当前位置:文档之家› 气化炉比较

气化炉比较

气化炉比较
气化炉比较

1 煤炭气化是煤炭清洁利用的重要途径

中国煤炭的特点是高硫、高灰煤比重大。全国原煤平均灰分含量17.6%左右,平均硫分含量1.10%,其中13%的原煤含硫量高于2%。西南地区煤炭中含硫量大于2%的占60%。中国煤入洗率低,约80%原煤用于直接燃烧,燃煤排放出大量有害气体和烟灰,使生态环境遭到严重破坏。统计表明,中国每年排入大气的污染物中有80%的烟尘,87%的SO2,67%的NOx。来源于煤的燃烧。

同时,中国煤炭利用效率低。除在大型和负荷稳定的燃烧工况下,其燃烧效率与石油和天然气相近外,其它非稳定负荷的燃烧过程热效率均低于石油和天然气,其平均利用效率仅 29%。提高中国煤炭利用效率、减少煤炭燃烧带来的环境污染的根本途径是研制和推广应用煤炭优比利用技术。发展煤炭气化技术是减少环境污染、节能、发展工业的重要措施。中国适于气化的煤炭资源十分丰富,可适用于发生炉气化的褐煤、不粘煤、长焰煤和弱粘煤的储量占全国煤炭总储量的40%之多。此外,还有适用于水煤气发生炉的无烟煤,以及流化床气化炉所用的细、粉煤和煤泥浆等。煤炭气化是中国煤炭清洁利用的重要途径之一。

煤气化技术,尤其是高压、大容量气流床气化技术在国际上已经进入商业化阶段,显示了良好的经济与社会效益,代表着发展趋势。中国"以煤代油"的能源政策促进了以煤制取城市、工业燃气技术的发展和其他相关技术的开发。近20年来,中国煤气化科研和先进技术开发方面已取得了引人注目的成效。

2 煤气化技术

以煤炭为原料,采用空气、氧气、CO2。和水蒸气为气化剂,在气化炉内进行煤的气化反应,可以生产出不同组分不同热值的煤气。为了提高煤气化的气化率和气化炉气化强度,改善环境,70年代以来发达国家加快了新一代煤气化技术的开发和工业化进程。总的方向,气化压力由常压向中高压(8.5 MPa)发展;气化温度向高温(1500~1600℃)发展;气化原料向多样化发展;固态排渣向液态排渣发展。固态床、流化床、气流床等几种不同类型的煤气化技术均取得了较大的进展和较好的效果。

2.1 固定床

固定床(慢移动床),常见有间歇式气化(UGI)和连续式气化(鲁奇Lurgi)2种。前者用于生产合成气时一定要采用白煤(无烟煤)或焦碳为原料,以降低合成气中CH4含量,国内有数千台这类气化炉,弊端颇多;后者国内有22台炉子,多用于生产城市煤气;如以烟煤为原料用于生产合成气,CH4蒸汽转化工段(例如山西潞城引进装置)。该技术所含煤气初步净化系统极为复杂,不是公认的首选技术。

2.1.1 固定床间歇式气化炉(UGI)

以块状无烟煤或焦炭为原料,以空气和水蒸气为气化剂,在常压下生产合成原料气或燃料气。该技术是30年代开发成功的,投资少,容易操作,目前已属落后的技术,其气化率低原料单一、能耗高,间歇制气过程中,大量吹

风气排空,每吨合成氨吹风气放空多达5 000 m3,放空气体中含CO、CO2、H2、H2S、SO2。、NOx及粉灰;煤气冷却洗涤塔排出的污水含有焦油、酚类及氰化物,造成环境污染。中国中小化肥厂有900余家,多数厂仍采用该技术生产合成氢原料气。随着能源政策和环境的要来越来越高,不久的将来,会逐步为新的煤气化技术所取代。

2.1.2 鲁奇气化炉

30年代德国鲁奇(Lurgi)公司开发成功固定床连续块煤气化技术,此后在世界各国得到广泛应用。气化炉压力(2.5~4.0)MPa,气化反映温度(800~900)℃,固态排渣,气化炉已定型(MK~1~MK-5),其中MK-5型炉,内径4.8m,投煤量(75~84)t/h,粉煤气产量(10~14)万m3/h。用煤气中除含CO 和H2外,含CH4高达10%~12%,可作为城市煤气、人工天然气、合成气使用。缺点是气化炉结构复杂、炉内设有破粘和煤分布器、炉篦等转动设备,制造和维修费用大;入炉煤必须是块煤;原料来源受一定限制;出炉煤气中含焦油、酚等,污水处理和煤气净化工艺复杂、流程长、设备多、炉渣含碳5%左右。针对上述问题,1984年鲁奇公司和英国煤气公司联合开发了直径为2.4m的溶渣气化炉(BGL),将固体燃料全部气化生产燃料气和合成气。

2.2 流化床气化炉

流化床,常见有温克勒(Winkler)、灰团聚(U-Gas)、循环流化床(CFB)、加压流化床(PFB是PFBC的气化部分)等。U-Gas在上海焦化厂(120t煤/do台)1994年11月开车,已6年,迄今运转仍不正常;陕西城固正利用中科院山西煤化所的技术建设150t煤/d(常压)装置;CFB、PFB可以生产燃料气,但国际上尚无生产合成气先例;Winkler已有用于合成气生产案例,但对粒度、煤种要求较为严格,甲烷含量较高(0.7%~2.5%),更兼设备生产强度较低,已不代表发展方向。

2.2.1 循环流化床气化炉CFB

鲁奇公司开发的循环流化床气化炉(CFB)可气化各种煤,也可以用碎木、树皮、城市可燃垃圾作为气化原料,水蒸气和氧气作气化剂,气化比较完全,气化强度大,是移动床的2倍,碳转化率高(97%),炉底排灰中含碳2%~3%,气化原料循环过程中返回气化炉内的循环物料是新加入原料的40倍,炉内气流速度在(5~7)m/s之间,有很高的传热传质速度。气化压力0.15MPa。气化温度视原料情况进行控制,一般控制循环旋风除尘器的温度在(800~1050)℃之间。鲁奇公司的CFB气化技术,在全世界已有60多个工厂采用,正在设计和建设的还有30多个工厂,在世界市场处于领先地位。

CFB气化炉基本是常压操作,若以煤为原料生产合成气,每公斤煤消耗气化剂水蒸气1.2kg,氧气0.4kg,可生产煤气(l.9~2.0)m3。煤气成份CO+H2>75%,CH4含量2.5%左右, CO215%低于德士古炉和鲁奇MK型炉煤气中CO2含量,有利于合成氨的生产。在未取得用于氨厂的工业化成功经验之前,应慎重从事。

2.2.2 灰熔聚流化床粉煤气化技术

灰熔聚煤气化技术以小于6mm粒径的干粉煤为原料,用空气或富氧、水蒸气作气化剂,粉煤和气化剂从气化炉底部连续加入,在炉内(1050~

1100)℃的高温下进行快速气化反应,被粗煤气夹带的未完全反应的残碳和飞灰,经两极旋风分离器回收,再返回炉内进行气化,从而提高了碳转化率,使灰中含磷量降低到10%以下,排灰系统简单。粗煤气中几乎不含焦油、酚等有害物质,煤气容易净化,这是中国自行开发成功的先进的煤气化技术。该技术可用于生产燃料气、合成气和联合循环发电,特别用于中小氮肥厂替代间歇式固定床气化炉,以烟煤替代无烟煤生产合成氨原料气,可以使合成氨成本降低15%~20%,具有广阔的发展前景。第一套直径为2.6m工业气化炉将在城固好氨肥厂建设,取得经验后进行推广。

