当前位置:文档之家› 关于函数对称性的几个结论

关于函数对称性的几个结论

关于函数对称性的几个结论
关于函数对称性的几个结论

函数对称性与周期性关系

函数 对称性与周期性关系 【知识梳理】 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。 如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即 点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数)(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

函数对称性周期性全解析

函数对称性与周期性研究学习报告 新高2011级35班数学 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数 )(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =- 也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成: )()(x b f x a f -=+,函数)(x f y =关于直线22)()(b a x b x a x +=-++= 对称 (2)函数)(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得证。 若写成: c x b f x a f =-++)()(,函数)(x f y =关于点)2,2(c b a + 对称 (3)函数)(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个y 值与其 对应,显然这不符合函数的定义,故函数自身不可能关于 b y =对称。但在曲线c(x,y)=0,则有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数)(x f y =满足如下关系系,则T x f 2)(的周期为 A 、)()(x f T x f -=+ B 、)(1)()(1)(x f T x f x f T x f -=+= +或 C 、)(1)(1)2(x f x f T x f -+=+或) (1)(1)2(x f x f T x f +-=+(等式右边加负号亦成立) D 、其他情形

函数的对称性与周期性

函数的对称性与周期性 一、相关结论 1.关于x 轴、y 轴、原点、x y =对称 2.周期性(内同) ① 若)()(x f T x f =+(0≠T ),则)(x f 为周期函数,T 为一个周期。 ② 若)()(b x f a x f +=+(b a ≠),则)(x f 为周期函数,||a b -为一个周期。 ③ 若)()(x f a x f -=+(0≠a ),则)(x f 为周期函数,a 2为一个周期。 ④ 若) (1 )(x f a x f =+(0≠a ),则)(x f 为周期函数,a 2为一个周期。 3.自对称性(内反) ①若)()(x b f x a f -=+,则)(x f 的图像关于直线2 b a x += 对称;特别地,若)()(x a f x a f -=+,则)(x f 的图像关于直线a x =对称;0=a 为偶函数。 ②若)()(x b f x a f --=+,则)(x f 的图像关于点)0,2 ( b a +对称;特别地,若)()(x a f x a f --=+,则)(x f 的图像关于点)0,(a 对称;0=a 为奇函数。 ③若c x b f x a f =-++)()(,则)(x f 的图像关于点)2 ,2(c b a +对称。 4.互对称性 ①函数)(x a f y +=与函数)(x b f y -=的图像关于直线2a b x -=对称; ②函数)(x a f y +=与函数)(x b f y --=的图像关于点)0,2 (a b -对称; ③函数)(x a f y +=与函数)(x a f y -=的图像关于直线0=x 对称。 5. 对称性与周期性的关系 ①若)(x f 的图像有两条对称轴a x =和b x =(b a ≠),则)(x f 为周期函数, ||2a b -为一个周期。 ②若)(x f 的图像有两个对称中心)0,(a 和)0,(b (b a ≠),则)(x f 为周期函数, ||2a b -为一个周期。 若)(x f 的图像有一条对称轴a x =和一个对称中心)0,(b (b a ≠),则)(x f 为周期函 数,||4a b -为一个周期。

函数的对称性

函数的对称性 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。 一、对称性的概念及常见函数的对称性 1、对称性的概念: ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为a b x 2-=。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x 与y=-x 均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y 轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,2π π+=k x 是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x ,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x ,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。 ⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,)0,2(ππ+k 是它的对称中心。 (11)正切函数:不是轴对称,但是是中心对称,其中)0,2(π k 是它的对称中心, 容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)。 (12)对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。但容易犯错误的是同学们可能误以为最值处是它的对称轴。 (13)三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。

函数对称性、周期性和奇偶性的规律总结大全 .分解

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

(完整版)常见函数对称性和周期性

(一)函数)(x f y =图象本身的对称性(自身对称) 若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。 推论1:)()(x a f x a f -=+ ?)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称 推论1、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称 2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数 3、函数)(x f y =与()y f x =-图象关于X 轴对称 4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

函数的对称性82459

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点()00,Q a b x y +-也在()f x 的图象上。

