先证?Skip Record If...?的情形。取?Skip Record If...?,由定 义,对此?Skip Record If...?,当?Skip Record If...?时,?Skip Record If...?,即?Skip Record If...?。 当?Skip Record If...?时,取?Skip Record If...?,同理得证。 (ii)(反证法)若?Skip Record If...?,由(i)?Skip Record If...?矛盾,所以?Skip Record If...?。 当?Skip Record If...?时,类似可证。 注:(i)中的“?Skip Record If...?”,“?Skip Record If...?”不能改为“?Skip Record If...?”,“?Skip Record If...?”。 在(ii)中,若?Skip Record If...?,未必有?Skip Record If...?。 二、极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。定理1:若?Skip Record If...?,则?Skip Record If...?存在,且?Skip Record If...?。

(完整版)极限四则运算.doc

§1.5极限的运算法则 极限定义为我们提供了一种求极限的方法 , 但这种方法使用起来很不方便 , 并且在大多数情形下也是不可行的 . 这一节我们将给出极限的若干运算法则 , 应 用这些法则将帮助我们比较方便的进行有关极限的证明和计算. 一无穷小的运算定理 设 , , 是 x x0 时的无穷小,即 lim ( x) 0, lim ( x) 0, lim ( x) 0, 下面 x x0 x x0 x x0 来叙述有关无穷小的运算定理。 定理 1 1 )有限个无穷小的和也是无穷小; 2)有界函数与无穷小的乘积是无穷小。 推论: 1)常数与无穷小的乘积是无穷小; 2)有限个无穷小的乘积也是无穷小。 二极限的四则运算法则 利用极限与无穷小的关系及无穷小的运算性质,下面叙述极限的极限的四则 运算法则。 定理 2 如果 lim f x A , lim g x B 则 f ( x) g(x), f ( x) g(x), f ( x) B 0 , x x0 x x0 g( x) 的极限都存在,且 ( 1)lim f x g x lim f x lim g x A B; x x0 x x0 x x0 ( 2)lim f x g x lim f x lim g x AB; x x0 x x0 x x0 f x lim f x A ( 3)lim x x0 ( B 0). g x lim g x B x x0 x x0 证 1 因为 lim f x A, lim g x B ,所以,当 x x0时,0, 1 0 ,x x0 x x0 当 0 x x0 1 时,有 f (x) A ,对此, 2 0 ,当0 x x0 2 时, 2 有 g (x) B 2 ,取min{ 1 , 2 } ,当0 x x0 时,有 ( f (x) g( x)) ( A B) ( f ( x) A) ( g( x) B) f ( x) A g( x) B 2 2 所以 lim ( f (x) g( x)) A B 。 x x0 2)因为 lim f (x) A,lim g( x) B ,由极限与无穷小的关系可以得出 x x0 x x0 f (x) A , g ( x) B , ( , 均为无穷小) 于是有 f (x) g( x) ( A)( B) AB ( A B) ,记A B,

极限的性质和运算法则

第 周第 学时教案 授课教师:贾其鑫 1.4 极限的性质与运算法则 教学目标: 1.掌握极限的性质及四则运算法则。 2.会应用极限的性质及运算法则求解极限 教学重点:极限的性质及四则运算法则; 教学难点:几种极限的种类及求解方法的归纳 教学课时:2学时 教学方法:讲授法、归纳法、练习法 教学过程: 1.4.1 极限的性质 性质1.5(唯一性) 若极限)(lim x f 存在,则极限值唯一. 性质1.6(有界性) 若极限)(lim 0 x f x x →存在,则函数)(x f 在0x 的某个空心邻域内有界. 性质1.7(保号性) 若A x f x x =→)(lim 0 ,且0>A (或0x f (或0)(