2.3 气流床气化炉

气流床,从原料形态分有水煤浆、干煤粉2类;从专利上分,Texaco、Shell最具代表性。气流床对煤种(烟煤、褐煤)、粒度、含硫、含灰都具有较大的兼容性,国际上已有多家单系列、大容量、加压厂在运作,其清洁、高效代表着当今技术发展潮流。

2.3.1 德士古(Texaco)气化炉

Texaco水煤气化炉雷同于1952年开发成功地渣油气化炉,经过1975年、1978年低压与高压中试装置(激冷流程)以及1978年西德Oberhausen的RCH/RAG示范装置(废炉流程、150t煤/d,4.0MPa)考核与经验积累,于1982年建成TVA装置(180t,二台炉,一开一备,6.5MPa)、1984年建成日本UBE 装置(1500t煤/d,三开一备,3.6MPa)以及Cool Water IGCC电站(910t煤/d,二台炉,4.0MPa),这些装置投运后都取得成功。目前Texaco最大商业装置是Tampa电站,属于DOE的CCT-3,1989年立项,1996年7月投运,12月宣布进入验证运行。该装置为单炉,日处理煤2000t,气化压力为2.8MPa,氧纯度为95%,煤浆浓度68%,冷煤气效率76%,净功率250MW。辐射锅炉直径5.18m,高30.5m,重900t。

80年代末至今,中国共引进4套(未计入首钢一套)Texaco水煤浆气化装置,与鲁南(二台炉,一开一倍,单炉日处理量450t煤,2.8MPa)、吴泾(4台炉,三开一备,单炉日处理500t煤,4.0MPa)、渭河(三台炉,二开一备,单炉日处理量为820t,6.5MPa)、淮南(三台炉,无备用,单炉日处理500t煤,4.0MPa),这4套装置均用于生产合成气,7台用于制氨,5台用于制甲醇。中国在水煤浆气化领域中积累了丰富的设计、安装、开车以及新技术研究开发经验与知识。

主要优点:水煤浆制备输送、计量控制简单、安全、可靠;设备国产化率高,投资省。主要缺点:褐煤的制浆浓度约59%~61%;烟煤的制浆浓度为65%;因汽化煤浆中的水量要耗去入炉煤的8%,比干煤粉为原料氧耗高12%~20%,所以效率比较低。

2.3.2 Destec气化炉

Destec气化炉已建设2套商业装置,都在美国:LGT1(气化炉容量2200t/d,2.8MPa,1987年投运)与Wabsh Rive(二台炉,一开一备,单炉容量2500t/d,2.8MPa,1995年投运)炉型类似于K-T,分第一段(水平段)与第二段(垂直段),在第一段中,2个喷嘴成180度对置,借助撞击流以强化混合,克服了Texaco炉型的速度成钟型(正态)分布的缺陷,最高反应温度约1400℃。为提高冷煤气效率,在第二阶段中,采用总煤浆量的10%~20%进行冷激(该点

与Shell、Prenflo的循环没气冷激不同),此处的反应温度约1040℃,出口煤气进火管锅炉回收热量。熔渣自气化炉第一段中部流下,经水冷激固化,形成渣水浆排出。这种炉型适合于生产燃料气而不适合于生产合成气。

2.3.3 气化炉

Shell气化炉与Texaco气化炉技术经历相似,50年代初Shell开发渣油气化成功,在此基础上,经历了3个阶段:1976年试验煤炭30余种;1978年与德国Krupp-Koppers合作,在Harburg建设日处理150t煤装置;两家分手后,1978年在美国Houston的Deer Park建设日处理250t高硫烟煤或日处理400t 高灰分、高水分褐煤。共费时16年,至1988年Shell煤技术运用于荷兰Buggenum IGCC电站。该装置的设计工作为1.6年,1990年10月开工建造,1993年开车,1994年1月进入为时3年的验证期,目前已处于商业运行阶段。单炉日处理煤2000t。

Shell气化炉壳体直径约4.5m,4个喷嘴位于炉子下部同一水平面上,沿圆周均匀布置,借助撞击流以强化热质传递过程,使炉内横截面气速相对趋于均匀。炉衬为水冷壁(Membrame Wall),总重500t。炉壳于水冷管排之间有约0.5m间隙,做安装、检修用。

煤气携带煤灰总量的20%~30%沿气化炉轴线向上运动,在接近炉顶处通入循环煤气激冷,激冷煤气量约占生成煤气量的60%~70%,煤器降温至900℃,熔渣凝固,出气化炉,沿斜管道向上进入管式余热锅炉。煤灰总量的70%~80%以熔态流入气化炉底部,激冷凝固,自炉底排出。

粉煤由N2携带,密相输送进入喷嘴。工艺氧(纯度为95%)与蒸汽也由喷嘴进入,其压力为3.3~3.5MPa。气化温度为1500~1700℃,气化压力为3.0MPa。冷煤气效率为79%~81%;原料煤热值的13%通过锅炉转化为蒸汽;6%由设备和出冷却器的煤气显热损失于大气和冷却水。

Shell煤气化技术有如下优点:采用干煤粉进料,氧耗比水煤浆低15%;碳转化率高,可达99%,煤耗比水煤浆低8%;调解负荷方便,关闭一对喷嘴,符合则降低50%;炉衬为水冷壁,据称其寿命为20年,喷嘴寿命为1年。主要缺点:设备投资大于水煤浆气化技术;气化炉及废锅炉结构过于复杂,加工难度加大。

在干煤粉气化领域国内正处于研究开发阶段。

总之,从加压、大容量、煤种兼容性大等方面看,气流床煤气化技术代表着气化技术的发展方向,水煤浆和甘煤粉进料状态各有利弊,界限并不十分明确,国内技术界也众说纷纭。

生物质气化炉设计要点

生物质气化炉设计要点 1前言 我国每年林业废弃物和农业生产剩余物质产量高达7亿t,如何有效利用这一巨大资源,已成为摆在科研工作者面前的重要课题。生物质气化技术改变了直接燃烧生物质的利用方式,提高了废弃生物质的能源品位,对节约常规能源、降低环境污染、保护生态环境具有重要意义。 下吸式固定床气化炉由于具有结构简单,易于操作,产出气焦油含量低等优点已经得到了广泛的应用。生物质气化过程是一个复杂的热化学反应过程,生物质气化炉各部位结构尺寸将极大地影响气化炉的热效率、产气成分和产气品质,故设计合理的生物质气化炉是有效利用生物质能的关键。 2下吸式生物质气化炉的工作原理 如图1所示,作为气化剂的空气从气化炉侧壁空气喷嘴吹入,其产出气的流动方向与物料下落的方向一致,故下吸式气化炉也称为顺流式气化炉。吹入的空气与物料混合燃烧,这一区域称为氧化区,温度约为900~1200℃,产生的热量用于支持热解区裂解反应和还原区还原反应的进行;氧化区的上部为热解区,温度约为300~700℃,在这一区域,生物质中的挥发分(裂解气、焦油以及水分)分离出来;热解区的上部为干燥区,物料在此区域被预热;在氧化区的下部为还原区,氧化区产生的CO2和碳、水蒸气在这一区域进行还原反应,同时残余的焦油在此区域发生裂解反应,产生以CO和H2为主的产出气,这一区域的温度约为700~900℃。由于来自热解区富含焦油的气体须经过高温氧化区和以炽热焦炭为主的还原区,气体中的焦油在高温下被裂解,从而使产出气中的焦油大为减少。 3下吸式生物质气化炉的特点 a.为了使氧化区各部位的温度均匀一致,不至于产生死区和过热区,从而保证焦油裂解反应最大限度地进行,下吸式气化炉料斗下部的横截面尺寸变小,这个部位即所谓的“喉部”,“喉部”尺寸的大小决定了气化炉的产气能力和产气品质。 b.为保证物料与空气的充分混合,在“喉部”布置多个空气喷嘴。一般有外喷(空气由喉部外向中心喷射)和内喷(空气由喉部中心供气管向外喷)两种布置形式,其中第一种形式应用较多。

