当前位置:文档之家› MM定理证明过程-MM定理证明过程

MM定理证明过程-MM定理证明过程

MM定理证明过程-MM定理证明过程
MM定理证明过程-MM定理证明过程

1无税收条件下的MM定理

1.1假设条件

假设1:无摩擦市场假设

?不考虑税收;

?公司发行证券无交易成本和交易费用,投资者不必为买卖证券支付任何费用;

?无关联交易存在;

?不管举债多少,公司和个人均无破产风险;

?产品市场是有效的:市场参与者是绝对理性和自私的;市场机制是完全且完备的;不存在自然垄

断、外部性、信息不对称、公共物品等市场失灵

状况;不存在帕累托改善;等等;

?资本市场强有效:即任何人利用企业内部信息都无法套利,没有无风险套利机会;

?投资者可以以企业借贷资金利率相同的利率借入或贷出任意数量的资金。

假设2:一致预期假设

?所有的投资者都是绝对理性的,均能得到有关宏观、行业、企业的所有信息,并且对其进行完全

理性的前瞻性分析,因此大家对证券价格预期都

是相同的,且投资者对组合的预期收益率和风险

都按照马克维兹的投资组合理论衡量。

1.2MM定理第一命题及其推论

MM定理第一命题:

有财务杠杆企业的市场价值和无财务杠杆企业的市场价值相等。

证明方法是无套利均衡分析法。

MM定理第一命题推论一:

债转股后如果盈利未变,那么企业的股票价格也不变。

MM定理第一命题推论二:

股东期望收益率会随财务杠杆的上升而上升。

含义:正常情况下B公司在债转股之后会降低其股票的预期收益率,或者说A公司的股票预期收益率小于B公司的股票的预期收益率。

MM定理第一命题推论三:

股东每股盈利也会随着财务杠杆的上升而上升。

1.3MM定理第二命题及其推论

MM定理第二命题:

公司加权平均资本成本(WACC)与公司的资本结构无关。

MM定理第二命题推论:

有负债的公司的权益资本成本等于同一风险等级的无负债公司的权益资本成本加上风险补偿,风险补偿的比例因子是负债权益比k。

2有税收条件下的MM定理

2.1假设条件

考虑税收,其他假设与前面相同。有税收条件下的MM定理仅一个定理,有四个推论。

2.2MM定理第一命题及其推论

MM定理第一命题:

在考虑税收的情况下,有财务杠杆的企业的市场价值等于无财务杠杆的企业的市场价值加上“税盾”的市场价值。

MM定理第一命题推论一:

在考虑税收情况下,股东的期望收益率仍然会随着财务杠杆的上升而上升。即在考虑税收的情况下,不考虑税收时MM定理的命题一的推论二仍然成立。

MM定理第一命题推论二:

考虑税收情况下,股东的每股收益也仍然会随着财务杠杆的上升而上升,即在考虑税收情况下,不考虑税收MM定理命题一推论三仍然成立。

MM定理第一命题推论三:

在考虑税收情况下,WACC 与公司资本结构有关。(证略)

根据CAPM 模型,有税收后的贝塔系数/

β和无税收情况下的贝塔系数β的关系为/(1(1))D T SE

ββ=+-(证明从略),由此得出股权预期收益,然后再根据公司计算出WACC ,显然WACC 是受资本结构影响的。 MM 定理第一命题推论四:

在考虑税收情况下,有负债的公司的权益资本成本仍然大于同一风险等级的无负债公司的权益资本成本,风险补偿的形式也更复杂

MM 定理的缺陷

主要是假设不合理导致的缺陷

? 假设没有破产风险不符合实际。考虑税收的话,按照MM 定理所有都是债权融资则公司价值最大化,但考虑到实际的破产风险,杠杆增加降低了融资成本WACC ,但增加了公司的破产风险,故存在最优的资本结构使得公司达到价值最大化。

? MM 定理忽略了交易成本和信息不对称性等,显然不符合事实。

? 以上仅是两个例子,其他的大家可以想想。

费马猜想之证明.

