当前位置:文档之家› 模态参数(频率、阻尼比、振型)作业指导书讲解

模态参数(频率、阻尼比、振型)作业指导书讲解

模态参数(频率、阻尼比、振型)作业指导书讲解
模态参数(频率、阻尼比、振型)作业指导书讲解

17.3 模态参数(频率、振型、阻尼比)作业指导书1 目的

测试桥梁的模态参数,了解桥梁的自振特性。

2 适用范围

适用于桥梁或结构构件的模态参数测试及分析。

3 试验准备

3.1 仪器、设备、材料

3.2 资料

①、桥梁或结构构件拾振器测点布置图

②、相关仪器、软件使用说明书

③、原始记录表格(见附表1~2)

④、仪器、设备、材料清单表确认单(见附表3)

3.3 检查仪器、设备及软件是否正常运行(见附表4)

4 试验流程

4.1 测点布置:

试验前应对桥梁结构进行有限元分析,计算理论的振型图,根据振型图确定测点布置(测点布置的原则和数量要求见5.1)。由于试验用的拾振器可能有限,所以应在桥上选择合适的参考点(参考点的选择要求见5.2),分批搬动其他拾振器到所有测点。

4.2 拾振器安装:

拾振器安装前,应将测点位置清洁除尘。安装时,将拾振器通过橡皮泥牢固粘贴在测点位置,保证拾振器和构件能共同移动,同时传感器的主轴方向应与测点主振方向一致。

4.3 仪器连接:

仪器连接详见《DH5922N动态信号测试分析系统使用说明书》。

4.4 数据采集:

在数据采集之前,应对软件及拾振器各参数进行设置(参数设置要点见5.3)。仪器参数设置及采集软件的操作详见《DHDAS4.1.3基本分析软件说明书》。

为了消除随机因素影响,应对采集的长样本信号进行能量平均。对于悬索桥、斜拉桥等自振频率较低的桥型,为保证频率分辨率和提高信嘈比,采集时间不宜小于20分钟,一般采集时间取20~45分钟,对于小跨径桥梁,采集时间可酌情减小。

4.5 数据处理:

自振频率:可采用频谱分析法、波形分析法或模态分析法得到桥梁结构自振频率。

阻尼比:采用波形分析法、半功率带宽法或模态分析法得到。

振型参数:采用环境激振等方法进行模态参数识别。

数据后期处理及分析的软件操作详见《DHDAS4.1.3基本分析软件说明书》。

4.6模态参数的评定:

1结构的自振最低频率应大于有关标准限值,结构最大振幅应小于相应标准限值。

2根据结构振动图形,可分析出结构的冲击现象,共振现象和有无缺陷。

3桥梁本身的动力特性的全面资料,可作为评价结构物抗风力和抗地震力性能的计算参数。复杂结构的桥梁动力性能,还需要借助于模型的动力试验和风洞试验进行研究。

4定期检验的桥梁,通过前后两次动力结果的比较,可检查结构工作的缺陷,如果结构刚度降低及频率显著减小,应查明结构可能产生的损坏。

5 注意事项及要点

5.1测点数量及位置:测点数目的确定应根据合同及试验方案要求的振型阶数,并保证测点能连成曲线,且尽可能布置在控制断面上。一般情况测点纵向布置于桥梁的偶数等分点上;横向布置:当测试桥梁的横向振型时,应布置于桥面横向中心处;当测试桥梁竖向振型时,应对称布置于桥面两侧栏杆附近。

5.2参考点的选择:一般选择最大的振幅附件的测点处,在整个测试过程中,参考点的拾振器严禁移动。

5.3主要参数设置:

5.2.1 拾振器档位选择:一般桥梁测试时,拾振器的档位设置为小速度档“1”档,或是加速度档“2”档。

5.2.2 采集频率设置:模态实验时的采样频率一般建议不用太大,100Hz 或者200Hz即可,对于某些大型、特大型桥梁,选取50Hz的采样频率也已足够。

编写:审核:批准:

附件:

附件1 桥梁结构检测与监测模态参数试验记录表附件2 桥梁结构检测与监测模态参数试验检测报告附件3 仪器、设备、材料清单表确认单

附件4 仪器、设备是否正常运行确认单

附件1 桥梁结构检测与监测模态参数试验记录表

经办人:项目负责人:日期:年月日

附件4 仪器、设备是否正常运行确认单

经办人:项目负责人:日期:年月日

基于应变能的各振型阻尼比的计算方法

基于应变能的各振型阻尼比的计算方法 当结构中使用不同的材料或者设置了阻尼器时,各单元的阻尼特性可能会不一样,并且阻尼矩阵为非古典阻尼矩阵,不能按常规方法分离各模态。而这时在时程分析中要使用振型叠加法,需要使用基于应变能的阻尼比计算方法。 具有粘性阻尼特性的单自由度振动体系的阻尼比,可以定义为谐振动(harmonic motion)中的消散能(dissipated energy)和结构中储藏的应变能(strain energy)的比值。 4D S E E ξπ= 在此 E D : 消散能 E S : 应变能 在多自由度体系中,计算某单元的消散能和应变能时使用两个假定。 首先假定结构的变形与振型形状成比例。第i 个振型的单元节点的位移和速度向量如下。 () (),,,,sin cos i n i n i i i n i i n i i t t ωθωωθ=+=+u φu φ 在此, ,i n u : 第i 振型中第n 个单元的位移 ,i n u : 第i 振型中第n 个单元的速度 ?i ,n : 第n 个单元的相应自由度的第i 振型形状 ωi : 第i 振型的固有圆频率 θi : 第i 振型的位相角(phase angle) 其次,假定单元的阻尼与单元的刚度成比例。 2n n n i h ω= C K 在此, C n : 第n 个单元的阻尼矩阵 K n : 第n 个单元的刚度矩阵 h n : 第n 个单元的阻尼比 基于上述假定,单元的消散能和应变能的计算如下: ()(),,,,,,,,,211,22T T D i n n i n n i n n i n T T S i n n i n i n n i n E i n h E i n ππ====u C u φK φu K u φK φ 在此, E D (i , n ) : 第i 振型的第n 个单元的消散能 E S (i , n ) : 第i 振型的第n 个单元的应变能 全体结构的第i 振型的阻尼比可以使用所有单元的第i 振型的能量的和来计算。

简支梁固有频率及振型函数

简支梁横向振动的固有频率及振型函数的推导 一.等截面细直梁的横向振动 取梁未变形是的轴线方向为X 轴(向右为正),取对称面内与x 轴垂直的方向为y 轴(向上为正)。梁在横向振动时,其挠曲线随时间而变化,可表示为 y=y(x,t) (1) 除了理想弹性体与微幅振动的假设外,我们还假设梁的长度与截面高度之比是相当大的(大于10)。故可以采用材料力学中的梁弯曲的简化理论。根据这一理论,在我们采用的坐标系中,梁挠曲线的微分方程可以表示为: 22y EI M x ?=? (2) 其中,E 是弹性模量,I 是截面惯性矩,EI 为梁的弯曲刚度,M 代表x 截面处的弯矩。挂怒弯矩的正负,规定为左截面上顺时针方向为正,右截面逆时针方向为正。关于剪力Q 的正负,规定为左截面向上为正,右截面向下为正。至于分布载荷集度q 的正向则规定与y 轴相同。在这些规定下,有: M Q Q q x x ??==??, (3) 于是,对方程(2)求偏导,可得: 222222(EI )(EI )y M y Q Q q x x x x x x ??????====??????, (4) 考虑到等截面细直梁的EI 是常量,就有:

3434y y EI Q EI q x x ??==??, (5) 方程(5)就是在等截面梁在集度为q 的分部李作用下的挠曲微分方程。 应用达朗贝尔原理,在梁上加以分布得惯性力,其集度为 22 y q t ρ?=-? (6) 其中ρ代表梁单位长度的质量。假设阻尼的影响可以忽略不计,那么梁在自由振动中的载荷就仅仅是分布的惯性力。将式(6)代入(5),即得到等截面梁自由弯曲振动微分方程: 4242y y EI x t ρ??=--?? (7) 其中2 /a EI ρ=。 为求解上述偏微分方程(7),采用分离变量法。假设方程的解为: y(x,t)=X(x)Y(t) (8) 将式(8)代入(7),得: 22424 1Y a d X Y t X dx ?=-? (9)

工程振动——模态分析、多自由度系统振动响应

1.复习模态分析理论 1.1单自由度系统频响函数(幅频、相频、实频与虚频、品质因子等) 系统的脉冲响应函数h(t)与系统的频响函数H(ω)是一对傅里叶变换对,与系统的传递函数H(s)是一对拉普拉斯变换对。即有: i ()()e d t H h t t ωω-∞ =? -∞ 1i () ( )e d 2π t h t H ωωω -∞ =?-∞ ()()e d 0 st H s h t t -∞ =? 1 i () ( )e d i 2πi st h t H s σωσ+∞=? -∞ 复频率响应的实部 2 1(/)R e [()]22 2 [1(/) ](2/)n H n n ωωωωω ξωω-= -+ 复频率响应的虚部 2/Im [()]22 2 [1(/)](2/) n H n n ξωω ωωω ξωω =- -+ 单自由度系统频响函数的各种表达式及其特征1 (w )2H k m w j k η=-+,对频响函数特征的描述 采用的几种表达式 1)幅频图:幅值与频率之间的关系曲线 2)相频图:相位与频率之间的关系曲线 3)实频图:实部与频率之间的关系曲线 4)虚频图:虚部与频率之间的关系曲线 5)矢端轨迹图(Nyquist 图) 1.2单自由度结构阻尼系统频响函数的各种表达形式 频响函数的基本表达式:11111 ()22222100 H m k k m j k j j ωω ηωωηωη = = ?=? -+-+-Ω+ 频响函数的极坐标表达式:()|()|j H H e ?ωω=,w H () —幅频特性, a rc ta n 21η?? ? -= ? ? ?-Ω? —相频特性。 频响函数的直角坐标表达式: ()()() R I H H jH ωωω=+, ()() 211()222 1R H k ωη -Ω= ? -Ω+—实频特性, () 1()22 2 1I H k η ωη -=? -Ω+—虚频特性 频响函数的矢量表达式:()()()R I H H ωωω=+H i j 1.3单自由度结构阻尼系统频响函数各种表达式图形及数字特征 幅频特性:1|()|0H k ωη = 固有频率:0D ωω= 阻尼比:00 B A ω ωω ηω ω -?== 相频特性