垃圾热解气化焚烧技术介绍

如今环境问题越来越成为人们关注的话题,近日,郑州紧跟北上广全面实施“垃圾分类”,更让平日里随处可见的垃圾也成为人们口中的热词,“今天的垃圾你丢对了吗”也成为人们寒暄的话语,这种现象也暴露出全民对于垃圾的关注,更是国家对于生活垃圾无处可放的担忧。 随着“蓝天保卫战”“无废城市”的提出,国家层面也越来越重视固体废弃物带来的新的环境问题,垃圾围城的现象日益凸显,固体废弃物的减量化、资源化、无害化、稳定化处理亟需寻找一条新的出路。 据相关部门公开资料显示,目前我国生活垃圾无害化处理方式主要以焚烧为主,占80%,厌氧消化、卫生填埋、回收利用、堆肥等只占20%左右。生活垃圾焚烧产生的二恶英类物质(PCDDs)是已知的毒性最大的物质之一,焚烧产生的飞灰中含有大量重金属,因此焚烧对大气环境造成比较严重的二次污染。而厌氧消化、卫生填埋不仅需要占用大量宝贵的土地资源,并且渗滤液等有毒有害物质也造成土壤、地下水的严重污染。 塑料垃圾热解气化技术很好的解决了以往塑料垃圾处理中存在的各种环境污染问题。采用塑料垃圾破碎→干化→热解气化的工艺将废塑料热解气化,在此系统中,废塑料经撕碎机撕碎成2 ~ 5公分的碎块(图2),然后经过滚筒干化机(图3)干化后在热解气化装置(图4)中经过高温加热热解气化,产生CO、H2、CH4 等可燃气体,这些可燃气体经过净化系统(图5)冷却净化后直接通入燃烧室进行燃烧,燃烧后的气体通入余热锅炉产生蒸汽提供给附近纸厂使用,余热气体又引入滚筒干化机,使撕碎后的塑料干燥到含水率15%~20%,最后气体脱硫后排入大气中,在这个系统中,整个反应处在贫氧、高温、密闭的条件下,因此杜绝了二恶英类物质的生成,也杜绝飞灰泄露进入大气环境中,此外气化焚

城市垃圾热解气化方案

城市垃圾热解气化案 前言: 垃圾无时无刻不伴随着人类社会生活而存在,垃圾处理也是一个随之不断变革、持续发展的行业。从另一个角度讲,在技术条件足够完善的情况下,垃圾是一种永不枯竭的可利用型资源。本文着重介绍一种新型垃圾处理技术,该技术不仅能有效克服目前国垃圾处理技术的环保缺陷,还能够同时获得几倍于前者的经济效益,真正实现变废为宝,引领未来垃圾处理行业发展向。 一、国垃圾现状与亟待解决的问题 1.伴随着城市化进程加快,全国各地垃圾产生量急剧增加。根据2009年中国城 市建设统计年鉴报告,全国655个设市城市生活垃圾清运量由1980年的3132万吨增加到2008年底的1.52亿吨,平均每年增长速度约为9%。我国目前的垃圾年产量占全球比重已经超过30%,中国已经成为“垃圾围城”最重的。 2.城市垃圾的处理水平偏低。很多地采取露天堆放、自然填沟和填坑等原始式消 纳城市垃圾,部分河流沿岸成为天然垃圾堆放场。该种处理式对土壤、河流、地下水、大气等都造成了重的影响和危害。 3.国城市垃圾无害化处理设施极度缺乏,已建成的垃圾处理设施又有相当部分达 不到环保标准,大多数城市的垃圾对环境的污染日趋重。5亿多平米的城市地面被垃圾侵占,每天向大气释放多达100多种有害、致癌气体。 以北京市为例,目前全市日产垃圾18400吨,其中90%为填埋处理,每年约占用土地五百亩。在这种处理式单一、有效的垃圾分类又较难实现的情况下,没有高效能技术和设施的建设应用,四年后北京就将面临垃圾无法处理的局面。上海市全市日产垃圾近2万吨,在全市垃圾处理厂超负荷运行的情况下,按目前现有的处理

能力,到2020年,全市混合垃圾处理能力及资源化处理能力缺口总计将扩大到约11700吨/日。可见,对城市垃圾实施有效处理,改善城市卫生环境,实现垃圾减量化、无害化、资源化已成为保障国计民生的重大问题。日前住房和城乡建设部、环保部等15部委联合制定的“关于推进城市生活垃圾处理工作的意见”(以下简称“意见”)已报国务院审批,于2011年初下发。“意见”出台后,将大力推动城市生活垃圾处理工作,同时城市生活垃圾处理也将成为地政府城市管理考核的重要容。二、国垃圾处理技术简介 目前国垃圾处理主要使用以下几种技术: 1.卫生填埋处理:这种法是大量消纳城市垃圾的有效措施。但占地面积大,使用 年限短,垃圾分解速度慢(10-20年),填埋区易产生沼气、含毒污水,对空气、土壤和地下、地表水产生污染。大城市边由于土地资源紧,更限制了此类法的应用。 2.堆肥处理:该法通过微生物的生化作用,将垃圾中的有机质分解腐烂,转换成 肥料。但该法对垃圾成分有较高要求,产品肥效低、制造期长,不适应城市生活垃圾的迅速增长。堆肥法对塑料、金属等减量程度不高,后续处理量大,运行费及垃圾转运费用高。由于国未能实现有效垃圾分拣,垃圾中含有重金属和有毒化合物等污染物,导致此种肥料不能进入食物链,因此堆肥产品尚面临销路问题。 3.垃圾焚烧发电:该法是指使用特殊的垃圾焚烧设备,以城市工业和生活垃圾为燃 烧介质,在对垃圾进行焚烧处理的同时,利用其产生的能量发电的一种新型发电式。直接焚烧法可实现城市生活垃圾的减容化和资源化。但其致命缺陷是其焚烧产物中的SOX、NOX、HCl、粉尘和残渣中的重金属。特别是氧化反应产生

气化炉设计简图及说明

生物质焦油催化裂解原理与石油的催化裂解相似,所以关于催化剂的选用可从石油工业中得到启发。但是由于焦油催化裂解的附加值小,其成本要求很低才有实际意义。所以人们除了利用石油工业的催化剂外,还大量研究了低成本的材料,如石灰石,石英砂和白云石等天然产物。 大量的实验表明,很多材料对焦油裂解都有催化作用,其中效果较好又有应用前景的 典型材料主要有三种,即木炭,白云石,镍基催化剂,主要性能如下图示: 从上面三种典型催化结果比较可知,镍基催化剂的效果最好,在750℃时既有很高的催化裂解率,而其他的材料在750℃裂解的效果还不理想,但由于镍基催化剂较昂贵,成本较高,一般生物质气化技术难以应用,所以只能在气体需要精制或合成汽油的工艺中使用。木炭的催化作用实际上在下吸式气化炉中既有明显的效果,但由于木炭在催化裂解焦油的同时参与反应,所以消耗很大(在1000℃时达0.1kg/m3)对大型生物质气化来说木炭作催化剂不现实,但木炭的催化作用对气化炉的设计及小型气化炉有一定的指导意义。 白云石(dolomite)是目前为止研究的最多和最成功的催化剂,虽然各地白云石的成分略有变化,但都有催化效果一般当白云石中的CaCO3/MgCO3在1-1.5时效果较好。白云石作为焦油裂解催化剂的主要优点是催化效率高,成本低,所以具有很好的使用价值。 气化炉简图

