当前位置:文档之家› 一次函数知识梳理

一次函数知识梳理

一次函数知识梳理
一次函数知识梳理

八年级上学期知识梳理

《变量与函数》知识梳理

一、学习目标

1、通过简单实例,了解常量,变量的意义。

2、能结合实例,了解函数概念和三种表示方法。

3、理解函数的对应值与函数图象上的点之间一一对应关系。

4、能结合图象对简单的实际问题的函数关系进行分析,并会确定简单实际问题的函数的自变量的取值范围,并会求函数值。

5、会用描点法画出函数的图象。

6、能对一个变化过程进行恰当地估计和分析。

二、重点难点

重点:1、函数概念的形成

2、理解函数概念,并能根据具体问题得出相应的函数关系式。

3、把实际问题转化为函数图象

4、了解画函数图象的一般步骤,会画出简单的函数图象。

5、函数的三种表示方法及其应用

难点:1、正确理解函数的概念

2、理解函数概念,并能根据具体问题得出相应的函数关系式。

3、根据函数图像研究实际问题

4、函数关系式与函数图象之间的对应关系。

5、函数的三种表示方法及其应用

三、知识梳理

1、变量与常量

在一个变化过程中,我们称数值发生变化的量为变量;数值始终不变的量为常量。

2、函数、函数值

一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数,如果当x=a,y=b,那么b叫做当自变量的值为a的函数值。

3、函数的图象

一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。函数图象能把复杂的函数关系直观地表示出来,帮助我们发现一些规律。

4、描点法画函数图象的一般步骤

第一步:列表(表中给出一些自变量的值及其对应的函数值);

第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);

第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)

不管以何种方式得到的函数图象,关键是找准点的位置,再用平滑的曲线连结,当然要注意自变量的取值范围。

5、函数的三种表示方法

(1)列表法:列表法一目了然,给出自变量的一个值,从表中可直接查出它对应的函数值,使用起来很方便,但列出的x、y的值有限。

(2)解析式法:解析法简单明了,准确反映变化过程中两个变量之间的相依关系。

(3)图象法:图象法形象直观,通过函数图象,可以直接、形象地把函数关系表示出来,直观判断出函数y 随自变量x 变化情况。

表示函数时,要根据具体的情况选择适当的方法,有时为全面地认识问题,需要几种方法同时使用。

6、自变量取值范围的确定

必须考虑自变量所取的值使解析式有意义,具体地,整式型的自变量的取值范围是全体实数,分式型的自变量的取值范围是使分母不为0的实数,偶次根型的自变量的取值范围是使被开方数为非负数的实数,复合型的自变量的取值范围由所列不等式组的解集来确定,应用型的自变量的取值范围要考虑实际意义。

7、观察函数图象的题目,一般考察的是函数图象信息提取的能力,如特殊点的坐标的实际意义,满足特定要求的取值区域,图形的变化趋势等等。

论推断。比如由“1、3、5、7、9……”我们可以推断第n 个数是2n -1。

四、误区警示

1、不能认为式中出现常数就是常量,字母就是变量,如圆的面积公式2

S r π=,圆周率π就是常量。

2、常量与变量的关系不是固定的,要根据具体的问题确定,如路程(S )、速度(v )、时间(t )三者的关系中,有s vt =,当速度v 一定时,v 是常数,s ,t 是变量;当路程一定时,s 是常量,v ,t 是变量。