ansys提阻尼比

请教,ANSYS模态分析后,如何得到各阶模态的模态阻尼比 *get entity=mode ,item1=damp 请教1楼,命令流*GET, Par, Entity, ENTNUM, Item1, IT1NUM, Item2, IT2NUM 中其他几项分别如何设置,如Par,ENTNUM,等,另外输入命令流如何显示其模态阻尼比,本人初学命令流,谢谢! par是随便一个参数名,其他的默认,,,只有逗号即可, 在后在参数里看 ANSYS动力学分析中提供了各种的阻尼形式,这些阻尼在分析中是如何计算,并对分析有什么影响呢?本文将就此做一些说明何介绍. 一.首先要清楚,在完全方法和模态叠加法中定义的阻尼是不同。因为前者使用节点坐标,而后者使用总体坐标. 1.在完全的模态分析、谐相应分析和瞬态分析中,振动方程为: 阻尼矩阵为下面的各阻尼形式之和: α为常值质量阻尼(α阻尼)(ALPHAD命令) β为常值刚度阻尼(β阻尼)(BETA命令) ξ为常值阻尼比,f为当前的频率(DMPRAT命令) βj为第j种材料的常值刚度矩阵系数(MP,DAMP命令) [C]为单元阻尼矩阵(支持该形式阻尼的单元) where: [C] = structure damping matrix α = mass matrix multiplier (input on ALPHAD command) [M] = structure mass matrix β = stiffness matrix multiplier (input on BETAD command) βc = varia ble stiffness matrix multiplier (see Equation 15–23) [K] = structure stiffness matrix Nm = number of materials with DAMP or DMPR input = stiffness matrix multiplier for material j (input as DAMP on MP command) = constant (frequency-independent) stiffness matrix coefficient for material j (input as DMPR on MP command) Ω = circular excitation frequency Kj = portion of structure stiffness matrix based on material j Ne = number of elements with specified damping Ck = element damping matrix Cξ = fre quency-dependent damping matrix (see Equation 15–21) 2.对模态叠加方法进行的谐相应分析、瞬态分析何谱分析,动力学求解方程为:

模态振型固有频率基本理论

模态分析技术发展到今天已趋成熟,特别是线性模态理论(通常所说的模态分析均是指线性模态分析)方面的研究已日臻完善,但在工程应用方面还有不少工作可做。首先是如何提高模态分析的精度,扩大应用范围。增加模态分析的信息量是提高分析精度的关键,单靠增加传感器的测点数目很难实现,目前提出的一种激光扫描方法是大大增加测点数的有效办法,测点数目的增加随之而来的是增大数据采集与分析系统的容量及提高分析处理速度,在测试方法、数据采集与分析方面还有不少研究工作可做。对复杂结构空间模态的测量分析、频响函数的耦合、高频模态检测、抗噪声干扰……等等方面的研究尚需进一步开展。模态分析当前的一个重要发展趋势是由线性向非线性问题方向发展。非线性模态的概念早在1960年就由Rosenberg提出,虽有不少学者对非线性模态理论进行了研究,但由于非线性问题本身的复杂性及当时工程实践中的非线性问题并示引起重视,非线性模态分析的发展受到限制。近年来在工程中的非线性问题日益突出,因此非线性模态分析亦日益受到人们的重视。最近已逐步形成了所谓非线性模态动力学。关于非线性模态的正交性、解耦性、稳定性、模态的分叉、渗透等问题是当前研究的重点。在非线性建模理论与参数辨识方面的研究工作亦是当今研究的热点。非线性系统物理参数的识别、载荷识别方面的研究亦已开始。展望未来,模态分析与试验技术仍将以新的速度,新的内容向前发展。 模态振型是一个相对量,通常是一个列向量,二维以上的系统其模态振型不是一个数。一个数对应单模态,其数值无意义。某模态频率下的模态振型反映了在该模态频率下各自由度的相对位移的比值。如果系统的初始位移恰好等于模态频率下的模态振型(或与之成比例),则此时系统的自由响应中只会出现该模态频率。感谢欧阳中华教授的指点,我现在觉得自己当初确实对模态振型概念不清楚。模态振型是系统固有的振动形态,线性响应是振型线性叠加的结果,但振型之间是独立不耦合的。振型是个相对量,所以就有了多种振型归一划的方法。振型是个很重要的固有特征,正如楼上所说用于验证固有频率。 我觉得振型在判别你计算固有频率正确性是非常有用的,比如,通过有限元计算得到了模型的前十阶固有频率,试验模态分析也得到了低阶的固有频率,假设计算的某阶固有频率与试验的某阶固有频率非常接近,但是并不能马上说明他们是同一阶的,需要通过振型来判断。 其他的不知道,但是之所以引入模态的概念,之所以从物理坐标变换到模态坐标就是为了解耦,就是为了让其正交,这样方程才能解出来。从能量角度说,这样各个振型之间就没有能量的交换。 从数学上看,对响应函数级数展开后,其中的各项构成各阶模态,而级数展开形