其中还原区中放置炽热焦炭以促进焦油、二氧化碳的还原反应,焦油在热分解区裂解温度大约为1000℃左右,而吹入的空气与物料混合燃烧,这一区域叫做氧化区,温度约为900——1200℃,产生的热量用于支持热裂解区裂解反应和还原区的还原反应的进行;氧化区的上部为裂解区,温度约为300——700℃,在这一区域,生物质中的挥发分(裂解气,焦油以及水分)被分离出来;热解区的上部为干燥区,物料在这一区域被预热;氧化区的下部为还原区,氧化区产生的二氧化碳、炭和水蒸气在这一区域进行还原反应,同时残余的焦油在此区域发生裂解反应,产生以一氧化碳、氢气为主的产出气,这一区域的温度约为700——900℃来自热解区富含焦油的气体必须经过高温氧化区和以炽热焦炭为主的还原区,其中焦油在高温下被裂解,从而使产出气中的焦油含量大为减少。料斗与产出气之间焊有导热翅片,以增加产出气与料斗之间换热面积,降低产出气的温度,提高气化炉的热效率。 完全燃烧时的理论空气用量然后按照当量比0.25—0.3计算实际所需的空气用量V′ V=(1 /0.21)*(1.866C+5.55H+0.7S-0.7O) 式中V——物料完全燃烧所需要的理论空气量,m3/㎏; C——物料中碳元素所占的比例,%; H——物料中氢元素所占的比例,%; O——物料中氧元素所占的比例,%; S——物料中硫元素所占的比例,%。

如何保证气化炉长周期运行

如何保证气化炉长周期运行 气化炉是煤化工装置的核心和龙头,决定了全系统装置能否长周期、满负荷、安全、稳定地运行,也决定了产品的成本效益。 在调查中了解到,目前煤化工装置运行的无论是干煤粉还是水煤浆煤气化炉,单炉最长连续运行时间都达到了200多天,但各个类型炉型之间依旧有差别。同样是水煤浆气化炉(包含备用炉),有连续运行300多天的,也有连续运行550天的。 业内专家指出,影响气化炉长周期运行的是综合因素,考量的是企业的综合实力,企业应当着重在烧嘴精度、喷嘴与气化炉流场结构、排渣系统的优化设计,提高灰水系统运行周期和保持煤质稳定上下功夫。 优选喷嘴材料和处理工艺 喷嘴是气化炉的核心设备,喷嘴使用寿命是决定气化炉生产周期长短的关键因素,60%的气化炉停车都与喷嘴有关。伊泰煤制油公司总经理刘尚利认为,喷嘴寿命周期在100~150天,到时候必须停下来更换,喷嘴损坏会直接造成气化反应氧碳比失调,使气化炉进料紊乱,甚至引发超温、过氧爆炸等严重事故。因此,除了喷嘴加工精度外,使用中的监控和管理也非常重要的。 华东理工大学洁净煤技术研究所周志杰副教授认为,提高喷嘴的寿命需要对其结构设计优化,煤浆中的固体颗粒对喷嘴材料的磨损很大,应尽量降低煤浆流动速度,还要探索采用耐高温、耐磨材料或者堆焊耐磨合金加热处理工艺制造喷头。 陕西鑫立喷嘴研制开发有限公司技术部部长胡战卜则表示,烧嘴的运行与氧煤比、水煤浆流速等因素有关,要提高烧嘴及气化炉稳定运行周期,今后还应探索外氧气流和水煤浆流的最佳角度结构设计,使喷射结构和角度更合理,达到最好的混合、雾化效果,使水煤浆反应充分,有效气含量提高,煤渣含碳量降低。在运行中为保护烧嘴,有煤化工企业通过在烧嘴前端浇注保温材料,使烧嘴盘管及外头端部与炉内火焰有效隔离,炉内火焰不会直接对冷却水盘管和外喷头进行烧蚀,减少烧嘴外头端部因受热冲击产生的龟裂,消除了冷却水盘管和外头角焊缝处受炉内高温气体的影响引起的热应力损坏,延长了烧嘴使用周期,保障了气化装置的长周期稳定运行。 重视挂渣机理基础研究 神华宁煤集团煤化工公司烯烃公司总工程师黄斌介绍说,干煤粉气流床要实现长周期、稳定、高效运行,取决于煤粉输送系统的稳定性、喷嘴与气化炉流场结构的匹配性以及排渣系统的优化设计。多位业内人士证实,由于气化炉流场、排渣系统优化设计问题,目前运行的粉煤气化炉,部分所排细灰、煤渣的含碳量高达到6%。由于水冷壁炉是“以渣抗渣”,必

垃圾热解气化项目报告书

垃圾热解气化项目报告书 一、垃圾热解气处理技术简介 垃圾热解气是利用垃圾中有机物的热不稳定性,在对其进行加热蒸馏,使有机物产生裂解,经冷凝后形成各种新的气体、液体和固体,从中提取燃料油、可燃气的过程。在运行过程中所生成的气体含有大量甲烷、一氧化碳和氢气,可以用于工业燃气,具有良好的经济效益。 垃圾热解气技术的环保特点在于:能从根本上解决二噁英的生成,同时减少空气中有毒物质的排放量,将重金属固化并有效回收利用,有利于城市环境的发展。 北京宝能科技有限公司垃圾热解气化技术是针对城市垃圾差异性较大所提出的一套低成本、适合中国国情的城市生活垃圾清洁综合利用技术,主要是让城市生活垃圾在还原性气氛下发生反应,从源头上避免二噁英的生成。 根据垃圾处理过程,可日处理100—2000吨生活垃圾,每吨生活垃圾(干基)最低可产生约1500立方米的燃气,热值约1500大卡/立方米,能够满足一般工业燃气的需要。而垃圾处理后产生5%―8%体积的固体无机物,可作为生产建筑砌块。酸性气体作为气化剂在气化炉中得到处理。清洁处理后的合成气可作为燃料供给锅炉,也可经过高效燃气轮机发电机系统发电。 1.1开发垃圾热解项目的市场背景 1.1.1.我国垃圾资源概况 垃圾是一种可再生资源,如果能够有效的资源整合利用,能够创造巨大的经济效益,目前政府部门也越来越重视垃圾资源的回收问题。随着城镇化工业化进程加快,未来我国生活垃圾处理设施的建设力度将大幅增加。 垃圾处理行业拥有着庞大的市场容量,据统计,全球每年排放各类垃圾近5亿吨,中国主要城市年产生活垃圾1.5亿吨,并且还在以每年8%—10%的速度攀升。建设部2010年调查结果显示,全国600多座城市中,有1/3以上正在陷入垃圾重

垃圾热解气化总结材料-(431)