3、构成函数需要两个变量,既不能多,也不能少。

4、实际问题中要考虑自变量的取值范围是否符合实际意义。 《一次函数》知识梳理

一、学习目标

1、理解正比例函数的性质,根据条件确定正比例函数解析式,会画出它的图象并能结合图象回答问题。

2、能利用待定系数法确定一次函数解析式。

3、会画出一次函数图象,理解一次函数的性质,并能结合性质解决图象位置、面积等问题。

4、会通过“平移”的方法探寻一次函数的图象的有关性质。

5、能根据问题的信息确定自变量在不同范围内的一次函数关系式。

二、重点难点

重点:1、正比例函数的概念、图象与性质

2、一次函数、正比例函数的概念及关系

3、会根据已知信息写出一次函数的表达式

4、一次函数(包括正比例函数)图象与性质。

5、根据所给信息确定一次函数的表达式。

6、分段函数的初步认识与简单多变量问题

难点:1、体验研究函数的一般思路与方法。

2、理解一次函数、正比例函数的概念及关系。在探索过程中,发展抽象思维及概括能力。

3、如何使学生通过自己的实践与探究发现图象的特点与性质,并培养属性结合解决问题的能力。

4、对数学建模的过程、思想、方法的领会,提升分析解决问题的能力。

三、知识梳理

1、一次函数、正比例函数:若两个变量x ,y 之间的关系可以表示为y kx b =+(k 、b 为常

数,k ≠0)的形式,称y 是x 的一次函数,特别地,当b =0时,称y 是x 的正比例函数,显然,正比例函数是一次函数,而一次函数不一定是正比例函数,即正比例函数是一次函数的一个特殊情况。

注意:条件中的k ≠0千万不要忽视,如果k =0,直线y =b 不是一次函数。

2、一次函数图象:正比例函数y kx =(k ≠0)的图象是经过两点(0,0)(1,k )的一条直线,一次函数y kx b =+(k ≠0)的图象是经过两点(0,b ),(b k -

,0)的一条直线,我们把这条直线成为直线y kx b =+。具体性质如下表。

3、k 、b 对一次函数图象的影响:

(1)当0k >时,y 随x 的增大而增大,当0k <时,y 随x 的增大而减小。

(2)k 决定着一次函数图象的倾斜程度,k 越大,其图象与x 轴的夹角就越大。

(3)b 决定着直线与y 轴的交点,当b 大于0时,交点在y 轴正半轴;当b 小于0时,交点在y 轴负半轴。

(4)直线y kx b =+可以看作由直线y kx =平移b 个长度单位得到(当0b >时,向上平移;当0b <时,向下平移)

(5)直线11y k x b =+、22y k x b =+的几种位置关系:

平行:12k k =,12b b ≠;重合:12k k =,12b b =;关于y 轴对称:120k k +=,12b b =;

关于x 轴对称:120k k +=,120b b +=;垂直:121k k ?=-

4、一次函数表达式的确定:一次函数表达式的确定通常有下列几种情况:(1)利用待定系数,根据直线上两点坐标列出方程组确定k 、b 的值,进而求出一次函数的表达式;(2)根据图表求出一次函数的表达式;(3)从已知条件出发,逐层求解得出一次函数表达式。

注意:已知一次函数上两点坐标可以确定一次函数解析式,可以理解为“两点确定一条直线”;已知一点坐标不可以确定一次函数解析式,因为“经过一点的直线有无数条”,但可以确定

正比例函数解析式,因为正比例函数图象经过原点,相当于已知两点;已知三点或超过三点的坐标也不是一定不可以确定一次函数解析式,可以取其中任意两点确定一次函数解析式,再检验其余各点是否符合这个解析式。

5、与一次函数有关的面积问题求解:当一次函数图象与两坐标轴相交或两条相交直线与坐标轴相交时就会得到封闭图形,形成面积问题。面积问题有两种类型:一是封闭图形是规则图形,这时可以直接使用面积公式。二是封闭图形不规则,我们可以将一个不规则图形或难于不易求面积的规则图形,分解成几个易于求面积的规则图形,求出各部分面积后相加

6、图象平移的三种方法:

(1)图象法:先在平面直角坐标系中画出原来的图象,然后根据要求将其平移,根据平移后的图象求出其解析式。

(2)取值法:先在原来图象上任取两点,如(0,0)(1,2),再根据要求求出平移后这两点的坐标,根据所求两点的坐标,用待定系数法求出平移后的解析式。

(3)平移规律:比如将直线(0)y kx k =≠向上平移b (b>0)个单位后可得y kx b =+;将直线(0)y kx k =≠向下平移b (b>0)个单位后可得y kx b =-;将直线(0)y kx k =≠向左平移a (a>0)个单位后可得()y k x a =+;将直线(0)y kx k =≠向右平移a (a>0)个单位后可得()y k x a =-。