费马猜想之证明 景光庭 引言:20世纪60年代初,笔者首次接触“费马猜想”。在以后的岁月中,笔者断断续续地研究它。直至1992年,才有机会在《潜科学》上相继发表过三篇论文,这次是最终的证明。 虽然美国数学家怀尔斯因发表论证“费马猜想”的文章,并于1997年荣膺国际上的沃尔夫斯克尔数学大奖,但并没有推开蒙在世界数学家心头上的阴云。笔者曾通过《美国教育交流中心》向怀尔斯寄去了总长仅一页的论文复印件,并明确指出,他在证明中将“费马方程”转化为椭圆曲线,而笔者转化为抛物线,这是不能共存的。何况笔者的转化过程,浅显得连中学生都能读懂,无懈可击,百分之百的正确。怀尔斯巨著难道不是沙滩上的一座摩天大厦?我也向德国马克斯普朗克研究所的学者法尔廷斯寄去了论文复印件,亦表述了上述观点,因为他是少数几个通读怀尔斯论文,并唯一肯定和帮助怀尔斯将论文从二百多页化减到一百三十页的学者 。遗憾的是至今未复。 如果怀尔斯不屑回答一个业余数学爱好者提出的疑问,对他就是一个绝妙的讽刺,因为他以毕生精力研究攻克和使他一举成名的“费马猜想”提出者费马是律师,而不是法兰西学院的院士。恰恰相反,数学只是他的业余爱好。他与人交流数学心得,往往是在通信中进行的,并不象今天这样只有在学术界认可的刊物上发表的文章才能被专家认可。如果当年的学术界也对费马这样苛求,那么今天根本不存在什么“费马猜想”这个问题了。 定理:2>p P P P Z Y X =+ (1) 中,p 为奇素数,X ,Y ,Z 无正整数解。 证:假设X ,Y ,Z 均有正整数解。 令 X=x ,Z = x +a (a 为正整数), Y = y 0+a (y 0为正整数),约定(x ,y 0,a )=1 ,则有: p p p a x a y x )()0+=++( (2) 即: 0 (1) 12221101120221010=----++++--------x a c x a c ax c y a c y a c ay c y p p p p p p p p p p p p p p p (3) 不失一般性,可设1),(0≥=d y x 1),(,,11101===y x dy y dx x ,以d 除 (3)式, 并令:10-=p d b ,,2 1 1-=p p ad c b ……,1 11---=p p p p a c b , 于是:0 (11212111111) 1 110=----+++-----x b x b x b y b y b y b p p p p p p 11 1 123122111 1 211110............s y b x b x b x b x b y b y b p p p p p p p =++++= +++------- 11221111011.......----=----p p p p b y b y b y b x s 11231221111.......----=----p p p p b x b x b x b y s

三余弦公式的巧用

三余弦公式的巧用 1AO AO AO 12 αθααθθθθθ2 如图:斜线和平面所成的角为 斜线在平面上的射影A B ,A C 为平面内异于A B 的直线, A B 与A C 的夹角为,与A C 的夹角,则有:cos =cos cos 该公式本质上反映了线面角与线线角之间的数量关系,其本质特征是由两个平面互相垂直,两个平面内的三条直线所成角的定量关系。在处理异面直线所成角、线面角的问题时效果明显。下面通过近年高考试题予以说明。 例一: (2005全国卷I 第18题) 已知四棱锥P-ABCD 的底面为直角梯形,AB CD ∥, ⊥=∠PA DAB ,90 底面ABCD , 且PA=AD=DC= 2 1 AB=1,M 是PB 的中点。 (Ⅱ)求AC 与PB 所成的角; 常规解法:过点B 作BE//CA ,且BE=CA ,则∠PBE 是AC 与PB 所成的角. 连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由 PA ⊥面 ABCD 得∠PEB=90°在 Rt △PEB 中 BE= 2,PB=5, .510cos == ∠∴PB BE PBE .5 10 arccos 所成的角为与PB AC ∴ 析:已知条件中有PA ⊥底面ABCD 若使用三余弦公式则:PB 在平面ABCD 上的射影AB , 210 cos 22 PBA BAC AC PB ∠= ∠= = ∴与 .5 10 arccos 所成的角为与PB AC ∴ 评:只要找到三线的夹角即可,无需作图求解。 例二(2006福建卷)如图,四面体ABCD 中, A B M D E O C

勾股定理16种证明方法

勾股定理的证明 【证法1】(课本的证明) a 、 b ,斜边长为 c ,再做三 个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++,整理得222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21.把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵Rt ΔHAE ≌Rt ΔEBF, ∴∠AHE = ∠BEF . ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵Rt ΔGDH ≌Rt ΔHAE, ∴∠HGD = ∠EHA . ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ABCD 是一个边长为a + b 的正方形,它的面积等于()2 b a +. ∴ ()2 22 14c ab b a +?=+. ∴2 2 2 c b a =+.

以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角 三角形的面积等于ab 21. 把这四个直角三 角形拼成如图所示形状. ∵Rt ΔDAH ≌ Rt ΔABE, ∴∠HDA = ∠EAB . ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵EF = FG =GH =HE = b ―a , ∠HEF = 90o. ∴EFGH 是一个边长为b ―a 的正方形,它的面积等于()2 a b -. ∴()22 214c a b ab =-+?. ∴2 2 2 c b a =+. 【证法4】(1876年美国总统Garfiel d 证明) 以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面 积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵Rt ΔEAD ≌Rt ΔCBE, ∴∠ADE = ∠BEC . ∵∠AED + ∠ADE = 90o, ∴∠AED + ∠BEC = 90o. ∴∠DEC = 180o―90o= 90o. ∴ΔDEC 是一个等腰直角三角形, 它的面积等于221c . 又∵∠DAE = 90o, ∠EBC = 90o, ∴ AD ∥BC . ∴ABCD 是一个直角梯形,它的面积等于()2 21 b a +. ∴()2 2212122 1 c ab b a +?=+. ∴2 22c b a =+.