第 周第 学时教案 授课教师:贾其鑫 (3)当0)(lim ≠=B x v 时,B A x v x u x v x u ==)(lim )(lim )()(lim 证 我们只证(1). 因为A x u =)(lim ,B x v =)(lim ,由定理1.2有α+=A x u )(,β+=B x v )(,其中α,β是同一极限过程的无穷小量,于是)()()()(βα+±+=±B A x v x u )()(βα±+±=B A .根据无穷小量的性质,βα±仍是无穷小量,再由定理1.2的充分性可 得.[]B A x v x u x v x u ±=±=±)(lim )(lim )()(lim . 上述运算法则,不难推广到有限多个函数的代数和及乘法的情况. 推论 设)(lim x u 存在,c 为常数,n 为正整数,则有 (1) [])(lim )(lim x u c x u c ?=?; (2) []n n x u x u )]([lim )(lim =. 在使用这些法则时,必须注意两点: (1)法则要求每个参与运算的函数的极限存在. (2)商的极限的运算法则有个重要前提,即分母的极限不能为零. 例1 求)522(lim 1 +--→x x x . (初等函数定义域内某点的极限) 解 )522(lim 1 +--→x x x 5lim 1 )2(lim 1)2(lim 1-→+-→--→=x x x x x 5lim 1 )2(lim 1)2(lim 1-→+-→--→=x x x x x

§1-2 函数极限的运算规则

第1章 函数的极限和连续函数 8 §1-2 函数极限的运算规则·单调有界原理 1.极限的运算规则 记号“(,)x c c c -+→”和“(,)x →∞+∞-∞”都称为极限过程.若把它们统一地表示成“x →?”,则各种形式的函数极限,都具有像数列极限那样的运算 规则.要证明它们,也属于高等微积分(证明在第二篇中). 设在同一个极限过程中,有极限)(lim x f x ? →和)(lim x g x ? →. ⑴ lim[()]lim ()x x c f x c f x →? →? =(c 为常数); (齐次性) ⑵ lim[()()]lim ()lim ()x x x f x g x f x g x →? →? →? ±=±; (可加性) ⑶ lim[()()]lim ()lim ()x x x f x g x f x g x →? →? →? =?; (乘积的极限等于极限的乘积) ⑷ lim ()()lim lim ()0()lim () x x x x f x f x g x g x g x →? →?→?→? ??=≠???? ; (商的极限等于极限的商) ⑸ 若()()f x g x ≤,则lim ()lim ()x x f x g x →? →? ≤; (极限运算的单调性) ⑹ 若()()()f x h x g x ≤≤,且lim ()lim ()x x f x g x C →? →? ==,则也有极限lim ()x h x C →? =. (夹挤规则) 根据夹挤规则,若lim ()0x f x →? =,且)(x g 在极限过程?→x 中是有界变量(())g x B ≤, 则应直接写成 lim[()()]0x f x g x →? = 因为 0()()()0()f x g x B f x x ≤≤→→?且lim ()()0lim[()()]0x x f x g x f x g x →? →? =??= 而不能写成 []lim ()()lim ()lim ()0x x x f x g x f x g x →? →? →? =?=[逻辑错误!] 例如函数1sin y x x =(图1-15),应当直接写成 01 lim sin 0x x x →=(因为1sin 1x ≤) 而不能写成 00011 lim sin lim limsin 0x x x x x x x →→→=?= 因为不存在极限01 limsin x x →(图1-10). 例3 设有多项式 2012()(0)n n n P x a a x a x a x a =+++ +≠ 则 2012lim ()lim lim()lim()lim()n n x c x c x c x c x c P x a a x a x a x →→→→→=+++ + 2012(lim )(lim )(lim )n n x c x c x c a a x a x a x →→→=+++ +

极限的多种求法

求极限的若干方法 目录 摘要 (2) 关键词 (2) 一、函数极限的定义性质及作用 (2) 二、函数极限的计算及多种求法 (3) 1.定义法 (3) 2.利用极限四则运算法则 (4) 3.利用夹逼性定理求极限 (4) 4.利用两个重要极限求极限 (5) 5.利迫敛性来求极限 (5) 6.用洛必达法则求极限 (6) 7.利用定积分求极限 (7) 8.利用无穷小量的性质和无穷小量和无穷大量之间的关系求极限 (7) 9.利用变量替换求极限 (8) 10.利用递推公式计算或证明序列求极限 (8) 11.利用等价无穷小量代换来求极限 (9) 12.利用函数的连续性求极限 (10) 13.利用泰勒公式求极限 (11) 14.利用两个准则求极限 (11) 15.利用级数收敛的必要条件求极限 (13) 16.利用单侧极限求极限 (14) 总结 (14) 参考文献 (15) 外文摘要 (16)