对称模型的最值问题-含答案

对称模型的最值问题 【母题示例】 如图,在边长为2的正方形ABCD中,点E是AB的中点,点P是对角线AC上一个动点,连接PE,PB,求PE+PB的最小值. 【命题形式】 以特殊三角形、特殊平行四边形或坐标系为背景,利用对称性求与两线段和或差的最值相关的问题. 【母题剖析】 要求PE+PB的最小值,只需将点B和点E转化为直线AC两侧的点,由正方形的对称性可得解. 【母题解读】 (1)对称模型的最值问题的背景来源主要有:角、等腰(边)三角形、菱形、正方形以及圆等.从内容上看,还会引申到“两线段差最大”问题、三角形(四边形)的周长最小问题、面积最大问题等.除此之外,解决对称模型的最值问题常常借助极端点. (2)一般地,解决线段和差最值问题的目标是“化曲为直”,手段通常是遇“和”转化为“异侧”,遇“差”转化为“同侧”,依据是轴对称和全等三角形,常用方法是利用轴对称图形中的“已知”的对称点.涉及的知识点有“两点之间线段最短”“垂线段最短”“三角形三边关系”“轴对称”“平移”

等. 模型一同侧和的最小值模型 【模型解读】两定点(A、B)在一条直线(l)的同侧,求直线(l)上一动点(P)到两定点距离和(PA+PB)的最小值.常作其中一定点(如A)关于直线(l)的对称点(如A′),再连接另一定点和该点(如连接A′B),其与直线(l)的交点即为所求点(如点P). 【基本图形】 基本 图形 说明 作A、A′关于直线l对称,PA+PB=PA′+PB≥A′B,当 点P在线段A′B上时取最小值 基本 图形 说明过A作AA′∥MN且AA′=MN,再作A′关于l的对称点A ″,连接A″B,则AM+MN+NB=A″N+BN+MN≥A″B+MN,当且仅当点N在A″B上时取等号 【模型突破】 1.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=230.在直线a上取一点M,在直线b上取一点N,满足MN⊥a且AM+MN+NB的值最短,则此时AM+NB=( )

函数的对称性与周期性例题、习题(供参考)

函数的对称性与周期性 【知识梳理】 1. 周期的概念:设函数(),y f x x D =∈,如果存在非零常数T ,使得对任意x D ∈都有 ,则函数()y f x =为周期函数,T 为()y f x =的一个周期; 2. 周期函数的其它形式 ()()f x a f x b +=+? ;()()f x a f x +=-? ;()()1f x a f x +=? ; ()()1f x a f x +=-? ;)(1)(1)(x f x f a x f +-=+? ,)(1)(1)(x f x f a x f -+=+? )()()2(x f a x f a x f -+=+? 1 )(1)(+-=+x f a x f ? , 3. 函数图像的对称性 1).若()()f x f x =-,则()y f x =的图像关于直线 对称; 2).若()()0f x f x +-=,则()y f x =的图像关于点 对称; 3)若()()f a x f a x +=-,则()y f x =的图像关于直线 对称; 4)若()()2f x f a x =-,则()y f x =的图像关于直线 对称; 5)若()()2f a x f a x b ++-=,则()y f x =的图像关于点 对称; 6)若()()22f x f a x b +-=,则()y f x =的图像关于点 对称; 4. 常见函数的对称性 1)函数()()0ax b f x c cx d +=≠+的图像关于点 对称; 2)函数()()0f x ax b a =-≠的图像关于直线 对称; 3)函数()()20f x ax bx c a =++≠的图像关于直线 对称; 【例题选讲】 题型一 根据解析式判断函数图像的对称性 1. 函数()2331 x f x x +=-的图像关于 对称; 2. 函数()f x 的定义域为R ,且()()1f x f x -=,则()f x 的图像关于 对称; 3. 函数()23f x x =-的图像关于 对称; 4. 函数()3sin 23f x x π??=- ?? ?的图像关于直线 对称;关于点 对称; 题型二 平移变换后,函数图像的对称性 1.已知函数()y f x =是偶函数,()2f x -在[]0,2递减,则( ) 2.已知()2y f x =-是偶函数,则()y f x =的图像关于 对称; 3.已知()y f x =是奇函数,则()12y f x =+-的图像关于 对称; 题型三 函数图像的对称性求函数解析式

函数的周期和对称性

专题:函数的周期性对称性 1、周期函数的定义 一般地,对于函数)(x f y =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+,那么函数)(x f y =就叫做周期函数,非零常数T 叫做这个函数的一个周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 显然,若T 是函数的周期,则)0,(≠∈k z k kT 也是)(x f 的周期。如无特别说明,我们后面一般所说的周期是指函数的最小正周期。 说明:1、周期函数定义域必是无界的。 2、周期函数不一定都有最小正周期。 推广:若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期; )2 ()2(T x f T x f -=+,则)(x f 周期为T ; ()f x 的周期为)(x f T ω?的周期为 ω T 。 2、常见周期函数的函数方程: (1)函数值之和定值型,即函数)()()(b a C x b f x a f ≠=+++ 对于定义域中任意x 满足)()()(b a C x b f x a f ≠=+++,则有)()]22([x f a b x f =-+,故函数)(x f 的周期是)(2a b T -= 特例:()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; (2)两个函数值之积定值型,即倒数或负倒数型 若)()()(可正可负,C b a C x b f x a f ≠=+?+,则得 )]22()2[()2(a b a x f a x f -++=+,所以函数)(x f 的周期是)(2a b T -=