正、余弦定理解题易错点剖析

正、余弦定理解题易错点剖析 正、余弦定理及其应用问题综合性强、解题有一定的技巧,学生在解题时,经常因为审题不仔细,忽视一些条件而导致错误.本文分类剖析了解题中常出现的错误,旨在为同学们提个醒,以达防微杜渐的目的. 一、隐含条件被忽视致错 例1 在ABC △中,若3C B =,求 c b 的取值范围. 错解:由正弦定理可知 sin3sin cos2cos sin 2sin sin c B B B B B b B B +==22cos 22cos 4cos 1B B B =+=-. 由20cos 1B ≤≤,得214cos 13B --≤≤,故13c b -≤≤. 剖析:上述解法中,忽视了B 的取值范围及a b c ,,均为正的条件而致错. 正解: 24cos 1c B b =-.(过程同错解) 又∵180A B C ++=°,2C B =, ∴045B <<°,2cos 12 B <<, ∴214cos 13B <-<∴,故13c b < <. 在解决解三角形问题时,经常因忽视三角形中的隐含条件而出现解题错误.同学们在解题时一定要“擦亮慧眼”,否则极容易产生错解. 觅错:某同学遇到这样一道问题:在ABC △中,已知222 15a b C ===,,°,则A =_________. 分析:已知两边及其夹角,先用余弦定理,算出c ,再用正弦定理算出1sin 2 A = ,便大笔一挥,写上了“30°或150°”,轻轻松松搞定,不料老师却给他判了零分.下面是这位同学的详细解题过程,同学们帮他找找错因吧! 错解:由余弦定理,得2222cos15843c a b ab =+-=-°. 又sin 1sin 2 a C A c = =,而0180A <<°°, ∴ 30A =°或150A =°. 所以空格上填“30°或150°”. 二、制约条件被忽视致错 例2 在ABC △ 中,62c =+,30C =°,求a b +的最大值. 错解:∵30C =°,∴150A B +=°,150B A =-°. 由正弦定理,得62sin sin(150)sin 30a b A A +==-°° , 2(6 2)s i n a A =+∴,

余弦定理的证明方法大全(共十种方法)

余弦定理的证明方法大全 (共十种方法) 一、余弦定理 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的积的两倍,即在ABC ?中,已知AB c =,BC a =,CA b =,则有 2222cos a b c bc A =+-, 2222cos b c a ca B =+-, 2222cos c a b ab C =+-. 二、定理证明 为了叙述的方便与统一,我们证明以下问题即可: 在ABC ?中,已知AB c =,AC b =,及角A ,求证:2222cos a b c bc A =+-. 证法一:如图1,在ABC ?中,由CB AB AC =-可 得: ()()CB CB AB AC AB AC ?=-?- 22 2AB AC AB AC =+-? 222cos b c bc A =+- 即,2222cos a b c bc A =+-. 证法二:本方法要注意对A ∠进行讨论. (1)当A ∠是直角时,由22222222cos 2cos90b c bc A b c bc b c a +-=+-?=+=知结论成立. (2)当A ∠是锐角时,如图2-1,过点C 作CD AB ⊥,交AB 于点D ,则 在Rt ACD ?中,cos AD b A =,sin CD b A =. 图1

从而,cos BD AB AD c b A =-=-. 在Rt BCD ?中,由勾股定理可得: 222BC BD CD =+ 22(cos )(sin )c b A b A =-+ 222cos c cb A b =-+ 即,2222cos a b c bc A =+-. 说明:图2-1中只对B ∠是锐角时符合,而B ∠还可以是直角或钝角.若B ∠是直角,图中的点D 就与点B 重合;若B ∠是钝角,图中的点D 就在AB 的延长线上. (3)当A ∠是钝角时,如图2-2,过点C 作CD AB ⊥,交BA 延长线于点D ,则 在Rt ACD ?中,cos()cos AD b A b A π=-=-,sin()sin CD b A b A π=-=. 从而,cos BD AB AD c b A =+=-. 在Rt BCD ?中,由勾股定理可得: 222BC BD CD =+ 22(cos )(sin )c b A b A =-+ 222cos c cb A b =-+ 即,2222cos a b c bc A =+-. 综上(1),(2),(3)可知,均有2222cos a b c bc A =+-成立. 证法三:过点A 作AD BC ⊥,交BC 于点D ,则 在Rt ABD ?中,sin BD c α= ,cos AD c α=. 在Rt ACD ?中,sin CD b β=,cos AD b β=. 由cos cos()cos cos sin sin A αβαβαβ=+=-可得: 2cos AD AD BD CD AD BD CD A c b c b bc -?=?-?= 图2-1 图2-2 图3