求极限的若干方法 摘 要:在数学分析中,极限思想贯穿于始末,求极限的方法也显得至关重要。本文主要探讨、总结求极限的一般方法并补充利用级数收敛及利用积分求极限的特殊方法,而且把每一种方法的特点及注意事项作了详细重点说明,并以实例加以例解,因此弥补了一般教材的不足。由于本文通过总结、研究对求极限的各种方法的很多细节作了具体注解,使方法更具针对性、技巧性,因此,克服了遇到问题无从下手的缺点,能够做到游刃有余。 关键词:夹逼准则 单调有界准则 洛必达法则 微分中值定理 学习微积分学,首要的一步就是要理解到,“极限”引入的必要性。因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。所以为了要利用代数处理代表无限的量,於是精心构造了“极限”的概念。 一、函数极限的定义性质及作用 在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,而引入了一个过程任意小量。就是说,除数不是零,所以有意义,同时,这个过程小量可以取任意小,只要满足在?的区间内,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能,这个概念是成功的。 限的概念是高等数学中最基本最重要的概念,它是由于求某些实际问题的精确解答而产生的. 例如:我国古代数学家刘徽(公元三世纪)利用圆内接正多边形来推算圆面积的方法—割圆术,就是极限思想在几何上的应用. 数列极限标准定义:对数列{}n x ,若存在常数a ,对于任意0ε>,总存在正整数N ,使得当n N >时,n x a ε-<成立,那么称a 是数列{}n x 的极限。 函数极限标准定义:设函数(),f x x 大于某一正数时有定义,若存在常数A ,对于任意0ε>,总存在正整数X ,使得当x X >时,n x A ε-<成立,那么称A 是函数()f x 在无穷大处的极限。 设函数()f x 在0x 处的某一去心邻域内有定义,若存在常数A ,对于任意 0ε>,总存在正数δ,使得当0x x δ-<时,0x x ε-<成立,那么称A 是函数

高三数学总复习 函数极限的运算法则教案

湖南师范大学附属中学高三数学总复习教案:函数极限的运算 法 教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01 lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 对于函数极限有如下的运算法则: 如果B x g A x f o o x x x x ==→→)(lim ,)(lim ,那么 B A x g x f o x x +=+→)]()([lim B A x g x f o x x ?=?→)]()([lim )0()()(lim ≠=→B B A x g x f o x x 也就是说,如果两个函数都有极限,那么这两个函数的和、差、积、商组成的函数极限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→=

n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2 x x x +→ 例2 求1 1 2lim 231++-→x x x x 例3 求4 16 lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数 4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x , 由此即可求出函数的极限. 例4 求1 3 3lim 22++-∞→x x x x

极限的四则运算

一、数列的极限: 1.极限的概念和运算法则 数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a ,那么就说数列{a n }以a 为极限. 数列极限的运算法则:如果A a n n =∞→lim ,B b n n =∞→lim .则 ① ()B A b a n n n +=+∞→lim .② ()AB b a n n n =∞→lim .② ()0,0lim ≠≠=∞→B b B A b a n n n n . (注意:和与积中包含的数列个数必须是有限的,另外这些运算法则逆命题并不一定成立,例如,若已知()n n n b a ∞→lim 存在,n n a ∞→lim ,n n b ∞→lim 不一定存在,可以进行这样的改编,让学生自行判断和举反例。) 2.基本数列极限 ①为常数);C C C n (lim =∞→ ②);*(01lim N n n n ∈=∞→ ③);1|(|0lim <=∞→q q n n 而对于 n n q lim ∞→,当1=q 时,1lim =∞→n n q ;当1||>q 或1-=q 时,n n q lim ∞→极限不存 在。 3.无穷等比数列各项和 当公比1||0<==++++++++----∞→l k l l l l k k k k n b a N l k k l k l b a b n b n b n b a n a n a n a 时,当时当ΛΛ 当l k >时,上述极限不存在. 第二类是关于n 的指数式的极限: ???=<=∞→时,当时;当111||,0lim q q q n n

相关主题
文本预览
相关文档 最新文档