利用函数的对称性可以化简一些较为繁琐的计算

积分与微分中对称问题的研究 PB07210207 王铭明 利用函数的对称性可以化简一些较为繁琐的计算,可以大大提高做题的效率与准确性,这篇论文我总结了函数求导与函数积分的利用对称性求解的方法和一些典型例题,算是对对称性应用的一点心得。 1、 对称函数的求导 a,对函数?(x 1.,x 2,…x n ),若它的任意两个变元对换时函数不变,如函数 z = x +y +√x 2+y 2 就是对称函数,对于对称函数具有这样的性质,即对任一变元所得的结果都可经变元(字母)的对换直接转移到其他变元。 证明??x (?(x,y,z ))=f (x,y,z ), 由?(x,y,z )=?(y,x,z ), 有??y (?(x,y,z ))=??y (?(y,x,z)), 在变换(x →y,y →x,z →z )下,上式变为??x (?(x,y,z ))=f (x,y,z ), 取反变换,则有??x (?(y,x,z ))=f (y,x,z ), 考虑有由?(x,y,z )=?(y,x,z ), 则??y (?(x,y,z ))= f (y,x,z ), 同理??y (?(x,y,z ))= f (z,y,x ). b,而有些函数不是对称函数,如u=ln (x y y z z x ) 不是三元对称函数,但在变换 (x →y,y →z,z →x ) 下 ,函数仍然不变,此时我们称函数为三元轮换对称函数,类似于对称函数,对于一个轮换对称函数,他对某任一变元所得的结果都可经变元(字母)的轮换直接转移到其他变元。 c,有些函数如f (x,y )=?f (y,x ),x 与y 互换后与原函数相差一个正负号,其不是对称函数,但由 ??y [f(x,y)]=???y [?f(x,y)]=???y [f(x,y)], 可知若已知?z ?x ,我们只需将x 与y 互换,将结果再乘以(?1),就立即可得出?z ?y . (对称变换)例1:设z=x 2tan ?1 y x +y 2tan ?1 x y ,求?z ?x ,?z ?y . ?z ?x =2x tan ?1y x +x 2?y x 2+y 2+y 2y x 2+y 2 =2x tan ?1y x +y(y 2_x 2)x y , 由对称函数性质,将x 与y 互换,

函数的周期性与对称性

函数的周期性与对称性 1、函数的周期性 若a 是非零常数,若对于函数y =f(x)定义域内的任一变量x 点有下列条件之一成立,则函数y =f(x)是周期函数,且2|a|是它的一个周期。 ①f(x+a)=f(x -a) ②f(x+a)=-f(x) ③f(x+a)=1/f(x) ④f(x+a)=-1/f(x) 2、函数的对称性与周期性 性质5 若函数y =f(x)同时关于直线x =a 与x =b 轴对称,则函数f(x)必为周期函数,且T =2|a -b| 性质6、若函数y =f(x)同时关于点(a ,0)与点(b ,0)中心对称,则函数f(x)必为周期函数,且T =2|a -b| 性质7、若函数y =f(x)既关于点(a ,0)中心对称,又关于直线x =b 轴对称,则函数f(x)必为周期函数,且T =4|a -b| 3.函数)(x f y =图象本身的对称性(自身对称) 若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。 1、)()(x b f x a f -=+ ?)(x f y =图象关于直线2 2)()(b a x b x a x += -++= 对称 推论1:)()(x a f x a f -=+ ?)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称 2、c x b f x a f 2)()(=-++ ?)(x f y =的图象关于点),2 ( c b a +对称 推论1、 b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称 例题分析: 1.设)(x f 是),(+∞-∞上的奇函数,)()2(x f x f -=+,当10≤≤x 时,x x f =)(,则 )5.47(f 等于 ( ) (A )0.5 (B )5.0- (C )1.5 (D )5.1- 2、(山东)已知定义在R 上的奇函数)(x f 满足(2)()f x f x +=-,则(6)f 的值为( ) A .-1 B .0 C .1 D .2 3.设)(x f 是定义在R 上的奇函数,(1)2,(1)(6),f f x f x =+=+求(10).f 4.函数)(x f 对于任意实数x 满足条件1 (2)() f x f x += ,若(1)5f =-,则[(5)]f f =___

