当前位置:文档之家› 氨合成发展

氨合成发展

氨合成发展
氨合成发展

1.合成氨的历史背景——氨气的发现

1727年英国的牧师、化学家S.哈尔斯(HaLes,1677~1 761),用氯化铵与石灰的混合物在以水封闭的曲颈瓶中加热,只见水被吸入瓶中而不见气体放出。1 774年化学家普利斯德里重做此实验,采用汞代替水来密闭曲颈瓶,制得了碱空气(氨)。他还研究了氨的性质,发现氨易溶于水、可以燃烧,还发现在该气体中通以电火花时,其容积增加很多,而且分解为两种气体:一种是可燃的氢气;另一种是不能助燃的氮气。从而证实了氨是氮和氢的化合物。其后H·戴维(Davy,1 778"--1829)等化学家继续研究,进一步证实了2体积的氨通过火花放电之后,分解为1体积的氮气和3体积的氢气。

2.合成氨的发现

1 9世纪以前,农业生产所需氮肥的来源,主要是有机物的副产物和动植物的废物,如粪便、种子饼、腐鱼、屠宰废料、腐烂动植物等。随着农业的发展和军工生产的需要,迫切要求建立规模巨大的探索性的研究。他们设想,能不能把空气中大量的氮气固定下来,而开始设计以氮和氢为原料的合成氨流程。

1 900年法国化学家勒夏特利(Henri Le ChateLier,1 850~1 936)是最先研究氢气和氮气在高压下直接合成氨的反应。很可惜,由于他所用的氢气和氮气的混合物中混进了空气,在实验过程中发生了爆炸。在没有查明发生事故的原因的情况下,就放弃了这项实验。德国化学家W·能斯特(Nernst,1864~1 941),对于研究具有重大工艺价值的气体反应有兴趣,研究了氮、氢、氨的气体反应体系,但是由于他在计算时,用了一个错误的热力学数据,以致得出不正确的理论,因而认为研究这一反应没有前途,把研究停止了。

虽然在合成氨的研究中化学家遇到的困难不少,但是,德国的物理学家、化工专家F.哈伯(Haber,1868,---1934)和他的学生仍然坚持系统的研究。起初他们想在常温下使氮和氢反应,但没有氨气产生。又在氮、氢混合气中通以电火花,只生成了极少量的氨气,而且耗电量很大。后来才把注意力集中在高压这个问题上,他们认为高压是最有可能实现合成反应的。根据理论计算,表明让氢气和氮气在600℃和20MPa下进行反应,大约可能生成6%的氨气。如果在高压下将反应进行循环加工,同时还要不断地分离出生成的氨气,势必需要很有效的催化剂。为了探索有效的催化剂,他们进行了大量的实验,发现锇和铀具有良好的催化性能。如果在17.5~20MPa和500~600℃的条件下使用催化剂,氮、氢反应能产生高于6%的氨。

哈伯把他们取得的成果介绍给他的同行和巴登苯胺纯碱公司,并在他的实验室做了示范表演。尽管事先对反应设备做了细致的准备工作,可是实验开始不久,有一个密封处就经受不住内部的压力,于是混合气体立即冲了出来,发出惊人的呼啸声。他们立即把损坏的地方修好,又进行了几小时的反应后,公司的经理和化工专家们亲眼看见清澈透明的液氨从分离器的旋塞里一滴滴地流出来。但是,实验开始时发生的现象确实是一个严重的警告,说明在设计这套装置时,必须采取各种措施,以避免不幸事故发生。哈伯的那套装置,在示范表演后的第二天发生了爆炸。随后,刚刚安装好的盛有催化剂锇的圆柱装置也爆炸了。这时金属锇粉遇到空气又燃烧起来,结果,把积存备用的价值极贵的金属锇几乎全部变成了没有大用处的氧化锇。

尽管连续出现了一些爆炸事故,但巴登公司的经理布隆克和专家们还是一致认为这种合成氨方法具有很高的经济价值。于是该公司不惜耗费巨资,还投入强大的技术力量、并委任

德国化学工程专家C.波施(Bosch,1874----1940)将哈伯研究的成果设计付诸生产。波施整整花了5年的时间主要做了三项工作:第一,从大量的金属和它们的化合物中筛选出合成氨反应的最适合的催化剂,在这项研究中波施和他的同事做了两万多次实验,才肯定由铁和碱金属的化合物组成的体系是合成氨生产最有效、最实用的催化剂,用以代替哈伯所用的锇和铀;第二,建造了能够进行高温和高压的合成氨装置,最初,他采用外部加热的合成塔,但是反应连续几小时后,钢中的碳与氢发生反应而变脆,合成塔很快地报废了,后来,将合成塔衬以低碳钢,使合成塔能够耐氢气的腐蚀;第三,解决了原料气氮和氢的提纯以及从未转化完全的气体中分离出氨等技术问题。经波施等化工专家的努力,终于设计成了能长期使用和操作的合成氨装置。