7、 应用一次函数解实际问题:解答实际问题的关键在于,将实际问题抽象成为一个数学问题,然后利用一次函数有关性质求解,这其实是数学建模思想的一个应用。

四、误区警示

1、“成正比例”与“正比例函数”:“正比例函数”中必定存在成正比例的数量关系,而存在“成正比例”关系的不一定是“正比例函数”,比如y 与 x +2成正比。

2、正比例函数解析式(0)y kx k =≠的条件0k ≠千万不要忽视,如果k=0,直线y=0就不是正比例函数。

一次函数解析式(0)y kx b k =+≠的条件0k ≠也不要忽视,如果k=0,直线y=b 就不是一次函数。

3、正比例函数是特殊的一次函数,但一次函数不一定是正比例函数。如从图象上来看,一次函数是一条不一定经过原点的直线,而正比例函数图象是一条一定经过原点的直线。

《用函数观点看方程(组)与不等式》知识梳理

一、学习目标

1、理解一次函数与一元一次方程、二元一次方程组、一元一次不等式之间的关系。

2、能用函数观点,把一元一次方程、二元一次方程组、一元一次不等式转化为一次函数的问题,并通过“数形结合”的方法进行直观理解和分析。

3、会用图象法求一元一次方程、二元一次方程组、一元一次不等式的解(解集)。

4、通过建立数学模型,解决含有多个变量的实际问题。

二、重点难点

重点:1、一次函数与一元一次方程的关系的理解。

2、一次函数与一元一次不等式的关系的理解。

3、二元一次方程组的解与两直线交点坐标之间的对应关系的理解。

难点:1、一次函数与一元一次方程的关系的理解。

2、利用一次函数图象确定一元一次不等式的解集。

3、对应关系的理解及实际问题的探究建模。

三、知识梳理

1、一次函数与一元一次方程的关系:一元一次方程都可以转化成0(0)ax b a b a +=、为常数,≠的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值。从图象上看,这相当于已知直线y ax b =+,求它与x 轴交点的横坐标;

2、一次函数与一元一次不等式组的关系:任何一个一元一次不等式都可以转化为0ax b +>或0ax b +<(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围,也可以把一次函数ax b +y =在x 轴上方的点所对应的x 的取值范围看作不等式0ax b +>的解集;

3、一次函数与二元一次方程组的关系:任意一个二元一次方程都可以转化为y kx b =+的形式,即每一个二元一次方程都对应着一个一次函数,也对应着一条直线,所以对二元一次方程组而言,都对应着两个一次函数,于是也对应着两条直线,故从数的角度来看,解二元一次方程组就相当于求自变量为多少时,两个函数值相等,以及这个函数的值是多少;从形的角度来看,解方程组相当于求两条直线交点的坐标。

4、图象法解方程(组)或不等式组的注意事项:用图象法得到的方程(组)的解或不等式的解集是否准确,关键在于图象画得是否准确,由于作图总有误差,所以只能求近似解,可以先用代数法求出方程(组)的解或不等式的解集,再来画图就心中有数了。虽然用一次函数来解方程或不等式未必简单,但是从函数角度看问题,能发现一次函数、一元一次方程、一元一次不等式之间的联系,能直观地看到怎样用图形来表示方程的解与不等式的解,这种用函数观点认识问题的方法,对于培养同学们数形结合的思想很有用。

5、一次函数的最值问题:

考虑一次函数y kx b =+在a ≤x ≤b 内的最大值和最小值问题的时候,要注意k 的符号:k.>0时,则在x= a 处取最小值,在x =b 处取最大值;k<0时,结论正好相反。

6、图象法解“1122k x b k x b +>+”型不等式的两种方法:方法一是在在同一个直角坐标系中,分别作出一次函数111y k x b =+和222y k x b =+的图象。然后观察图形,111y k x b =+的图象画在222y k x b =+上面的x 的取值范围,就是这个一元一次不等式的解集;方法二是将原不等式化成一元一次不等式的标准形式(0ax b +>或0ax b +<),然后用图象法求0ax b +>或0ax b +<的解集,所得的解集就是原不等式的解集。

7、函数思想:用运动的观点、方法考虑问题,把所研究对象中已知量与变量间存在的一般性规律揭示出来,建立一种数学关系的思想方法,运用一次函数的方法解一元一次方程、一元一次不等式和二元一次方程组正是函数思想的运用。

四、误区警示

1、要从“数”的角度和“形”的角度理解一次函数和一元一次方程的关系,求一元一次方程的解可以理解为:当某个函数的值为0时,求相应自变量的值。一次函数y kx b =+的图