标准实用文案 1.固废管理的原则 减量化:减量化是指在生产、流通和消费等过程中减少资源消耗和废物产生,以及采用适当措施使废物量减少(含体积和重量)的过程。 资源化:将废物直接作为原料进行利用或着对废物进行再生利用,也就是采用适当措施 实现废物的资源利用过程,其中再利用是指将废物直接作为产品或者经修复、翻新、再制造后继续作为产品使用,或者将废物的全部或者部分作为其他产品的部件予以使用。分为三种类型:①保持原有功能和性质,直接回收利用;②不再保持其原有的形态和使用性能,但还保持利用其材料的基本性能,如废金属回收利用、废纸再生、玻璃再生等;③不再保持其原有的形态、使用性能和材料的基本性能,但还保持利用其部分分子特性等如生物质有机垃圾 的好氧堆肥、厌氧发酵等。 无害化:在垃圾的收集、运输、储存、处理、处置的全过程中减少以至避免对环境和人 体健康造成不利影响。 2.固废处理方法 垃圾焚烧,或称垃圾焚化,是一种废物处理的方法,通过焚烧废物中有机物质,以缩减废物体积。焚烧与其他高温垃圾处理系统,皆被称为“热处理” 。焚化垃圾时会将垃圾转化为灰烬、废气和热力。灰烬大多由废物中的无机物质组成,通常以固体和废气中的微粒等形 式呈现。废气在排放到大气中之前,需要去除其中污染气体和微粒。其余残余物则用于堆填。在某些情况,焚化垃圾所产生的热能可用于发电。 焚化是其中一种将垃圾转换成能源的技术,其他如气化、等离子弧气化、热解和厌氧消化。垃圾焚化会减少原来垃圾80%~ 85%的质量和95%~ 96%的体积(垃圾在垃圾车里已经过 压缩),减少程度取决于可回收材料的成分和其回收的程度,如灰烬中有可回收的金属。这 意味着,尽管焚化不能完全取代堆填,但它却可以大大减少垃圾量。垃圾车一般在运送垃圾至焚化炉前,会以内置压缩机内压缩以减少垃圾的体积。或者,未经压缩运输的垃圾可以在填埋场进行压缩,减少体积近70%。很多国家常在堆填区作简单的垃圾压缩。另外,垃圾焚 烧在处理某些类型的垃圾,如医疗垃圾和一些有害废物时有很大的优势,因为焚烧过程的高温能销毁垃圾中的病原体和毒素。综合而言,垃圾焚烧处理的减量化效果最好,但存在燃烧产生污染物的环境风险。 卫生填埋法是指采取防渗、铺平、压实、覆盖等措施对城市生活垃圾进行处理和对气体、 渗滤液、蝇虫等进行治理的垃圾处理方法。该方法采用底层防渗、垃圾分层填埋、压实后顶层覆盖土层等措施,使垃圾在厌氧条件下发酵,以达到无害化处理。 卫生填埋处理是垃圾处理必不可少的最终处理手段,也是现阶段我国垃圾处理的主要方式。科学合理地选择卫生填埋场场址,可以有利于减少卫生填埋对环境的影响。 场址的自然条件符合标准要求的,可采用天然防渗方式。不具备天然防渗条件的,应采用人工防渗技术措施。场内实行雨水与污水分流,减少运行过程中的渗沥水产生量,并设置渗沥水收集系统,将经过处理的垃圾渗沥水排入城市污水处理系统。不具备排水条件的,应单独建设处理设施,达到排放标准后方可排入水体。渗沥水也可以进行回流处理,以减少处理量,降低处理负荷,加快卫生填埋场稳定化。设置填埋气体导排系统,采取工程措施,防 止填埋气体侧向迁移引发的安全事故。尽可能对填埋气体进行回收和利用,对难以回收和无利用价值的,可将其导出处理后排放。填埋时应实行单元分层作业,做好压实和覆盖。填埋

德士古气化炉简介与基本原理和特点

德士古气化炉 Texaco(德士古)气化炉 德士古气化炉是一种以水煤气为进料的加压气流床气化工艺。德士古气化炉由美国德士古石油公司所属的德士古开发公司在1946年研制成功的,1953年第一台德士古重油气化工业装置投产。在此基础上,1956年开始开发煤的气化。本世纪70年代初期发生世界性危机,美国能源部制定了煤液化开发计划,于是,德士古公司据此在加利福尼亚州蒙特贝洛(Montebello)研究所建设了日处理15t的德士古气化装置,用于烧制煤和煤液化残渣。目前国内大化肥装置较多采用德士古气化炉,并且世界范围内IGCC电站多采用德士古式气化炉。 典型代表产品我厂制造过的德士古气化炉典型的产品有:渭河气化炉、恒升气化炉、神木气化炉、神华气化炉等。1992年为渭河研制的德士古气化炉是国际80年代的新技术,制造技术为国内先例,该气化炉获1995年度国家级新产品奖。它的研制成功为化工设备实现国产化,替代进口做出了重要贡献。德士古气化炉是所以第二代气化炉中发展最迅速、开发最成功的一个,并已实现工业化。 一、德士古气化的基本原理 德士古水煤浆加压气化过程属于气化床疏相并流反应,水煤浆通过

喷嘴在高速氧气流的作用下,破碎、雾化喷入气化炉。氧气和雾状水煤浆在炉内受到耐火砖里的高温辐射作用,迅速经历预热、水分蒸发、煤的干馏、挥发物的裂解燃烧以及碳的气化等一系列复杂的物理、化学过程,最后生成一氧化碳,氢气二氧化碳和水蒸气为主要成分的湿煤气,熔渣和未反应的碳,一起同向流下,离开反应区,进入炉子底部激冷室水浴,熔渣经淬冷、固化后被截流在水中,落入渣罐,经排渣系统定时排放。煤气和饱和蒸汽进入煤气冷却系统。 水煤浆是一种最现实的煤基流体燃料,燃烧效率达96~99%或更高,锅炉效率在90%左右,达到燃油等同水平。也是一种制备相对简单,便于输送储存,安全可靠,低污染的新型清洁燃料[1]。具有较好的发展与应用前景。水煤浆的气化是将一定粒度的煤颗粒及少量的添加剂在磨机中磨成可以泵送的非牛顿型流体,与氧气在加压及高温条件下不完全燃烧,制得高温合成气的技术,以其合成气质量好、碳转化率高、单炉产气能力大、三废排放少的优点一直受到国际社会的关注,我国也将水煤浆气化技术列为“六五”、“七五”、“八五”、“九五”的科技攻关项目。本文基于目前我国水煤浆气化技术的现状,以Texaco气化炉为研究对象,根据对气化炉内流动、燃烧和气化反应的特性分析,将Texaco气化炉膛分成三个模拟区域,即燃烧区、回流区和管流区,分别对各区运用质量守恒和能量守恒方程,建立了过程仿

气化炉设计及数值计算论文

课程:新能源开发与利用 专业:农业机械化及其自动化姓名:XXX 学号:XXXXXXXX 教师:XXX

小型家用气化炉设计及数值计算 XXX (院系:南农工学院农机系学号:XXXXXXXX E-mail:XXXXXXX@qq.com) 摘要:随着化石燃料资源的日益减少以及在利用过程中对环境造成的巨大破坏,生物质能的资源化利用正受到越来越多的重视。而小型家用生物质气化技术由于具有结构简单,管路短,操作维护简单方便,耗资少等优点,适应于我国农村目前普遍的经济水平和组织体制。本文结合我国农村的实际情况,设计出小型家用生物质上吸式气化炉。该小型家用气化炉解决了现役气化炉中气化性能不理想,焦油含量高的问题。相信此类气化炉将在未来占据一定规模的市场份额,逐步推广到我国农村偏远地区,为解决民生问题作出巨大贡献。 关键词:气化炉;生物质;数值设计;秸秆;净化装置 Small Household Gasifier Design And Numerica lCalculation XXX (departments:southNongJiXia&m college studentnumber: XXXXXXX E-m ail:XXXXXXX@https://www.doczj.com/doc/6c14426837.html,) Abstract:Withthedwindlingof fossil fuel resourcesand cau sedenormous damage to the environmentin the process of utilization, biomassutilization is beingmoreand moreattention.And because small household biomass gasificationtechnology has the advantages of simple st ructure,short line,simple and convenientoperation and maintenance, less cost, adapted to the current general economic levelandorganizationsystem in the rural areas.Combined with the actual situation ofour country rural area, thispaper designed asmall household suction onthe biomass gasifier.Thesmall household gasifierhassolved the activ eservice inthegasifier gasification performance isnotideal,theproblemofhightar content.Believe this kind of gasifierwill oc cupythe market share of a certain size in thefuture,gradually to re moterural areas in China,the huge contribution to solvethe problem ofthe people's livelihood. Keywords:gasifier;biomass;numerical design;straw; purification plant 0 引言 在世界能源消耗中,生物质能源一直是人类赖以生存的重要能源,是仅次于煤炭、石油和天然气而居于世界能源消费总量的第四位的能源,在整个能源系统中占有重要地位。大量使用大自然馈赠的生物质能源,几乎不产生污染,资源可再生而不会枯竭,同时起着保护和改善生态环境的重要作用。由此,我国小型家用生物质气化炉逐步进入人们的视野。