安德鲁怀尔斯的证明比我复杂一百倍

安德鲁怀尔斯的证明比我复杂一百倍 安德鲁怀尔斯的证明用了130页,并利用了连费马都没接触的理论来证明,充分说明他的证明并没有揭开费马所说的美妙证明的历史真相。真正理解费马原始思想的人是我。我只用了一页的版面通俗地透彻地严格地证明了这一结论。是真金还是铜大家可以验证。 揭开费马大定理真相 当整数n大于2时X n +Y n=Z n 没有正整数解。显然X、Y、Z都不会是零。 证明方法: 由于当n为大于2质数时证明X n +Y n=Z n 没有正整数解。与证明X1n+X2n+X3n =0没有非零的整数解道理一样。又由于当n=ab时X1 +X2n+X3n =0可写成(X1a)b+(X2a)b+(X3a)b=0; 因此只要证明当整数n为大于2的质数X1n+X2n+X3n =0没有非零的整数解,可类推X n +Y n=Z n 没有正整数解,而n=4没有整数解早已被人证明。现在我们需要证明当当n为大于2质数时X1n+X2n+X3n =0没有非零的整数解。 假设存在有整数解,会不会出现冲突呢,会的。 如果X1n+X2n+X3n =0存在有整数解,而n为大于2质数,因此必存: X1X2+X2X3+X3X1=d (d为整数更是有理数);X1X2X3=c(c为整数更是有理数)也就是说必存在这样的方程组; X1n+X2n+X3n =0 (1) X1X2+X2X3+X3X1=d (d为整数更是有理数) (2) X1X2X3=c(c为整数更是有理数) (3) 由方程组必可合成关于X的一元n次方程,又由于若X1=X2或X1=X3或X2=X3均不存在整数解,原因是2X1n+X3n=0没有非零整数解,因此倘若有非零整数解也只能是X1、X2、X3 互不相等。由于作为底的仅有X1、X2、X3且均要同时有理地合成为【f(X)】n 的形式现在的问其题在于,关于X的一元n次方程(n为质数)既要把未知数都配方成n次方内,又要表示出三个解的不相等。而d、b均为有理数,能做得到吗?做不到的,我们知道,当n 为质数时若将方程有理化成【f(X)】n =P;只能反映有一个实数解,其他是虚数解。说明X1、X2、X3取有理数解是不相容的。更谈不上整数解。也就是说要符合费马所规定条件的方程是不存在,因此我的假设是不成立的。 由于当n为大于2质数时证明X n +Y n=Z n 没有正整数解。与证明X1n+X2n+X3n =0没有非零的整数解道理一样。 当n为合数时,n可分解成质因素,可将一个质因数写成括号外的方次来证明,如果n 只含质因素2,n必可写成4m的形式,可当成4次方程来证明。而n=4时,费马本人已证明。至此费马定理证明完毕。

巧用三余弦定理解题教程文件

巧用三余弦定理解题

A O P α l B A O 1θ2 θθ P Q α 巧用“三余弦定理”解题 “三余弦定理”的内容:如图1,直线AO 是平面α 的斜线,AQ 是AO 在平面内的射影,直线AP 在平面α内.设 21,,θθθ=∠=∠=∠QAP OAQ OAP ,有以下结 论:21cos cos cos θθθ ?=.我们可以形象地把这个结论称为“三余弦定理”, 应用“三余弦定理”可以使我们的很多立体几何问题的解决变得简单. 图1 应用“三余弦定理”解题的步骤如下: 1. 明确三线:平面内的直线(以下简称“内线”),平面的斜线和斜线在平面内的射影. 2. 明确三角:斜线与“内线”所成为θ,斜线与射影所成的角为1θ,射影与“内线”所成的角为2θ. 3. 定理运算. 例1.如图2,已知AO 是平面α的一条斜线,OB ⊥α,B 是垂足,AP 是α内一直线,∠OAP=60o ,∠BAP=45o ,求斜线AO 与平面α所成的角. 分析:AP 是“内线”,AO 是斜线,AB 是射影,所以21,,θθθ=∠=∠=∠BAP OAB OAP ,直接利用“三余弦定理”求解.解题过程略.