高中函数对称性总结

高中函数对称性总结 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。所以这里我对高中阶段所涉及的函数对称性知识做一个粗略的总结。 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上

函数的对称性和周期性练习题本部

函数的对称性与周期性练习题 1.已知函数)(x f 是R 上的偶函数,且满足3)()1(=++x f x f ,当[]1,0x ∈-时,()2f x x =+,则)5.2007(-f 的值为( ) A .0.5 B .1.5 C . 1.5- D .1 2.定义在R 上的函数()f x 对任意x R ∈,都有()() ()()112,214 f x f x f f x -+==+,则()2016f 等于( ) A. 14 B. 12 C. 13 D. 35 3.已知()f x 是定义在R 上的函数,满足()()()()0,11f x f x f x f x +-=-=+,当()0,1x ∈时,()2f x x x =-+,则函数()f x 的最小值为( ) A. 14 B. 14- C. 12- D. 12 4.已知定义域为R 的函数()f x 满足()()4f x f x -=-+,且函数()f x 在区间()2,+∞上单调递增,如果122x x <<,且124x x +<,则()()12f x f x +的值( ) A. 可正可负 B. 恒大于0 C. 可能为0 D. 恒小于0 5.函数()f x 的定义域为R ,若()1f x +与()1f x -都是奇函数,则( ) A. ()f x 是偶函数 B. ()f x 是奇函数 C. ()()2f x f x =+ D. ()3f x +是奇函数 6.函数31()1f x x x =++关于点__________对称 7.设()f x 为定义在R 上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f =__________ 8.设()f x 是定义在R 上的周期为2的函数,当[)1,1x ∈-时,()242,10,01 x x f x x x ?-+-≤<=?≤

函数对称性

1.对称性f(x+a)=f(b_x)记住此方程式是对称性的一般形式.只要x有一个正一个负.就有对称性.至于对称轴可用吃公式求X=a+b/2 如f(x+3)=f(5_x) X=3+5/2=4等等.此公式对于那些未知方程,却知道2方程的关系的都通用.你可以去套用,在此不在举例. 对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴.如一原二次方程f(x)=ax2+bx+c对称轴X=b/2a 原函数与反函数的对称轴是y=x. 而对于一些函数如果不加限制条件就不好说它们的对称轴如三角函数,它的对称轴就不仅仅是X=90还有...(2n+!)90度等等.因为他的定义为R. f(x)=|X|他的对称轴则是X=0, 还应该注意的是一些由简单函数平移后要求的对称轴就只要把它反原成出等的以后在加上平移的数量就可以了. 如f(x-3)=x-3令t=x-3则f(t)=t可见原方程是由初等函数向右移动了3个单位.同样对称轴也向右移3个单位X=3(记住平移是左加右减的形式,如本题的X-3说明向由移) 2,至于周期性首先也的从一般形式说起f(x)=f(x+T) 注意此公式里面的X都是同号,而不象对称方程一正一负.此区别也是判断对称性还是周期性的关键. 同样要记住一些常见的周期函数如三角函数什么正弦函数,余弦函数正切函数等.当然它们的最小周期分别是.2π,2π,π,当然 他们的周期不仅仅是这点只要是它们最小周期的正数倍都可以是题目的周期.如f(x)=sinXT=2π(T=2π/W) 但是如果是f(x)=|sinx|的话它的周期就是T=π因为加了绝对值之后Y轴下面的图形全被翻到上面去了,由图不难看出起最小对称周T=π. y1=(sinx)^2=(1-cos2x)/2 y2=(cosx)^2=(1+cos2x)/2 上面的2个方程T=π(T=2π/W) 而对于≥2个周期函数方程的加减复合方程,如果他们的周期相同,则它的周期还是相同的周期.如y=sin2x+cos2x因为他们有一个公共周期T=π所以它的周期为T=π而对于不相同的周期则它的周期为它们各个周期的最小公倍数.如 y=sin3πx+cos2πxT1=2/3T2=1则T=2/3

高考数学复习专题函数的对称性与周期性

第5炼 函数的对称性与周期性 一、基础知识 (一)函数的对称性 1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称 2、轴对称的等价描述: (1)()()f a x f a x -=+?()f x 关于x a =轴对称(当0a =时,恰好就是偶函数) (2)()()()f a x f b x f x -=+?关于2 a b x += 轴对称 在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2 a b x += 为所给对称轴即可。例如:()f x 关于1x =轴对称()()2f x f x ?=-,或得到 ()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便 (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。 ① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分: 若()f x 是偶函数,则()()f x a f x a +=-+????:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+???? ② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。 3、中心对称的等价描述: (1)()()f a x f a x -=-+?()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数) (2)()()()f a x f b x f x -=-+?关于,02a b +?? ??? 轴对称 在已知对称中心的情况下,构造形如()()f a x f b x -=-+的等式同样需注意两点,一是

函数对称性、周期性和奇偶性规律总结.