模态分析中的几个基本概念模态分析中的几个基本概念分析

模态分析中的几个基本概念 物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。模态这个概念一般是在振动领域所用,你可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。将特征值从小到大排列就是阶次。实际的分析对象是无限维的,所以其模态具有无穷阶。但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。所以模态的阶数就是对应的固有频率的阶数。振型是指体系的一种固有的特性。它与固有频率相对应,即为对应固有频率体系自身振动的形态。每一阶固有频率都对应一种振型。振型与体系实际的振动形态不一定相同。振型对应于频率而言,一个固有频率对应于一个振型。按照频率从低到高的排列,来说第一振型,第二振型等等。此处的振型就是指在该固有频率下结构的振动形态,频率越高则振动周期越小。在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。 固有频率也称为自然频率( natural frequency)。物体做自由振动时,其位移随时间按正弦或余弦规律变化,振动的频率与初始条件无关,而仅与系统的固有特性有关(如质量、形状、材质等),称为固有频率,其对应周期称为固有周期。 物体做自由振动时,其位移随时间按正弦规律变化,又称为简谐振动。简谐振动的振幅及初相位与振动的初始条件有关,振动的周期或频率与初始条件无关,而与系统的固有特性有关,称为固有频率或者固有周期。 物体的频率与它的硬度、质量、外形尺寸有关,当其发生形变时,弹力使其恢复。弹力主要与尺寸和硬度有关,质量影响其加速度。同样外形时,硬度高的频率高,质量大的频率低。一个系统的质量分布,内部的弹性以及其他的力学性质决定 模态扩展是为了是结果在后处理器中观察而设置的,原因如下: 求解器的输出内容主要是固有频率,固有频率被写到输出文件Jobname.OUT 及振型文件Jobnmae.MODE 中,输出内容中也可以包含缩减的振型和参与因子表,这取决于对分析选项和输出控制的设置,由于振型现在还没有被写到数据库或结果文件中,因此不能对结果进行后处理,要进行后处理,必须对模态进行扩展。在模态分析中,我们用“扩展”这个词指将振型写入结果文件。也就是说,扩展模态不仅适用于Reduced 模态提取方法得到的缩减振型,而且也适用与其他模态提取方法得到的完整振型。因此,如果想在后处理器中观察振型,必须先扩展模态。谱分析中的模态合并是因为激励谱是其实是由一系列的激励组合成的一个谱,里面的频率不会是只有一个,而不同的激励频率对于结构产生的结果是不一样的,对于结果的贡献也是不一样的,所以要选择模态组合法对模态进行组合,得到最终的响应结果。

几种阻尼比识别的方法1

几种参数识别的方法 A 基于时域的参数识别方法推导 A1 Ibrahim 时域方法 Irrahim 时域识别方法是需要测量自由响应信号或者脉冲信号。系统为二阶线性系统,被测自由响应信号为x(t),二阶线性系统为复指数之和。 )()(~)(t n t p t x +?ψ= (A-1) []***ψψψψψψ=ψN N ,,,,,,,2121 (A-2) {} t t t t t t N N e e e e e e t p ***=λλλλλλ,,,,,,,)(~2121 (A-3) 其中n(t)为输出噪音信号,N 是振动模态数,它由被测的二阶系统和通过模拟低通滤波截断频率所共同决定,Ψi 和λi 为二阶系统的本征矢量和特征值,m 为测量点数,其中m=1。 通常认为m 等于N ,N 为振动模态数量,为求出)(~ t p ,它为2N*1矩阵,必须在时域上扩展响应信号矢量,例如,在t+T3时刻,响应信号可表示为: )()(~),()(333131t n t p e e diag T t x T T +??ψ=+??*λλ (A-4) 其中n3(t )为在t+T3时刻的噪音矢量,联合公式1和4可得出: )()(~~)(t N t p t u +?ψ= (A-5) 其中: ???? ??+=)()()(3T t x t x t u (A-6) ?? ?????ψψ=ψ??*),(~3131T T e e diag λλ (A-7) 或者, [] ***ψψψψψψ=ψN N ~,,~,~,~,,~,~~2121 ? ?????=)()()(3t n t n t N (A-8) 同样的,可以很容易地得出以下公式: )()(~),(~)(113131t N t p e e diag T t u T T +??ψ=+λλ (A-9) 看公式5,假设复指数是线性独立的,我们可以得到: )(~)(~)(~11t N t u t p ?ψ-?ψ=-- (A-10) 将公式10代到9中,我么和可以得到: )()(~),(~)(~),(~)(111131313131t N t N e e diag t u e e diag T t u T T T T +?ψ??ψ-?ψ??ψ=+-??-??**λλλλ