略解: 点评:斜线与平面所成的角即斜线与射影所成的角,明确了“三线”与“三角”,直接代定理求解. 图2 变式1:已知∠OAB=45o ,∠BAP=45o ,求直线AO 与AP 所成的角; 分析:同例1. 变式2:已知∠OAB=45o ,∠BAP=45o , l //AP, 求直线AO 与l 所成的角; 分析:因为l //AP ,直线AO 与AP 所成的角同AO 与l 所成的角相等.我们在解题时,只需要明确“三线”,这时l 是“内线”,AO 是斜线,AB 是射影,然后斜线 AO 与“内线”l 所成为θ,斜线AO 与射影AB 所成的角为1θ,射影AB 与“内线”l 所成的角为2θ, 问题迎刃而解. 例2.如图3,在棱长为1正方体ABCD- A 1B 1C 1D 1中,E 、F 分别是B 1C 1和CC 1的中点,求异面直线A 1B 与EF 所成角的余弦值. 分析:直线BA 1是平面BCC 1B 1的斜线,BB 1是射影,EF 为“内线”,这样就明确是三线 , 再明确三角,然后定理计算即可. 解:由题意可知,直线BA 1是平面BCC1B1的斜线, BB1是BA 1在平面内的射影,EF 为平面内的直线, 所以BA 1与EF 所成的角为θ,111θ=∠BC A ,EF 与BB 1所成的角为2θ 图3 C 1 A B C D A 1 B 1 D 1 F E

费马大定理的美妙证明

费马大定理的美妙证明 成飞 中国石油大学物理系 摘要:1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” 0、费马大定理: 当n>3时,X n +Y n=Z n,n次不定方程没有正整数解。 1、当n=1,X+Y=Z,有任意Z≥2组合的正整数解。任意a.b.c;只要满足方程X+Y=Z;a,b.c 由空间平面的线段表示,有 a b c 可见,线段a和线段b之和,就是线段c。 2、当n=2,X2+Y2=Z2,有正整数解,但不任意。 对于这个二次不定方程来说,解X=a,Y=b,Z=c,在空间平面中,a,b,c不能构成两线段和等于另外线段。 又因为,解要满足二次不定方程,解必然a+b>c且c>a,b。 可以知道,二次不定方程的解,a,b,c在空间平面中或许可以构成三角形, B c A 根据三角形余弦定理,有 c2=a2+b2-2ab× cosɑ( 0<ɑ< π)

此时,a,b,c,即构成了三角形,又要满足二次不定方程X2+Y2=Z2 ,只有当且仅当ɑ=900,cosɑ=0,a,b,c构成直角三角形时c2=a2+b2,既然X=a,Y=b,Z=c,那么二次不定方程X2+Y2=Z2有解。 3、当n=3,X3+Y3=Z3,假设有正整数解。a,b,c就是三次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。 此时,a,b,c也必构成三角形, B A 根据三角形余弦定理,有 c2 = a2+b2-2ab× cosɑ( 0<ɑ< π) 因为,a,b,c是三次不定方程X3+Y3=Z3的正整数解,cosɑ是连续函数,因此在[-1,1]内取值可以是无穷个分数。根据大边对大角关系,ɑ角度取值范围(60o,180o),由此我们cosɑ的取值分成两部分,(-1,0]和[0,?)范围内所有分数;而a+b>c,且c>a,b, 1、当cosɑ=(-1,0],三角形余弦定理关系式得到, c2 = a2+b2+mab m=[0,1)内正分数; 等式两边同乘以c,有 c3 = a2c + b2c + mabc 因为c>a,b,那么 c3 > a3+ b3 2、当cosɑ=?,三角形余弦定理关系式得到, c2 = a2+b2-ab 等式两边同乘以a+b,有 (a+b)c2 = a3+ b3 又因为a+b>c, 所以,c3 < a3+ b3 (根据三角形大角对大边,c>a,b,即ɑ不可能等于600) 那么,cosɑ=[0,?)时,更加满足c3 < a3+ b3 既然,a,b,c是三次不定方程X3+Y3=Z3的解,又a3+ b3≠ c3, 那么,X3+Y3≠Z3,得到结果与原假设相矛盾,所以,假设不成立。 即,n=3时,X3+Y3=Z3 ,三次不定方程没有正整数解。 4、n>3, X n +Y n=Z n,假设有正整数解。a,b,c就是n次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。此时,a,b,c构成三角形,根据三角形余弦定理有,

余弦定理知识点总结与复习

余弦定理 教师:lihao (1)语言叙述 三角形中任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍 . (2)公式表达 2a = 2b = 2c = c2= 思路点拨:由题目可获取以下主要信息:①已知三边比例; ②求三角形的三内角. 解答本题可应用余弦定理求出三个角 [题后感悟] 此题为“已知三边,求三角形的三个角”类型问题,基本解法是先利用余弦定理的推论求一个角的余弦,再判定此角的取值,求得第一个角,再用正弦定理求出另一个角,最后用三角形内角和定理,求出第三个角(一般地,先求最小角,再求最大角) 已知△ABC 中,a ∶b ∶c =2∶6∶(3+1),求△ABC 各角的度数. [解题过程] ∵a ∶b ∶c =2∶6∶(3+1), ∴令a =2k ,b =6k ,c =(3+1)k . 由余弦定理,有 cos A =b 2+c 2-a 22bc =6+(3+1)2-426×(3+1)=22, ∴A =45°. cos B =a 2+c 2-b 22ac =4+(3+1)2-62×2×(3+1) =12, ∴B =60°.∴C =180°-A -B =180°-45°-60°=75°.