象与x 轴的交点为(b a

-,0),可知y kx b =+与x 轴的交点横坐标就是一元一次方程0ax b +=的解。

2、在考虑一次函数y kx b =+在a ≤x ≤b 内的最大、最小值问题的时候,要注意k 的符号:k>0时,则在x=a 处取最小值,在x =b 处取最大值;k<0时结论正好相反。

3、用图象法得到的方程组的解是否准确,关键在于图象画得是否准确,由于作图总是有误差,所以只能求出近似解,可以先用代数法求出方程得解,再来画图就心中有数了。

中考数学复习专题二次函数知识点归纳

二次函数知识点归纳 一、二次函数概念 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: o o 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2y ax c =+的性质: 结论:上加下减。 a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.

总结: 3. ()2 y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质: 总结: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质

二次函数知识点大全

二次函数知识点归纳及提高训练 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2ax y =)(0≠a 的顶点是坐标原点,对称轴是y 轴.(2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点;②当0a 时,开口向上;当0a b (即a 、b 同号)时,对称轴在y 轴左侧; ③0c ,与y 轴交于正半轴;③0

新人教版八年级数学下册一次函数知识点总结

一、常量与变量 在一个变化过程中,数值保持不变的量叫常量,数值发生改变的量叫变量。 实际上,常量就是具体的数,变量就是表示数的字母。(注意“π”是常量) 二、自变量与函数 在一个变化过程中,有两个变量x和y,如果x每取一个值,y都有唯一确定 ....的值与它对应,那么,把x叫自变量,y叫x的函数。 判断两个变量是否有函数关系就是“看对于自变量的每一个确定的值,函数值是否有惟一确定的值和它对应。” 三、函数值 如果x=a时,y=b,那么把“y=b叫做x=a 时的函数值”。 四、表示函数的方法 方法(一)解析式法。 方法(二)列表法 方法(三)图像法 五、自变量的取值范围 在一个变化过程中,自变量允许取值的区域,叫自变量的取值范围。 六、自变量取值范围的求法 (一)对于解析式 1、解析式是整式。自变量取一切实数。 2、自变量在分母。取使分母不等于0的实数。 3、自变量在根号内 (1)在内。自变量取一切实数。 (2)在内。取使根号内的值为非负数的实数。 (二)对于实际问题 自变量的取值要符合实际意义。 在一个函数解析式中,同时有几种代数式时,函数的自变量的取值范围应是各种代数式中自变量的取值范围的公共部分 例: 求函数中自变量x的取值范围。解:要使有意义, 必须且 即,。 所以中自变量x的取值范围是。 说明:求使函数有意义的自变量的值,就是求函数自变量的取值范围。 七、函数图象的画法步骤 把每个点描在平面直角坐标系中。 (三)连线。把描出的点按照自变量由小到大的顺序,用平滑的线 ....连结起来。 八、正比例函数 1、定义:形如(k是常数,)的函数叫做正比例函数。 2、图象:是经过(0,0)与(1,k)的直线。 3、性质: (1) (2)

(完整word版)反比例函数知识点总结

反比例函数知识点总结 李苗 知识点1 反比例函数的定义 一般地,形如x k y =(k 为常数,0k ≠)的函数称为反比 例函数,它可以从以下几个方面来理解: ⑴x 是自变量,y 是x 的反比例函数; ⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①x k y =(0k ≠), ②1kx y -=(0k ≠), ③k y x =?(定值)(0k ≠); ⑸函数x k y =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。 (k 为常数,0k ≠)是反比例函数的一部分,当k=0时, x k y =,就不是反比例函数了,由于反比例函数x k y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。 知识点2用待定系数法求反比例函数的解析式 由于反比例函数x k y =(0k ≠)中,只有一个待定系 数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点3反比例函数的图像及画法 反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。 反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。 再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取; ②列表时选取的数值越多,画的图像越精确; ③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。 知识点4反比例函数的性质 ☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:

二次函数知识点整理

二次函数知识点整理: 1.二次函数的图象特征与a ,b ,c 及判别式ac b 42-的符号之间的关系 (1)字母a 决定抛物线的形状. 即开口方向和开口大小;决定二次函数有最大值或最小值. a >0时开口向上,函数有最小值; a <0时开口向下,函数有最大值; a 相同,抛物线形状相同,可通过平移、对称相互得到; a 越大,开口越小. (2)字母b 、a 的符号一起决定抛物线对称轴的位置. ab=0 (a ≠0,b=0), 对称轴为y 轴; ab >0(a 与b 同号),对称轴在y 轴左侧; ab <0(a 与b 异号),对称轴在y 轴右侧. (3)字母c 决定抛物线与y 轴交点的位置. c=0, 抛物线经过原点; c >0,抛物线与y 轴正半轴相交; c <0,抛物线与y 轴负半轴相交. (4)ac b 42-决定抛物线与x 轴交点的个数. ac b 42-=0,抛物线与x 轴有唯一交点(顶点); ac b 42->0抛物线与x 轴有两个不同的交点; ac b 42-<0抛物线与x 轴无交点. 2.任意抛物线()k h x a y +-=2 都可以由抛物线2ax y =经过平移得到,具体平移方法如 下: 【注意】 二次函数图象间的平移,可看作是顶点间的平移,因此只要掌握了顶点是如何平移的,就掌握了二次函数间的平移. 二次函数图象间对称变换也是同样的道理. 3.用待定系数法求二次函数的解析式 确定二次函数的解析式一般需要三个独立条件,根据不同条件选不同的设法 (1)设一般式:c bx ax y ++=2 (a ,b ,c 为常数、a ≠0)

若已知条件是图象上的三点,将已知条件代入所设一般式,求出a,b,c 的值 (2)设顶点式:()k h x a y +-=2 (a,h,k 为常数,a ≠0) 若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),将已知条件代入所设顶点式,求出待定系数,最后将解析式化为一般形式. (3)设两点式:()()21x x x x a y --=(a ≠0,a 、1x 、2x 为常数) 若已知二次函数图象与x 轴的两个交点的坐标为()()0,0,21x x ,将第三点(m,n ) 的坐标(其中m ,n 为已知数)或其他已知条件代入所设交点式,求出待定系数a ,最后将解析式化为一般形式. 4. 二次函数c bx ax y ++=2(a ≠0)与一元二次方程02=++c bx ax 的关系 (1)二次函数c bx ax y ++=2(a ≠0)中,当y=0时,就变成了一元二次方程02=++c bx ax (2)一元二次方程02=++c bx ax 的根就是二次函数c bx ax y ++=2的图象与x 轴交点的横坐标. (3)二次函数的图象与x 轴交点的个数与一元二次方程根的个数一致. (4)在它俩的关系中,判别式△=ac b 42-起着重要作用. 二次函数的图象与x 轴有两个交点?对应方程的△>0 二次函数的图象与x 轴有一个交点?对应方程的△=0 二次函数的图象与x 轴无交点 ?对应方程的△<0 5.二次函数应用 包括两方面 (1)用二次函数表示实际问题中变量之间的关系; (2)用二次函数解决最大化问题即最值问题.

一次函数 最全面 知识点题型总结

初中数学一次函数知识点总结 基本概念: 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 函数性质: 1.y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k ≠0)。 2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。 3当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。 4.在两个一次函数表达式中: 当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合; 当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行; 当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交; 当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。 图像性质 1.作法与图形:

(1)列表. (2)描点;一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。 正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。 2.性质: (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。 (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。 3.函数不是数,它是指某一变化过程中两个变量之间的关系。 一次函数的图象特征和性质: y =kx+b b>0 b<0 b=0 y=kx k >0 经过第一、二、 三象限 经过第一、三、 四象限 经过第一、 三象限图象从左到右上升,y随x的增大而增大 k <0 经过第一、二、 四象限 经过第二、三、 四象限 经过第二、 四象限图象从左到右下降,y随x的增大而减小

反比例函数知识点归纳(重点)

反比例函数知识点归纳和典型例题 (一)知识结构 (二)学习目标 1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数. 2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点. 3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题. 4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型. 5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点 1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用. 2.难点是反比例函数及其图象的性质的理解和掌握. 二、基础知识 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;

2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴 PBO的面积都是). 于B点,则矩形PBOA的面积是(三角形PAO和三角形 如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA 的延长线于C,则有三角形PQC的面积为.