二维梁的固有频率和振型

一、综合实验题目和要求 题目:求一二维梁的固有振型和频率。 要求:用有限元理论,求一二维梁的固有振型和频率: (1) 用二维梁有限元对梁进行分析数值计算求出其主振型向量和频率; (2) 求出其理论精确解,精确主振型向量和频率; (3) 将理论结果和计算结果进行比较。 二、程序流程图

三、实验结果 1.前六阶振型 同一有限元数不同阶数比较(以有限元20为例)如下图所示:

00.10.20.30.40.50.60.70.80.9 一阶 -0.8 -0.6-0.4-0.200.20.40.60.81 二阶 -0.8 -0.6-0.4-0.200.20.40.60.81 三阶

-0.8 -0.6-0.4-0.200.20.40.60.8 四阶 -0.8 -0.6-0.4-0.200.20.40.60.81 五阶 -0.8 -0.6-0.4-0.200.20.40.60.81 六阶 四、实验分析

对于二维梁有限元的划分(以下只对二维梁而言),要根据需求精度进行合理划分,既兼顾精度,同时也兼顾计算量(随着计算精度的提高,单元数量增加,相应计算量也会增加,计算时间也会增加),经过试验随着单元数量增加,其计算精度也不段提高,当将梁分到七单元时,通过计算得到的主振型和频率和理论值吻合的非常好。当梁取一单元时(elementno=1),由于梁总体只有两自由度,故只能得出前两阶主振型;当梁取二单元时(elementno=2),由于梁总体有四自由度,故只能得出前四阶主振型;对于梁取三单元(elementno=3)以及三单元以上(elementno>3)时,梁总体有六自由度以及更高自由度,这里只画出前六阶主振型图。下六图是在elementno=20的情况下,通过计算,画出前六阶的主振型图(其中红线部分为理论主振型图,绿色五角星是计算在梁各单元节点处的振型,数量取决于梁单元划分的数目)。 五、源程序清单 clear all close all %各参数的设置 rou=2.7e3; %密度 A=1e-3;%横截面积 E=72e9; %弹性模量 L=1; %梁长 I=8.3333e-009;%截面惯性矩 elementno=input('输入有限元的数量:'); %有限元的数量 rodno=elementno+1;%节点数 alldimension=rodno*2; l=L/elementno; %单元刚度矩阵 ke=E*I/l^3*[12 -6*l -12 -6*l; -6*l 4*l^2 6*l 2*l^2; -12 6*l 12 6*l; -6*l 2*l^2 6*l 4*l^2]; %单元质量矩阵

某机翼结构的固有频率和振型分析

Open Journal of Acoustics and Vibration 声学与振动, 2019, 7(1), 12-19 Published Online March 2019 in Hans. https://www.doczj.com/doc/6c14021177.html,/journal/ojav https://https://www.doczj.com/doc/6c14021177.html,/10.12677/ojav.2019.71002 Analysis for Natural Frequency and Mode Shape of Wing Structure Liang Chen, Jinwu Wu, Hanqing Li College of Aero Engineering, Nanchang Hangkong University, Nanchang Jiangxi Received: Feb. 10th, 2019; accepted: Feb. 22nd, 2019; published: Mar. 1st, 2019 Abstract In this electronic document, the FEM is used to simulate and analyze the natural frequency and vi-bration mode of a certain UAV composite wing. By using the non-contact laser vibrometer equip-ment, in order to eliminate the influence of boundary conditions on the vibration characteristics of the wing structure, the vibration characteristics of the wing are measured by free boundary conditions, and the first 4 natural frequencies and vibrations of the composite wing are obtained. At the same time, the finite element simulation results are compared. The calculation results show that the simulation results are basically consistent with the experimental results. Keywords Wing Structure, Experimental Analysis, Natural Frequency, Mode Shape 某机翼结构的固有频率和振型分析 陈亮,吴锦武,李汉青 南昌航空大学飞行器工程学院,江西南昌 收稿日期:2019年2月10日;录用日期:2019年2月22日;发布日期:2019年3月1日 摘要 本文采用有限元和试验对某一无人机复合材料机翼的固有频率和振型进行仿真和实验分析。通过利用非接触式激光测振仪设备,为了消除边界条件对机翼结构振动特性的影响,采用自由边界条件进行了机翼振动特性测量,获得了复合材料机翼的前4阶固有频率和振型。同时对比了有限元仿真结果。计算结果表明,仿真结果与试验测试结果基本一致。