小型家用生物质气化炉设计

课程设计报告 (2014-2015年度第二学期) 名称:新能源热利用与热发电原理与系统课程设计题目:小型家用生物质气化炉设计 院系:生化学院 班级:新能源1121 学号: 111111111111 学生姓名: 11111 指导教师: 1111 设计周数:第18周 成绩: 提交日期:2015年7月3日

一.课程设计目的与要求 1.设计目的 通过小型生物质气化炉设计练习,掌握气化炉的选型、参数设计的原理和方法。 2.设计任务 设计一个小型家用生物质气化炉, 如右图。主要技术指标如下:(1) 点火 起动时间:<3min;(2) 气化炉运行稳 定,一次加料后持续稳定燃烧时间:≥ 3.5h;(3) 气化效率:≥75%;(4) 热 效率:≥90%;(5) 燃气热 值:>6000kJ/N ;(6) 产气量:≥1.5 /kg,可供农户一天的炊事使用;(7) 封火时间:≥12h。 3.设计要求 独立撰写设计报告,正文不少于5000字。

二. 设计内容 1 绪论 1. 1 秸秆气化炉的发展前景 随着我国经济水平的提高,中国农民的收入也大步增高。因次许多农民告别了烟熏火燎的日子,利用电饭煲、电饭锅等进行做饭烧水。这种能源利用方式的改变使他们过上了更加方便、文明和卫生的生活。然而,要完全依靠电力来保证8亿农民的生活需求,则是国力和环境的承重负担。我国生物质资源的大量浪费和农村商品能源的大量需求逐年增大的局面,引起政府和社会的关注。我国绝大多数农村和小城镇居民,能源消耗量的80%以上是直接燃烧生物质能而得到的。这种产能方式不仅利用率低下,而且对环境有很大的危害。所以迫切需要一种将生物质能转化为清洁能源的装置。秸秆气化炉就是这样一种装置。它以农作物秸秆、农林废弃物为主要气化原料。气化炉的生产成本不高,而是用成本更低。该技术在农村的应用前景极其广阔,在改变农村传统饮炊习惯,减少农民开支,提高农民生活质量等方面具有较大的推广价值。 1. 2 秸秆气化炉的工作原理 气化炉是根据有机物的热解原理,是炉内的生物质在一定温度和氧气条件下充分裂解为可燃性气体。只需要点燃炉内生物质即可产生高温,在缺氧的环境下,生物质裂解为甲烷、氢气、一氧化碳等可燃气体。燃气自动导入分离系统执行脱硫、脱尘、脱水蒸气等净化程序,产生优质燃气。燃气通过管道出送到燃气灶,点燃(亦可电子打火)即可使用。 2 各种炉型结构及特点 2.1 固定床气化炉的结构及特点 2.1.1 上吸式气化炉 气化炉内部是气化各层的反应区,外层是保温层,炉顶为进料口,炉底设有除灰口。保温层由珍珠岩加耐火水泥等保温材料填充,这样在保证反应区温度的同时,又可以降低气化炉外壁的温度,保证使用安全,减少热量的散失,并延长封火时间。 优点:

浅论垃圾热解气化技术

浅析垃圾热解气化技术 垃圾处理方式随着技术的更新和发展逐渐优化,从一开始的填埋,到生物质利用,再到现在减量化效果最好的焚烧,每一步的技术更新都引领着行业的发展方向。和垃圾焚烧一样,能做到真正3R 原则的处理方式,是垃圾热解法。但据统计,国内垃圾主要以填埋、焚烧和堆肥为主。填埋是目前的主要处理方式,占比近一半,焚烧占12注右,堆肥不到10%仍有30%勺生活垃圾未能处理。 那么为什么和垃圾焚烧一样能达到3R原则的垃圾热解技术却没能占得市场先机呢?我们先来了解什么是垃圾热解技术。 定义及作用原理:热解法和焚烧法是两个完全不同的过程。焚烧是一个放热过程,而热解需要吸收大量热量。焚烧的主要产物是二氧化碳和水,而热解的主要产物是可燃的低分子化合物:气态的氢气、甲烷、一氧化碳;液态的甲醇、丙酮、醋酸、乙醛等有机物及焦油、溶剂油等。固态的主要是焦炭和炭黑。

热解法是利用垃圾中有机物的热不稳定性,在无氧或缺氧条件下对其进行加热蒸馏,使有机物产生裂解,经冷凝后形成各种新的气体、液体和固体,从中提取燃料油、可燃气的过程。热解产率取决于原料的化学结构、物理形态和热解的温度与速度。 热分解过程由于供热方式、产品形态、热解炉结构等方面的不同,热解方式各异。 按热解温度不同,1000OC以上称为高温热解,600 -700 oC称为中温热解,600oC以下称为低温热解。按供热方式不同,分为直接加热法和间接加热法。直接加热法指垃圾部分直接燃烧,或向热解反应器提供空气、富氧或纯氧作为补充燃料。纯氧作催化剂会产生CO2 H2O 等气体,其混在热解可燃气中,稀释了可燃气,会降低热解气的热效应。采用空气作催化剂则含大量N2,更稀释了可燃气,使热解可燃

生活垃圾热解焚烧处置处置技术方案

生活垃圾焚烧热解处理系统 (3吨/天) 1处理系统工艺流程设计 1.1基本设计说明 1、处理对象:城镇生活垃圾; 2、处理规模:3吨/日; 3、每日运行时间:12小时; 4、年运行工作时间:330天; 5、物料特性:生活垃圾,筛选后垃圾热值可达到~1500Kcal/kg; 6、炉型:立式热解炉; 7、废物低位热值(设计值):1500kcal/kg; 8、焚烧系统主要技术参数:

10、进料方式:机械; 11、出渣方式:螺旋出渣; 12、烟气净化处理方式:热交换器+活性炭/消石灰喷粉装置+布袋除尘组合式; 13、噪音:距设备1.5米处,噪音不超过85分贝,厂界外的噪音不超过65分贝,对噪音产生源设置噪音隔离罩,使噪音达到要求; 14、占地面积:20米×40米; 15、垃圾焚烧处置达到《生活垃圾焚烧控制标准》(GB18485-2001)。 1.2处理系统组成 生活垃圾热解气化焚烧处理系统主要由:(1)生活垃圾储存间(2)机械进料系统(3)热解气化焚烧系统(4)换热系统(热交换器)(5)烟气除酸及净化排放系统(6)供风、排风系统(7)辅助燃烧系统(8)供水系统(9)自动控制(10)应急处理、安全防爆系统(11)工艺管道及检修平台等辅助设备(12)排渣等部分组成。

1.3处理系统工艺流程说明 经筛选后的生活垃圾运至垃圾焚烧车间内,经筛选后卸入垃圾储存间暂存。当运行时,打开炉门,储存间内的垃圾采用机械方式送入热解气化炉内,一次进垃圾3吨,关闭炉门,点火进行热解焚烧。 在热解炉底部鼓入小于理论空气量的空气(0.65~0.75),垃圾废物中长链的有机化合物成份在缺氧的环境中迅速裂解成短链的可燃气体(碳氢化合物、一氧化碳、氢气等),热解可燃气体通过换热器降温至约50℃,脱除气体大部分水分,又通过换热器升温,而后进入二燃室和过量空气充分混合进行高温过氧充分燃烧,烟气在二燃室停留时间2s以上,使烟气里的有毒有害物质的分子结构被彻底分解,分解效率超过99.9%。垃圾热解焚烧结束后,打开炉门,冷却炉渣,待冷却后螺旋出渣。 在二燃室充分燃烧的高温烟气通过热交换器换热,热能用于提升热解气(脱除水分后温度在50℃左右)使烟气降温至180℃左右,以满足后段布袋除尘器工作温度要求。同时,在烟气管道内喷入活性炭粉和消石灰,去除酸性气体和烟尘,烟气经冷却除酸系统处理后,以进一步吸附二恶英、重金属等有害物质和脱除酸性气体,然后烟气进入布袋除尘器过滤除尘后,经过烟囱达标排放。 2处理系统工艺流程图 螺旋出渣热交换后排水