1.在△ABC 中,已知a =26,b =6+23,c =43,求角A ,B ,C . 解析: 在△ABC 中,由余弦定理得, cos C =a 2+b 2-c 22ab =(26)2-(6+23)2-(43)2 2×26×(6+23) =24(3+1)242(3+1) =22. ∴C =45°,sin C =22. 由正弦定理得:sin A =a sin C c =26×2243 =12. ∵a

Cayley定理的证明方法

Cayley 定理的证明方法 摘要:本文对Cayley 定理:n K 的生成树共有2n n -棵,即2()n n K n τ-=。的几种证明方法简单归纳。 关键词:Cayley 公式 标号树枝 生成树 第一种证明方法 通过确定标号树枝的个数来求生成树的个数,设生成树的数目为x 个,因为每个生成树的每一个点都能作为一个根,所以标号树枝的个数为nx 个,现在就是确定标号树枝的个数1n n -,这样一来就能确定2n x n -=。下面我们就来证明标号树枝的个数为1n n -。 通过一步一步建立标号树枝,先拿出n 个点的无边土,此时这个图有n 个树枝森林,,现在往上加边,加第一条边后,树枝森林数减少一个,,当树枝数目为k 时,加下一条边新边(,)u v 的选择为(1)n k -,任意一个点都能当作u ,而v 必须连接不含u 的树枝的根,用这种方法构造标号树枝的数目应该为111()(1)!n n i n n i n n --=-=-∏,因为每个标号树枝含有1n -条边,有(1)!n -种顺序,也 就是说每个标号树枝被构造了(1)!n -次,所以标号树枝的个数为1n n -。 证毕。 第二种证明方法 设2n ≥,12,,,n d d d 是正整数,并且1222n d d d n ++ +=-,则在顶点集{1,2,,}n 上具有顶点度序列 为12,,,n d d d 的树的个数是 多项式展开如下: 11211 11,,,11(1)(1)2211n n n d d n d d d n d d n n a a d d --≥-++-=--??= ?--??∑特别地,令每一个1i a =,得到 为了计算顶点集{1,2,,}n 上的树的数目,必须将12,,,n d d d 是正 整数并且其和等于2n -的具有顶点度序列12,, ,n d d d 的所有树的数目全 部加在一起. 从前面的事实有

我用概率证明了费马大定理

我用概率证明了费马大定理 章丘一职专马国梁 1637年,法国业余数学家费马在一本著名的古书——丢番图的《算术》中的一页上写了如下一段文字: “分解一个立方为两个立方之和,或分解一个四次方为两个四次方之和,或更一般地分解任一个高于二次方的幂为两个同次方的幂之和均不可能。对此我发现了一个奇妙的证明,但此页边太窄写不下。” 用数学语言表达就是说,当指数n > 2时,方程x^n + y^n = z^n 永远没有整数解。这就是著名的连小学生都能看懂的费马猜想。 可是在这个猜想提出后,那个重要的“奇妙证明”不论在费马生前还是死后始终没有被人见到,且后人也再没有找到,所以人们怀疑那个证明根本就不存在或者是在什么地方搞错了。费马生前只是证明了n = 4 的情况;直到1749年,才被欧拉证明了n = 3 的情况。 这个猜想看上去是如此的简单,让局外人根本无法想象证明它的艰难,所以曾经让不少人跃跃欲试。他们搜肠刮肚,绞尽脑汁,耗费了无数的精力。三百多年来,虽然取得了很大进展,显示了人类的智慧,但问题总是得不到彻底解决。直到1995年,才由英国数学家怀尔斯宣称完成了最后的证明。从此费马猜想变成了真正的“费马定理”。 对费马定理的证明之所以艰难,是因为在整数内部有着极其复杂微妙的制约机制,要想找到这些制约关系,必须深入到足够的程度进行细致的分析才行。所以三百多年来,虽然有不少数学大家还有广大业余爱好者不畏艰难,前赴后继,顽强奋斗,但怎奈山高路远,歧途太多,终归难免失败。 在这样的现实下,笔者明白自己也是局外之人,所以不可能去钻这个无底的黑洞。但是作为一种乐趣,我们不妨另外开辟一条渠道,进行旁证和展望。试用概率计算一下:看看费马猜想是否成立,又成立到什么程度。虽然这在数学界难以得到公认,但是我们歪打正着,乐在其中。因为对于决定性的现象,如果其决定因素和控制过程过于复杂,那么其结果是可以用概率理论进行推算的。 但是要证明费马猜想究竟应该从何处下手呢?对此笔者心中一直有一个强烈的直觉。 我们知道:当n = 1 时,x + y = z 可有无数组解。在正整数中,任何两个整数相加的结果必然也还是整数。 但是当n = 2 时,方程x^2 + y^2 = z^2 的解就没有那么随便了,它们必须是特定的一组组的整数。其组数大大减少。 而当n = 3 时,方程x^3 + y^3 = z^3 则根本就没有整数解了。那么其原因是什么呢? 对此笔者曾经思考了多年。但没想到只是在近几天才一下子开了窍,找到了问题的关键。原来是:指数越大,整数的乘幂z^n在数轴上的坐标点就越稀疏,从而使任意两整数的同次方幂之和x^n + y^n 落在坐标点上成为整数的可能性就越小。其概率是z^n 的导数的倒数。即每组x^n + y^n 能够成为整数的可能性只有 η= 1/[n z^(n-1)] = 1/ [n (x^n + y^n )^(1-1/n) ] 当x、y在平面直角坐标系的第一区间随意取值时,我们可以用积分的办法算出其中能够让z成为整数的组数。其公式为 N =∫∫ηdx dy =∫∫[(dx dy) / (n (x^n + y^n )^(1-1/n))] 因为在平面直角坐标系上,当z 一定时,由方程x^2 + y^2 = z^2 所决定的曲线是个正圆; 而由方程x^n + y^n = z^n 所决定的曲线则是一个近似的圆; 只有当n 趋于无穷大时,它的曲线才能成为一个正方形。 所以当n较小时,我们是可以把方程的曲线当作一个圆来处理的。这样以来,N的积分公式就变成了 N =∫[(0.5πz dz ) / (n z^(n-1))] ①当n = 1 时,由方程x + y = z 所决定的曲线是一条斜的直线。它在第一象限的长度是sqrt(2) z ,此时能够成为整数的概率是100%,即η= 1/[n z^(n-1)] = 1 所以N =∫sqrt(2) z dz = [1/sqrt(2)] z^2 即与z的平方成正比,这意味着在坐标系的第一象限中,遍地都是解。仔细想想这也可以理解。因为不论x还是y,都是可以取任意整数的;而正整数的数量是无穷多,所以它们的组合数将是无穷多的平方,为高一级的无穷多。 ②当n = 2 时,由方程x^2 + y^2 = z^2 所决定的曲线是一个正圆。在第一象限是一段1/4 的圆周,其长度是0.5πz ;此时η= 1/[2 z ] 所以N =∫(0.5πz dz / (2 z) ) = (π/4) z