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

几种阻尼比识别的方法

几种参数识别的方法 B .基于多输出时域识别方法 B1 随机衰减 随机衰减方法是一种非常典型的当输入未知识别模态参数方法。由于识别结果,这种方法实际上是一种无参数识别方法,即随机衰减符号差,是对特定的初始条件的自由衰减响应。得到的随机衰减图形可以用来识别系统模态参数。去相关是这一方法的基本理论,一个简单的导数如下: 对于一个单输入单输出的线性系统,任何力输入的系统响应可以这么解释 ??-+?+?=t d f t h t V x t D x t x 0 )()()()0()()0()(τττ (B-1) 其中D(t)是对单位初始位移的响应,V (t )是对单位初始电压的响应,h (t )是脉冲响 应,f (t )是外部输入的力,假设外部输入力f (t )是一个定常的零均值的随机过程,可以证实x (t )也是一个定常的零均值过程,也证明了x (t )的初始条件为0,考虑到系统响应x(t-t i )中的x(t i )要满足以下条件: +-≤≤A t x A i )( (B-2) 由于系统假设是线性的,整个系统的响应包含了3部分: 1. x(t i )的系统响应 2. )(i t x 的系统响应 3.f (t )的系统响应,其中f (t )假设是随机的并且是定常的,即: ??-+-?+-?=-t t i i i i i i d f t h t t V t x t t D t x t t x τττ)()()()()()()( (B-3) 假设X 是x(t-t i )的随机过程,F 是f(t-t i )的随机过程, x (t )的平均值为: [][] τ ττd F E t h A x A x E A x A x E t X E t ??-+≤≤+≤≤=?+-+-0)]([)()0(|)0()0(|)0()]([ (B-4) 由于x (t )是一个平均值为0的定常随机过程,)(i t x 也是一个平均值为0的定常随机系统并且与x (t )是独立的,因此: 0]|)0([)]0([=≤≤=+-A x A x E x E (B-5) 假设 -+-≥≤≤=A A t x A x E A ])(|)0([ (B-6) 且 τττd F E t h t b t ??-=?0 )]([)()( (B-7) X (t )的期望值为: )()()]([t b t D A t x E +?= (B-8) 如果f (t )是零均值、定常、白噪声随机过程,它与x (t )是相互独立的,因此输入的

模态振型固有频率基本理论

模态振型是一个相对量,通常是一个列向量,二维以上地系统其模态振型不是一个数.一个数对应单模态,其数值无意义.某模态频率下地模态振型反映了在该模态频率下各自由度地相对位移地比值.如果系统地初始位移恰好等于模态频率下地模态振型(或与之成比例),则此时系统地自由响应中只会出现该模态频率. 感谢欧阳中华教授地指点,我现在觉得自己当初确实对模态振型概念不清楚.模态振型是系统固有地振动形态,线性响应是振型线性叠加地结果,但振型之间是独立不耦合地.振型是个相对量,所以就有了多种振型归一划地方法.振型是个很重要地固有特征,正如楼上所说用于验证固有频率. 文档来自于网络搜索 我觉得振型在判别你计算固有频率正确性是非常有用地,比如,通过有限元计算得到了模型地前十阶固有频率,试验模态分析也得到了低阶地固有频率,假设计算地某阶固有频率与试验地某阶固有频率非常接近,但是并不能马上说明他们是同一阶地,需要通过振型来判断. 文档来自于网络搜索 其他地不知道,但是之所以引入模态地概念,之所以从物理坐标变换到模态坐标就是为了解耦,就是为了让其正交,这样方程才能解出来. 从能量角度说,这样各个振型之间就没有能量地交换. 文档来自于网络搜索 从数学上看,对响应函数级数展开后,其中地各项构成各阶模态,而级数展开形式本身要求各个基函数是相互正交地,也就是说:其实是把响应函数放到了一个函数空间里,各个展开项系数相当于这个响应在此函数空间里地坐标.文档来自于网络搜索 因为个自由度以上地系统往往都有耦合现象,例如方程*^^*中地、不同时为对角阵.但是从求解地角度来说,我们又希望其中地每个方程都是独立地,那样我们就可以像求解单自由度系统一样求解.我们就想能否选到合适地坐标系,使得运动完全不耦合,即系统质量矩阵和刚度矩阵同时为对角矩阵,称这样地坐标系为主坐标系,而模态坐标正是我们要寻找地主坐标.固有振型地正交性是指(以自由度为例),第一阶固有振动引起地作用力在第二阶固有振动上所做地功为零,即两种固有振动间无弹性势能地交换.同时也可证明振型地各阶导数间也是正交地. 文档来自于网络搜索 就像不同地坐标系下,对同一运动系统地表述会很不一样,表述同一运动系统地振型模态也可以有很多物理量地坐标系,当然其中很多都是很复杂地,对解决实际问题是没有实际意义和帮助地,只有那个特殊地正交状态地模态坐标,才是最简单最有用地坐标,因为它能把系统解耦,,这个特殊地坐标称之为主坐标,对应主振型,这个状态可以把方程解开,把问题解决掉,,文档来自于网络搜索 各阶模态是互相正交是为了解耦,使问题最简化.类似向量地分解,比方说,一个平面内力向量地分解方式有很多种,但采用直角正交分解最方便. 文档来自于网络搜索 主要从以后地解方程组时候要解耦考虑吧 模态正交,具体表现在模态振型存在正交,请注意“存在”,而这种正交是线性系统模态地基本特性,准确地说是固有特性,正因为存在这种正交特性,带来了运算时地广义坐标下地耦合矩阵变为模态坐标中.文档来自于网络搜索 地解耦,计算变得简单. 注:(对上段话地个人理解:线性系统具有正交特性,人们利用线性系统地正交特性,对线性模态进行解耦,使问题简化.)文档来自于网络搜索 .任一阶主振型地惯性力在另一阶主振型作为虚位移上所做地虚功之和为零 .任一阶主振型地惯性力只在各自地振型上做功,在另外地主振型上不做功 这是正交相应地物理解释,是模态振型正交地物理形式,所以不能用物理含义去证明其相应地数学表达. 上面模态正交地数学和物理形式和概念有解释清楚了,那么,为什么会正交呢?