3组主要气化工艺及8种典型气化炉图文详解

组主要气化工艺及种典型气化炉图文详解 中国耐火材料网 一、气化简介 气化是指含碳固体或液体物质向主要成分为和的气体的转换。所产生的气体可用作燃料或作为生产诸如或甲醇类产品的化学原料。 气化的限定化学特性是使给料部分氧化;在燃烧中,给料完全氧化,而在热解中,给料在缺少的情况下经过热降解。 气化的氧化剂是或空气和,一般为蒸汽。蒸汽有助于作为一种温度调节剂作用;因为蒸汽与给料中的碳的反应是吸热反应(即吸收热)。空气或纯的选择依几个因素而定,如给料的反应性、所产生的气体用途和气化炉的类型。 气化最初的主要应用是将煤转化成燃料气,用于民用照明和供暖。虽然在中国(及东欧)气化仍有上述用途,但在大多数地区,由于可利用天然气,这种应用已逐渐消亡。最近几十年中,气化主要用于石化工业,将各种碳氢化合物流转换成"合成气",如为制造甲醇,为生产提供或为石油流氢化脱硫或氢化裂解提供。另外,气化更为专门的用途还包括煤转换为合成汽车燃料(在南非应用)和生产代用天然气()(至今未有商业化应用,但在年代末和年代初已受到重视)。 二、气化工艺的种类 有多种不同的气化工艺。这些工艺在某些方面差别很大,例如,技术设计、规模、参考经验和燃料处理。最实用的分类方法是按流动方式分,即按燃料和氧化剂经气化炉的流动方式分类。 正像传统固体燃料锅炉可以划分成三种基本类型(称为粉煤燃烧、流化床和层燃),气化炉分为三组:气流床、流化床和移动床(有时被误称为固动床)。流化床气化炉完全类似于流化床燃烧器;气流床气化炉的原理与粉煤燃烧类似,而移动床气化炉与层燃类似。每种类型的特性比较见表。

* 如果在气化炉容器内有淬冷段,则温度将较低。 .气流床气化炉 在一台气流床气化炉内,粉煤或雾化油流与氧化剂(典型的氧化剂是氧)一起汇流。气流床气化炉的主要特性是其温度非常高,且均匀(一般高于℃),气化炉内的燃料滞留时间非常短。由于这一原因,给进气化炉的固体必须被细分并均化,就是说气流床气化炉不适于用生物质或废物等类原料,这类原料不易粉化。气流床气化炉内的高温使煤中的灰溶解,并作为熔渣排出。气流床气化炉也适于气化液体,如今这种气化炉主要在炼油厂应用,气化石油原料。 现在,运营中的或在建的几乎所有煤气化发电厂和所有油气化发电厂都已选择气流床气化炉。气流床气化炉包括德士古气化炉、两种类型的谢尔气化炉(一种是以煤为原料,另一种以石油为原料)、气化炉和气化炉。其中,德士古气化炉和谢尔油气化炉在全世界已有部以上在运转。 .流化床气化炉 在一个流化床内,固体(如煤、灰)悬浮在一般向上流动的气流中。在流化床气化炉内,气体流包含氧化介质(一般是空气而非)。流化床气化炉的重要特点(像流化床燃烧器一样)是不能让燃料灰过热,以至熔化粘接在一起。假如燃料颗粒粘在一起,则流化床的流态化作用将停滞。空气作为氧化剂的作用是保持温度低于℃。这表示流化床气化炉最适合用比较易反应的燃料,如生物质燃料。 流化床气化炉的优点包括能接受宽范围的固体供料,包括家庭垃圾(经预先适当处理的)和生物质,如木柴,灰份非常高的煤也是受欢迎的供料,尤其是那些灰熔点高的煤,因为其他类型的气化炉(气流床和移动床)在熔化灰形成熔渣中损失大量能。 流化床气化炉包括高温温克勒(),该气化炉由英国煤炭公司开发,目前由能源有限公司()销售,作为吹空气气化联合循环发电()的一部分。在运转的大型流化床气化炉相对较少。流化床气化炉不适用液体供料。 .移动床气化炉 在移动动床气化炉里,氧化剂(蒸汽和)被吹入气化炉的底部。产生的粗燃料气通过固体燃料床向上移动,随着床底部的供料消耗,固体原料逐渐下移。因此移动床的限定特性是逆向流动。在粗燃料气流经床层时,被进来的给料冷却,而给料被干燥和脱去挥发分。因此在气化炉内上下温度显着不同,底部温度为℃或更高,顶部温度大约℃。燃料在气化过程中脱除挥发分意味着输出的燃料气含有大量煤焦油成分和甲烷。故粗燃料气在出口处用水洗来除去焦油。其结果是,燃料气不需要在合成气冷却器中来高温冷却,假如燃料气来自气流反应器,它就需冷却。移动床气化炉为气化煤而设计,但它也能接受其他固体燃料,比如废物。

(完整版)垃圾热解气化总结

1. 固废管理的原则 减量化:减量化是指在生产、流通和消费等过程中减少资源消耗和废物产生,以及采用适当措施使废物量减少(含体积和重量)的过程。 资源化:将废物直接作为原料进行利用或着对废物进行再生利用,也就是采用适当措施实现废物的资源利用过程,其中再利用是指将废物直接作为产品或者经修复、翻新、再制造后继续作为产品使用,或者将废物的全部或者部分作为其他产品的部件予以使用。分为三种类型:①保持原有功能和性质,直接回收利用;②不再保持其原有的形态和使用性能,但还保持利用其材料的基本性能,如废金属回收利用、废纸再生、玻璃再生等;③不再保持其原有的形态、使用性能和材料的基本性能,但还保持利用其部分分子特性等如生物质有机垃圾的好氧堆肥、厌氧发酵等。 无害化:在垃圾的收集、运输、储存、处理、处置的全过程中减少以至避免对环境和人体健康造成不利影响。 2. 固废处理方法 垃圾焚烧,或称垃圾焚化,是一种废物处理的方法,通过焚烧废物中有机物质,以缩减废物体积。焚烧与其他高温垃圾处理系统,皆被称为“热处理”。焚化垃圾时会将垃圾转化为灰烬、废气和热力。灰烬大多由废物中的无机物质组成,通常以固体和废气中的微粒等形式呈现。废气在排放到大气中之前,需要去除其中污染气体和微粒。其余残余物则用于堆填。在某些情况,焚化垃圾所产生的热能可用于发电。 焚化是其中一种将垃圾转换成能源的技术,其他如气化、等离子弧气化、热解和厌氧消化。垃圾焚化会减少原来垃圾80%~85%的质量和95%~96%的体积(垃圾在垃圾车里已经过压缩),减少程度取决于可回收材料的成分和其回收的程度,如灰烬中有可回收的金属。这意味着,尽管焚化不能完全取代堆填,但它却可以大大减少垃圾量。垃圾车一般在运送垃圾至焚化炉前,会以内置压缩机内压缩以减少垃圾的体积。或者,未经压缩运输的垃圾可以在填埋场进行压缩,减少体积近70%。很多国家常在堆填区作简单的垃圾压缩。另外,垃圾焚烧在处理某些类型的垃圾,如医疗垃圾和一些有害废物时有很大的优势,因为焚烧过程的高温能销毁垃圾中的病原体和毒素。综合而言,垃圾焚烧处理的减量化效果最好,但存在燃烧产生污染物的环境风险。 卫生填埋法是指采取防渗、铺平、压实、覆盖等措施对城市生活垃圾进行处理和对气体、渗滤液、蝇虫等进行治理的垃圾处理方法。该方法采用底层防渗、垃圾分层填埋、压实后顶层覆盖土层等措施,使垃圾在厌氧条件下发酵,以达到无害化处理。 卫生填埋处理是垃圾处理必不可少的最终处理手段,也是现阶段我国垃圾处理的主要方式。科学合理地选择卫生填埋场场址,可以有利于减少卫生填埋对环境的影响。 场址的自然条件符合标准要求的,可采用天然防渗方式。不具备天然防渗条件的,应采用人工防渗技术措施。场内实行雨水与污水分流,减少运行过程中的渗沥水产生量,并设置渗沥水收集系统,将经过处理的垃圾渗沥水排入城市污水处理系统。不具备排水条件的,应单独建设处理设施,达到排放标准后方可排入水体。渗沥水也可以进行回流处理,以减少处理量,降低处理负荷,加快卫生填埋场稳定化。设置填埋气体导排系统,采取工程措施,防止填埋气体侧向迁移引发的安全事故。尽可能对填埋气体进行回收和利用,对难以回收和无利用价值的,可将其导出处理后排放。填埋时应实行单元分层作业,做好压实和覆盖。填埋