初二数学一次函数知识点总结

一次函数知识点总结 基本概念 1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。在圆的周长公式C=2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定 的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x 2 -1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D 3、定义域: 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2 (3)关系式含有二次根式时,被开放方数大于等于零;(4 (5例题:下列函数中,自变量x 的取值范围是x ≥2的是( ) A .. . D . 函数y =x 的取值范围是___________. 已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A.2 325≤ <- y B. 2 52 3< 0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0)

反比例函数知识点归纳

反比例函数知识点归纳

九年级数学反比例函数知识点归纳和典型例题 一、基础知识 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象:

则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个 分支分别讨论,不能一概而论. (2)直线与双曲线的关系: 当时,两图象没有交点;当

时,两图象必有两个交点,且这两个交点关于原点成中心对称. (3)反比例函数与一次函数的联系.(四)实际问题与反比例函数 1.求函数解析式的方法: (1)待定系数法;(2)根据实际意义列函数解析式. 2.注意学科间知识的综合,但重点放在对数学知识的研究上. (五)充分利用数形结合的思想解决问题.三、例题分析 1.反比例函数的概念 (1)下列函数中,y是x的反比例函数的是(). A.y=3x B. C.3xy=1 D. (2)下列函数中,y是x的反比例函数的是(). A.B.C.D.

二次函数基本知识点梳理及训练(最新)

① 二次函数 考点一 一般地,如果y =ax 2+bx +c(a 、b 、c 是常数,a ≠0),那么y 叫做x 的二次函数. 1.结构特征:①等号左边是函数,右边是关于自变量x 的二次式;②x 的最高次数是2;③二次项系数a ≠0. 2.二次函数的三种基本形式 一般形式:y =ax 2+bx +c(a 、b 、c 是常数,且a ≠0); 顶点式:y =a(x -h)2+k(a ≠0),它直接显示二次函数的顶点坐标是(h ,k); 交点式:y =a(x -x 1)(x -x 2)(a ≠0),其中x 1 、x 2 是图象与x 轴交点的横坐标. 考 点二 二次函数的图象和性质

考点三 二次函数y=ax2+bx+c的图象特征与a、b、c及b2-4ac的符号之间的关系 考点四 任意抛物线y=a(x-h)2+k可以由抛物线y=ax2经过平移得到,具体平移方法如下: 考点五 1.设一般式:y=ax2+bx+c(a≠0). 若已知条件是图象上三个点的坐标.则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a、b、c的值.2.设交点式:y=a(x-x1)(x-x2)(a≠0). 若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将解析式化为一般式. 3.设顶点式:y=a(x-h)2+k(a≠0). 若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h)2+k(a≠0),将已知条件代入,求出待定系数化为一般式 考点六 二次函数的应用包括两个方法 ①用二次函数表示实际问题变量之间关系. ②用二次函数解决最大化问题(即最值问题),用二次函数的性质求解,同时注意自变量的取值范围. (1)二次函数y=-3x2-6x+5的图象的顶点坐标是() A.(-1,8) B.(1,8) C.(-1,2)D.(1,-4) (2)将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为() A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+2 (3)函数y=x2-2x-2的图象如下图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是() ②

(完整版)二次函数知识点汇总(全)

二次函数知识点(第一讲) 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:(上加下减)

3. ()2 y a x h =-的性质:(左加右减) 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.

方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数() 2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到 前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为: 顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -. 七、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).

二次函数知识点总结及典型题目

二次函数知识点总结及典型题目 一.定义: 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点. 二.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

一次函数知识点总结与常见题型-一次函数知识点整理(最新最全)

一次函数知识点总结与常见题型 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。在圆的周长公式C =2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1x (4)y =2 1 -3x (5)y =x 2-1中,是一次函数的有 ( ) (A )4个 (B )3个 (C )2个 (D )1个 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y B .y C .y D .y 函数y =x 的取值范围是___________. 已知函数22 1 +-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A .2325≤<-y B .2523<0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,?直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1)解析式:y =kx (k 是常数,k ≠0)

反比例函数知识点总结典型例题大全

反比例函数 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上. 4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA 的面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个 分支分别讨论,不能一概而论. (2)直线与双曲线的关系: 当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称 (3)反比例函数与一次函数的联系.