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过 AHA12GAGGAGAGGAFFFFAFAF

模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 AHA12GAGGAGAGGAFFFFAFAF

AHA12GAGGAGAGGAFFFFAFAF 二、各模态分析方法的总结 (一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计

阻尼比的概念

阻尼就是使自由振动衰减的各种摩擦和其他阻碍作用。 阻尼比在土木、机械、航天等领域是结构动力学的一个重要概念,指阻尼系数与临界阻尼系数之比,表达结构体标准化的阻尼大小。 阻尼比是无单位量纲,表示了结构在受激振后振动的衰减形式。可分为等于1,等于0, 大于1,0~1之间4种,阻尼比=0即不考虑阻尼系统,结构常见的阻尼比都在0~1之间. ζ <1的单自由度系统自由振动下的位移 u(t) = exp(-ζwn t)*A cos (wd t - Φ ), 其中wn 是结构的固有频率,wd = sqrt(1-ζ^2) ,Φ为相位移.Φ和常数A由初始条件决定. 阻尼比的来源及阻尼比影响因素 主要针对土木、机械、航天等领域的阻尼比定义来讲解。阻尼比用于表达结构阻尼的大小,是结构的动力特性之一,是描述结构在振动过程中某种能量耗散的术语,引起结构能量耗散的因素(或称之为影响结构阻尼比的因素)很多,主要有[1](1)材料阻尼、这是能量耗散的主要原因。(2)周围介质对振动的阻尼。(3)节点、支座联接处的阻尼(4)通过支座基础散失一部分能量。 阻尼比的计算 对于小阻尼情况[2]: 1) 阻尼比可以用定义来计算,及ksai=C/C0; 2) ksai=C/(2*m*w) % w为结构圆频率 3) ksai=ita/2 % ita 为材料损耗系数 4) ksai=1/2/Qmax % Qmax 为共振点放大比,无量纲 5) ksai=delta/2/pi % delta是对数衰减率,无量纲 6) ksai=Ed/W/2/pi % 损耗能与机械能之比再除以2pi 阻尼比的取值 对结构基本处于弹性状态的的情况,各国都根据本国的实测数据并参考别国的资料,按结构类型和材料分类给出了共一般分析采用的所谓典型阻尼比的值。综合各国情况,钢结构的阻尼比一般在0.01-0.02之间(虾肝蚁胆:单层钢结构厂房可取0.05),钢筋混凝土结构的阻尼比一般在0.03-0.08之间。以上的典型阻尼比的值即为结构动力学在等效秥滞模态阻尼中,采用的阻尼比的值。该阻尼比即为各阶振型的阻尼比的值。