巧用三余弦定理解题

A O P α l B A O 1 θ2 θθ P Q α 巧用“三余弦定理”解题 “三余弦定理”的内容:如图1,直线AO 是平面α 的斜线,AQ 是AO 在平面内的射影,直线AP 在平面α内.设21,,θθθ=∠=∠=∠QAP OAQ OAP ,有以下结论: 21cos cos cos θθθ?=.我们可以形象地把这个结 论称为“三余弦定理”,应用“三余弦定理”可以使我们 的很多立体几何问题的解决变得简单. 图1 应用“三余弦定理”解题的步骤如下: 1. 明确三线:平面内的直线(以下简称“内线”),平面的斜线和斜线在平面内的射影. 2. 明确三角:斜线与“内线”所成为θ,斜线与射影所成的角为1θ,射影与“内线”所成的角为2θ. 3. 定理运算. 例 1.如图2,已知AO 是平面α的一条斜线,OB ⊥α,B 是垂足,AP 是α内一直线,∠OAP=60o ,∠BAP=45o ,求斜线AO 与平面α所成的角. 分析:AP 是“内线”,AO 是斜线,AB 是射影,所以21,,θθθ=∠=∠=∠BAP OAB OAP ,直接利用“三 余弦定理”求解.解题过程略. 略解: 点评:斜线与平面所成的角即斜线与射影所成的角,明确了“三线”与“三角”,直接代定理求解. 图2 变式1:已知∠OAB=45o ,∠BAP=45o ,求直线AO 与AP 所成的角; 分析:同例1. 变式2:已知∠OAB=45o ,∠BAP=45o , l //AP , 求直线AO 与l 所成的角; 分析:因为l //AP ,直线AO 与AP 所成的角同AO 与l 所成的角相等.我们在解题时,只需要明确“三线”,这时l 是“内线”,AO 是斜线,AB 是射影,然后斜线 AO 与“内线”l 所成 为θ,斜线AO 与射影AB 所成的角为1θ,射影AB 与“内线”l 所成的角为2θ, 问题迎刃而解. 例2.如图3,在棱长为1正方体ABCD- A 1B 1C 1D 1中,E 、F 分别是B 1C 1和CC 1的中点,求异面直线A 1B 与EF 所成角的余弦值. C 1 A B C D A 1 B 1 D 1 F E

勾股定理逆定理八种证明方法

勾股定理逆定理八种证 明方法 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

证法1 作四个的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF =90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C 三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC =90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,