农村生物质气化炉系统课程设计

农村生物质气化炉系统 课程设计精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

目录

一、设计的原始资料 设计原因 目前,部分农村地区仍存在秸秆焚烧、采用燃煤炊事取暖现象。秸秆的焚烧不但污染了大气环境,还使得储存在秸秆中的能量白白的浪费。随着一次能源的日益枯竭,生物质等新能源领域受到了人们的青睐。如何环保高效地发挥秸秆的潜能成了许多学者的研究方向,近年来,生物质气化炉的发展日益成熟,但仍存在着有待攻关的难题。本文主要设计了适合小型农户自产自销秸秆等生物质气化炉用于炊事采暖,设计方案操作简单、经济性能好,具有一定的可行性。 设计题目 某农村住宅生物质气化气应用的规划设计 设计条件 1.所在地区:辽宁省沈阳市 2.农村住宅平面图及尺寸,如下图1-1所示 3.一家4口人。 设计方案 根据该农村住宅所在地的气候条件和房屋维护结构保温情况采用面积概算热指数方法计算房间热负荷,并依此确定散热器类型和所需散热器片数,然后 书房 餐厅 卧室卧室1 储物 客厅 内走廊 洗浴

设计住宅供暖系统,确定供暖形式,绘制供暖管网平面图和系统图,再依据等温降法进行管网水力计算,依此选择各个管段的管径,并配置相应的管路附件(补偿器、除污器、排气阀等);其次再统计计算该住宅生活日用气量,选择气化炉类型,初步估计气化炉气化强度,确定生物质日消耗量和气化炉热功率进而确定气化炉形状和各部位尺寸,计算生物质气化和气化气完全燃烧需空气量,依此选择相应的风机,并配置相应的附件设施。 二、供暖热负荷的计算 房间热负荷的计算 考虑到农村住宅户型占地面积较宽裕,且生物质气化炉会产生烟尘、噪音,具有一定的不安全因素。因此,将锅炉设备不放置在主体建筑中。设计中将气化锅炉与燃气炉都设置在主体建筑左边的新建的屋子中。故考虑整个主体建筑的热负荷,计算如下: 设计热负荷n Q ,按面积概算热指数计算,即: 1000/F q Q f n ?= (2-1) 式中:n Q —建筑物的供暖热负荷,KW; F —建筑面积2m ; f q —单位面积供暖热指标2/m W 。 以卧室1为例,228m F =,2/105m W q f =,根据公式(2-1)计算出卧室1的设计热负荷为:KW Q n 94.210528'=?= 依次计算个房间的采暖热负荷,详见表2-1。 散热器的选择及计算

气化炉百题问答

一:预热水流程: 答:三次水建X-1204—P-2211—203二楼球阀去预热水阀打开—FV-217—大滤网—激冷环—50旁路—去渣池球阀开—X-1204 新系统:LV-1309二次水—X-1303补水—渣池泵—FV-1408—气化炉—预热水风槽—X-1303(渣池) 三:高压煤浆泵的启动步骤: 答:○1开车前的检查。○2水煤浆的工艺端的处理。○3驱动液端的工艺处理。○4确认阀门。○5清水循环。6切换煤浆。 四:高压煤浆泵清水大循环需要确认哪些阀门: 答:1煤浆槽底出口阀关。2煤浆泵入口管线冲洗阀2只打开中间排放阀关闭。3入口管排放阀3只关闭。4关闭泵入口取样阀。5泵出口排放阀2只全关。6煤浆泵至气化炉阀全关。7煤浆泵去气化炉主管线中的冲洗水阀全关(两道)。○8203九楼SBV01(煤浆切断阀)关闭。○9SRV01(九楼煤浆循环阀)打开。○10冲洗SBV01与SBV02之间冲洗水阀关及冲洗SBV01前两道阀全关。○11煤浆槽煤浆限12去煤浆槽冲洗水法全开。○13煤浆循环管线去煤浆槽最后一道阀全关,阀前排放阀全开,并连接软管至203流孔板旁路全关(两只)。○ 渣池地沟。 五:高压煤浆泵的巡检内容: 答:1观察泵进出口阀的压力。2润滑油驱、动液的油位,润滑油泵驱动液泵运行正常,进出口隔膜缓冲压力,电气、仪表设施是否正常,仪表空气压力是否正常。 六:捞渣机的巡检内容: 答:电机温度、电流是否正常。液压系统油位、链轮冲洗水、刮板及链条、捞渣机减速箱、轴承、油位、液位及刮料情况。 七:冲洗小滤网的步骤: 答:1确认备用小滤网冲洗水阀导淋阀关闭。2缓慢打开备用小滤网前后球阀,确认小滤网压差下降。3中控监视FTC217/267/317流量3缓慢关闭小滤网的入口阀同时与总控联系激冷水的流量是否正常。4关小滤网的出口阀、关小滤网的前后球阀。5缓慢打开泄压阀,泄至常压缓慢打开冲洗水阀冲洗泄压阀。6打开小滤网清洗。7清洗完后回装打开前后球阀。8打开冲洗水给小滤网冲压。9关冲洗水阀。 10做备用小滤网交接 八:冲洗大滤网的步骤: 答:1冲洗前总控确认FV212/激冷室黑水进高压闪蒸罐手动调节正常,确认气化炉合成气出口温度正常,高压灰水和冷凝液正常。2总控联系仪表人员把进入气化炉连锁的液位设旁路或打假信号。3总控确认气化炉液位正常。4与总控联系缓慢打开大滤网旁路阀。5缓慢关闭大滤网进出口阀,确认激冷水正常。6缓慢打开大滤网倒淋阀,泄压速度<0.1mpa/min,慢开冲洗水阀,冲洗3~10min。8关闭倒淋阀,微开冲洗水阀冲压至3.0mpa,缓慢打开大滤网进出口阀。9缓慢关闭大滤网旁路阀,同时关注激冷水流量。10冲洗结束。 九:冲洗水流程: 答:新系统:冲洗水槽——冲洗水泵→澄清槽底流泵管线冲洗 →煤浆制备管线 →煤浆槽搅拌器外停煤浆冲洗管线 →冲洗煤浆管线与煤浆循环管线 →冲洗高压煤浆泵进出口管线

相关主题
文本预览
相关文档 最新文档