悬臂梁各阶固有频率及主振形的测定试验

实验五 悬臂梁各阶固有频率及主振形的测定试验 一、实验目的 1、用共振法确定悬臂梁横向振动时的各阶固有频率。 2、熟悉和了解悬臂梁振动的规律和特点。 3、观察和测试悬臂梁振动的各阶主振型。分析各阶固有频率及其主振型的实测值与理论计算值的误差。 二、基本原理 悬臂梁的振动属于连续弹性体的振动,它具有无限多自由度及其相应的固有频率和主振型,其振动可表示为无穷多个主振型的叠加。对于梁体振动时,仅考虑弯曲引起的变形,而不计剪切引起的变形及其转动惯量的影响,这种力学分析模型称为欧拉-伯努利梁。 运用分离变量法,结合悬臂梁一端固定一端自由的边界条件,通过分析可求得均质、等截面悬臂梁的频率方程 1 L Lch cos -=ββ (5-1) 式中:L ——悬臂梁的长度。 梁各阶固有园频率为 A EI i i n 2 ρβω= (5-2) 对应i 阶固有频率的主振型函数为 ) ,3,2,1() sin (sin cos cos )( =-++- -=i x x sh L L sh L L ch x x ch x X i i i i i i i i i ββββββββ (5-3) 对于(5-1)式中的β,不能用解析法求解,用数值计算方法求得的一阶至四阶固有园频率和主振型的结果列于表5-1。 各阶固有园频率之比 1f ﹕1f ﹕1f ﹕1f ﹕… = 1﹕6.269﹕17.56﹕34.41﹕… (5-4) y A B x h L b 图5-1 悬臂梁振动模型 表(5-1)给出了悬臂梁自由振动时i =1~4阶固有园频率及其相应主振型函数。除了悬臂梁固定端点边界位移始终为零外,对于二阶以上主振型而言,梁上还存在一些点在振动过程中位移始终为零的振型节点。i 阶振型节点个数等于i -1,即振型节点个数比其振型的阶数小1。 实验测试对象为矩形截面悬臂梁(见图5-2所示)。在实验测试时,给梁体施加一个大小适当的激扰作用力,其频率正好等于梁体的某阶固有频率,则梁体便会产生共振,这时梁体变形即为该阶固有频率所对应的主振型,其它各阶振型的影响很小可忽略不计。用共振法确定悬臂梁的各阶固有频率及振型,我们只要连续调节激扰力,当悬臂梁出现某阶主振型且振动幅值最大即悬臂梁产生共振时,这时激扰力的频率就可以认为是悬臂梁的这一阶振动的固有频率。在工程实践中,最重要是确定振动系统最低的几阶固有频率及其主振型。本实验主要运用共振法测定悬臂梁一、二、三、四阶固有频率及其相应的主振型。

4.2多自由度系统的固有频率与主振型

4.2 多自由度系统的固有频率与主振型 一、固有频率和主振型 上节导出了多自由度系统的自由振动微分方程: 以及 考虑到系统的主振动是简谐振动,可设它为: (4-10) 将它分别代入(4-5)与(4-7)式,可得如下主振型方程 (4-11)以及 (4-12)如果引入系统矩阵的概念,可以将式(4-11)与(4-12)化成具有相同的形式,对(4-11)式两端乘以,可得 (4-13)这时,设系统矩阵为 (4-14)且令,则主振型方程(4-11)可化为 (4-15) 再设另一个形式的系统矩阵为 (4-16)且令,则主振型方程(4-12)可化为 (4-17)这样,主振型方程(4-15)与(4-17)就有着相同的形式。 注意到系统的刚度矩阵与柔度矩阵之间存在着互逆关系,即有

或 利用矩阵乘积的求逆公式,可知上述两种系统矩阵之间有着互逆关系: 还应该指出,尽管系统的刚度矩阵、柔度矩阵以及质量矩阵一般都是对称矩阵,但是其系统矩阵和一般已不再是对称矩阵。 现在来看系统固有频率与主振型问题。鉴于方程(4-15)与(4-17)属于同一形式,故只需讨论其中之一。 方程(4-15)可改写为 (4-18) 它有非零解的条件为 (4-19) (4-19)式称为系统的频率方程或特征方程。对它展开的结果,可得一个关于的次代数方程: (4-20) 它的个根成为系统的特征根,亦称矩阵的特征值。特征值与系统固有频率之间有如下关系: (4-21) 一般说来,次代数方程的个根,可以是单根,也可以是重根;可以是实数,也可以是复数。但是,在我们所考虑的情形中,由于系统质量矩阵是正定的实对称阵,刚度矩阵是正定的或半正定的,故所有特征值都是实数,并且是正数或零。事实上,由正定与半正定的条件,对于任何非零的,有 (4-22) 现对系统主振型方程 两端前乘以,得 考虑到条件式(4-22),自然就得出上述结论。 通常,刚度矩阵为正定(或半正定)的系统,称为正定系统(或半正定系统)。所以,上述结论可改述为:正定系统的特征值都是正的,而半正定系统的特征值是正数或零。

学习模态分析要掌握的的知识

模态分析中的几个基本概念 一、模态定义:物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示。 模态分析一般是在振动领域应用,每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性: 一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型; 二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。 一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。 二、模态分析:模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。 有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。将特征值从小到大排列就是阶次。 实际的分析对象是无限维的,所以其模态具有无穷阶。但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。 一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。所以模态的阶数就是对应的固有频率的阶数。 三、振型是指体系的一种固有的特性。它与固有频率相对应,即为对应固有频率体系自身振动的形态。每一阶固有频率都对应一种振型。振型与体系实际的振动形态不一定相同。振型对应于频率而言,一个固有频率对应于一个振型。按照频率从低到高的排列,来说第一振型,第二振型等等。此处的振型就是指在该固有频率下结构的振动形态,频率越高则振动周期越小。在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。 四、模态扩展是为了是结果在后处理器中观察而设置的,原因如下: 求解器的输出内容主要是固有频率,固有频率被写到输出文件Jobname.OUT及振型文件Jobnmae.MODE中,输出内容中也可以包含缩减

相关主题
文本预览
相关文档 最新文档