《费马大定理》读后感800字

《费马大定理》读后感800字 费马大定理是17世纪法国数学家费马留给后世的一个不解之谜。即:当整数n>2时,关于x,y,z的不定方程x^n+y^n=z^n.无正整数解。 为证明这个命题,无数的大数学家们都在不懈努力,孜孜不倦的力求攻克。该问题的提出还在于毕达哥拉斯定理(在一个直角三角形中,斜边的平方等于两直角边的平方之和)的存在。而后欧拉用他的方式证明了x^3+y^3=z^3无正整数解。同理3的倍数也无解。费马也证明了n为4时成立。这样使得待证明的个数大大减少。终于在“谷山——志村猜想” 之后,被安德鲁·怀尔斯完全证明。 看过该书以后,一方面是对于费马大定理的证明过程的惊叹。这是一个如此艰辛的过程。阿瑟·爱丁顿爵士曾说,证明是一个偶像,数学家在这个偶像面前折磨自己。值得解决的问题会以反击来证明他的价

值。费马大定理的成功证明的实现在是它被提出后的300多年。经典数学的证明办法是从一系列公理、陈述出发,然后通过逻辑论证,一步接着一步,最后就可能得到某个结论。数学证明依靠这个逻辑过程,一经证明就永远是对的。数学证明是绝对的。也是一环扣一环的,没有索菲·热尔曼,柯西,欧拉等人在之前的研究,该定理并非能在个人的一次研究中就能得到证明。对于数学的研究是永无止境的。另一方面,我也认识到寻找一个数学证明就是寻找一种认识,这种认识比别的训练所积累的认识都更不容置疑。最近两千五百年以来,驱使着数学家们的正是这种以证明的方法发现最终真理的欲望。数学家有着不安分的想象与极具耐心的执拗。虽说当今计算机已经发展到一定地步了,它的计算速度再快,但是无法改变数学证明的需要。数学证明不仅回答了问题,还使得人们对为什么答案应该如此有所了解。 学数学能干什么?曾经也有学生这样问过欧拉,欧拉给他一些钱以后就让学生走了。培根也说过,数学使人周密。数学的证明最能培养严谨的态度。

勾股定理五种证明方法

勾股定理五种证明方法 【证法1】 做 8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 214214222?+=?++, 整理得 222c b a =+. 【 证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴ ()2 2214c ab b a +?=+. ∴ 222c b a =+. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为

勾股定理五种证明方法

勾股定理五种证明方法 【证法1】 ? ? ? ? ? ? ? ? ? ? 做8 个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 214214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o . ∴ ∠HEF = 180o ―90o= 90o . ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o . 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o . ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴ ()2 2214c ab b a +?=+. ∴ 222c b a =+. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为

(完整版)高数中需要掌握证明过程的定理(二)

高数中的重要定理与公式及其证明(二) 在第一期的资料内我们总结了高数前半部分需要掌握证明过程的定理,由于最近比较忙,所以一直没来得及写。现将后半部分补上。希望对大家有所帮助。 1)泰勒公式(皮亚诺余项) 设函数()f x 在点0x 处存在n 阶导数,则在0x 的某一邻域内成立 () ()()()2 00' '' ()000 00()()()()...()2! ! n n n x x x x f x f x x x f x f x f x o x x n --??=+-+ ++ +-?? 【点评】:泰勒公式在计算极限、高阶导数及证明题中有很重要的应用。对于它们,我们首要的任务是记住常见函数(sin ,cos ,ln(1),,(1)x a x x x e x ++)在0x =处的泰勒公式,并能利用它们计算其它一些简单函数的泰勒公式,然后在解题过程中加以应用。在复习的前期, 如果基础不是很好的话,两种不同形式的泰勒公式的证明可以先不看。但由于证明过程中所用到的方法还是很常用的。因此把它写在这里。 证明: 令()()()200'''() 00000()()()()()...()2!!n n x x x x R x f x f x x x f x f x f x n ??--=-+-+ ++?????? 则我们要证明()0()n R x o x x ??=-?? 。 由高阶无穷小量的定义可知,需要证明() 0() lim 0n x x R x x x →=-。 这个极限式的分子分母都趋于零,并且都是可导的, 因此用洛必达法则得 () ()()()() 1 ''''()0 0000100()()()...()1!() lim lim n n n n x x x x x x f x f x x x f x f x n R x x x n x x --→→??--+-++?? -????=-- 再次注意到该极限式的分子分母仍趋于零,并且也都是可导的,因此可以再次运用洛必达法则。 不难验证该过程可以一直进行下去, 运用过1n -次洛必达法则后我们可以得到 () ()() ()0 00 (1)(1)()00000(1) (1) () 000()()()() lim lim !()()() lim !! n n n n x x x x n n n x x f x f x x x f x R x n x x x x f x f x f x n x x n --→→--→---=---=- - 由于()f x 在点0x 处存在n 阶导数,由导数的定义可知() (1)(1)()000()() lim ()n n n x x f x f x f x x x --→-=-

相关主题
文本预览
相关文档 最新文档