函数对称性、周期性和奇偶性 关岭民中数学组 (一)、同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性) 1、奇偶性:(1)奇函数关于(0,0)对称,奇函数有关系式0) ()(x f x f (2)偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f 2、奇偶性的拓展 : 同一函数的对称性 (1)函数的轴对称: 函数)(x f y 关于a x 对称)()(x a f x a f )()(x a f x a f 也可以写成)2() (x a f x f 或)2()(x a f x f 若写成: )()(x b f x a f ,则函数)(x f y 关于直线22)() (b a x b x a x 对称 证明:设点),(11y x 在)(x f y 上,通过)2()(x a f x f 可知,)2()(111x a f x f y ,即点)(),2(11x f y y x a 也在上,而点 ),(11y x 与点),2(11y x a 关于x=a 对称。得证。说明:关于a x 对称要求横坐标之和为2a ,纵坐标相等。∵1111(,)(,)a x y a x y 与关于x a 对称,∴函数)(x f y 关于a x 对称 )()(x a f x a f ∵1111(,)(2,)x y a x y 与关于x a 对称,∴函数)(x f y 关于a x 对称 )2()(x a f x f ∵1111(,)(2,)x y a x y 与关于x a 对称,∴函数)(x f y 关于a x 对称 )2()(x a f x f (2)函数的点对称: 函数)(x f y 关于点),(b a 对称b x a f x a f 2)()(

函数对称性与周期性几个重要结论赏析

函数对称性与周期性几个重要结论赏析 对称性和周期性是函数的两个重要性质,下面总结这两个性质的几个重要结论及运用它们解决抽象型函数的有关习题。 一、 几个重要的结论 (一)函数图象本身的对称性(自身对称) 1、函数)(x f y =满足)()(x T f x T f -=+(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。 2、函数)(x f y =满足)2()(x T f x f -=(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。 3、函数)(x f y =满足)()(x b f x a f -=+的充要条件是)(x f y =图象关于直线2 2)()(b a x b x a x +=-++=对称。 4、如果函数 )(x f y =满足)()(11x T f x T f -=+且)()(22x T f x T f -=+,(1T 和2T 是不相等的常数),则)(x f y =是以为)(212T T -为周期的周期函数。 5、如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以4T 为周期的周期性函数。 6、如果偶函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以2T 为周期的周期性函数。 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、曲线 )(x f y =与)(x f y -=关于X 轴对称。 2、曲线)(x f y =与)(x f y -=关于Y 轴对称。 3、曲线)(x f y =与)2(x a f y -=关于直线a x =对称。 4、曲线0),(=y x f 关于直线b x =对称曲线为0)2,(=-y b x f 。 5、曲线0),(=y x f 关于直线0=++c y x 对称曲线为0),(=----c x c y f 。 6、曲线0),(=y x f 关于直线0=+-c y x 对称曲线为0),(=+-c x c y f 。 7、曲线0),(=y x f 关于点),(b a P 对称曲线为0)2,2(=--y b x a f 。 二、试试看,练练笔 1、定义在实数集上的奇函数 )(x f 恒满足)1()1(x f x f -=+,且)0,1(-∈x 时, 512)(+=x x f ,则=)20(log 2f ________。 2、已知函数)(x f y =满足0)2()(=-+x f x f ,则)(x f y =图象关于__________对称。 3、函数)1(-=x f y 与函数)1(x f y -=的图象关于关于__________对称。 4、设函数)(x f y =的定义域为R ,且满足)1()1(x f x f -=-,则)(x f y =的图象关于__________ 对称。 5、设函数)(x f y =的定义域为R ,且满足)1()1(x f x f -=+,则)1(+=x f y 的图象关于__________对称。)(x f y =图象关于__________对称。 6、设)(x f y =的定义域为R ,且对任意R x ∈,有)2()21(x f x f =-,则)2(x f y =图象关于__________对称,)(x f y =关于__________对称。 7、已知函数)(x f y =对一切实数x 满足)4()2(x f x f +=-,且方程0)(=x f 有5个实根,则这5个实根之和为( ) A 、5 B 、10 C 、15 D 、18 8、设函数 )(x f y =的定义域为R ,则下列命题中,①若)(x f y =是偶函数,则)2(+=x f y 图象

相关主题
文本预览
相关文档 最新文档