二次函数知识点归纳

二次函数知识点归纳 一.二次函数的一般形式:y=ax2+bx+c(a≠0)。强调a≠0. 二.性质 1. 2.y=ax2+c 3.y=a(x-h)2+k 4. 注:顶点在y轴上无一次项(或顶点的横坐标为0):顶点在x轴上函数是一个完全平方式(或顶点的纵坐标为0) 三.二次函数的三种形式:1.当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。2.当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。3.当已知抛物线与x轴的交点或交点横坐标时,通常设为

交点式y =a(x -x 1)(x -x 2) 四.平移 五.如何将实际问题转化为二次函数问题,从而利用二次函数的性质解决最大利润问题,最大面积问题。 练习 1.已知函数4m m 2 x )2m (y -++=是关于x 的二次函数,求:(1)满足条件的m 值; (2)m 为何值时,抛物线有最低点?求出这个最低点.这时当x 为何值时,y 随x 的增大而增大?(3)m 为何值时,函数有最大值?最大值是什么?这时当x 为何值时,y 随x 的增大而减小? 2.抛物线y =x 2+bx +c 的图象向左平移2个单位。再向上平移3个单位,得抛物线y =x 2-2x +1,求:b 与c 的值。 3.通过配方,求抛物线y =12 x 2-4x +5的开口方向、对称轴及顶点坐标,再画出图象。 4.根据下列条件,求出二次函数的解析式。 (1)抛物线y =ax 2+bx +c 经过点(0,1),(1,3),(-1,1)三点。 (2)抛物线顶点P(-1,-8),且过点A(0,-6)。 (3)已知二次函数y =ax 2+bx +c 的图象过(3,0),(2,-3)两点,并且以x =1为对称轴。 (4)已知二次函数y =ax 2+bx +c 的图象经过一次函数y =- 2 3x +3的图象与x 轴、y 轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y =a(x -h)2+k 的形式。 5.如图,已知直线AB 经过x 轴上的点A(2,0),且与抛物线y =ax 2相交于B 、C 两点,已知B 点坐标为(1,1)。 (1)求直线和抛物线的解析式; (2)如果D 为抛物线上一点,使得△AOD 与△OBC 的面积相等,求D 点坐标。

一次函数知识点归纳总结大全

一次函数知识点归纳总结大全 基本概念 1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式中,表示速度,表示时间,表示在时间内所走的路程,则变量是vt s =v t s t ________,常量是_______。在圆的周长公式C=2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值, y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y=πx (2)y=2x-1 (3)y= (4)y=2-1-3x (5)y=x 2-1中,是一次函数的有1x ( ) (A )4个 (B )3个 (C )2个 (D )1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值范围是x≥2的是( ) A . B . C . D . 函数x 的取值范围是___________. y =已知函数,当时,y 的取值范围是 ( )22 1+-=x y 11≤<-x A. B. C. D.2325≤<-y 2523<

反比例函数知识点总结

反比例函数知识点总结 知识点1 反比例函数的定义 一般地,形如x k y = (k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解: ⑴x 是自变量,y 是x 的反比例函数; ⑵自变量x 的取值围是0x ≠的一切实数,函数值的取值围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①x k y = (0k ≠), ②1 kx y -=(0k ≠), ③k y x =?(定值)(0k ≠); ⑸函数x k y = (0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是 y 的反比例函数。 (k 为常数,0k ≠)是反比例函数的一部分,当k=0时,x k y =,就不是反比例函数了,由于反比例函数x k y = (0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。 知识点2用待定系数法求反比例函数的解析式 由于反比例函数x k y = (0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。 知识点3反比例函数的图像及画法 反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。 反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。 再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取; ②列表时选取的数值越多,画的图像越精确; ③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。 知识点4反比例函数的性质 ☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:

一次函数知识点总结与常见题型

三乐教育名师点拔中心 学生姓名: 家长签名 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。在圆的周长公式C =2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其 对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1 x (4)y =21-3x (5)y =x 2-1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y B .y C .y D .y 函数y = x 的取值范围是___________. 已知函数22 1 +-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A .2325≤<-y B .2523<0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,?直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y =kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k >0时,图像经过一、三象限;k <0时,?图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴 例题:(1).正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大. (2)若23y x b =+-是正比例函数,则b 的值是 ( ) A .0 B . 23 C .23- D .32 - .(3)函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( ) A .0k C .1≤k D .1

相关主题
文本预览
相关文档 最新文档