1910年巴登苯胺纯碱公司建立了世界上第一座合成氨试验工厂,1 913年建立了大型工业规模的合成氨工厂。这个工厂在第一次世界大战期间开始为德国提供当时极其缺少的氮化合物,以生产**和肥料。以后在全世界范围内合成氨的工厂像雨后春笋般地建立起来。

三、中国合成氨工业生产发展概况

中国合成氨工业经过40多年的发展,产量已跃居世界第1位,已掌握了以焦炭、无烟煤、褐煤、焦炉气、天然气及油田伴生气和液态烃等气固液多种原料生产合成氨的技术,形成中国大陆特有的煤、石油、天然气原料并存和大、中、小生产规模并存的合成氨生产格局。

7、、、、在氨合成工段在氨合成工段在氨合成工段在氨合成工段,,,,总提到为了选阻力低的总提到为了选阻力低的总提到为了选阻力低的总提到为了选阻力低的设备设备设备设备,,,,请问阻力来自什么请问阻力来自什么请问阻力来自什么请问阻力来自什么????氨合成阻力来自三个方面,一是设备阻力即气体通过各设备产生的阻力;二是系统管道阻力,包括各管件(如阀门、弯头、三通等)所产生的阻力;三是氨触媒产生的阻力。另外就是温度变化所产生的压差阻力。在氨合成工段阻力,通常俗称系统压差,主要指气体流经各个设备、管道压降,主要指换热器、分离器、触媒层等,尤其合成塔阻力约占氨合成工段阻力50%以上。8、、、、为什么加压要从低压段开始为什么加压要从低压段开始为什么加压要从低压段开始为什么加压要从低压段开始,,,,卸压要从卸压要从卸压要从卸压要从高压高压高压高压段进行段进行段进行段进行????加压从低压开始是因为压力是逐级提升的。泄压从高压开始是防止高压窜低压。防止压缩比过大,损害设备。从设备而言,压缩机一般多为多级压缩,而且每级压缩比基本固定,波动范围比较小。加压从低压开始,泄压从高压开始是出于保护设备,尽量实现背压稳定;从工艺而言,低压一般代表前工序,高压一般代表后工序。压缩机加压和泄压也是系统加负荷和减负荷的体现。一般说来,加负荷从前工序开始,减负荷从后工序开始。这是保证系统稳定和安全的需要。9、氨合成触媒的生产强度即每立方米触媒每天生产合成氨多少吨。10、、、、氨合成塔分为三个床层氨合成塔分为三个床层氨合成塔分为三个床层氨合成塔分为三个床层,,,,三个床层入口三个床层入口三个床层入口三个床层入口温度温度温度温度依次相应降依次相应降依次相应降依次相应降低低低低,,,,想了解合成塔想了解合成塔想了解合成塔想了解合成塔催化剂催化剂催化剂催化剂分层分层分层分层的依据的依据的依据的依据,,,,及为何床层入口温度逐渐降低及为何床层入口温度逐渐降低及为何床层入口温度逐渐降低及为何床层入口温度逐渐降低????这种现象就是符合化学反应的动力学和平衡理论,因为在上层触媒中反应气体中的氨含量低,所以要提高其反应速度;而到了下层触媒气体中的氨含量增高,为了使反应向着生产氨的方向进行,增加合成塔出口氨的浓度,就要降低反应温度,所以操作中控制的下层入口温度低。11、、、、什么是氨净值啊什么是氨净值啊什么是氨净值啊什么是氨净值啊?高了好还是低了好高了好还是低了好高了好还是低了好高了好还是低了好????怎么去控制怎么去控制怎么去控制怎么去控制????合成塔进出口氨含量的差值为系统的

氨净值。对一个工艺已经确定的装置能够影响氨净值的方法很有限,在不增加空速的情况下,只有降低氨分离温度;在分氨温度一定时,增加空速,能降低氨净值,但是可以获得较高的产能,降低空速意味着降低产能,却可以得到较高的氨净值。在设计工况下,相对来说氨净值越高越好。合成氨系统吨氨的综合能耗来作为考核目标,氨净值只是作为一个重要的考核条件。出口氨含量与进口氨含量的差叫氨净值。氨净值越高越好

1.生产能力现状

中国合成氨生产设备是大、中、小规模并存,总设计生产能力为4222×104t。目前,全国有合成氨生产企业570多家,其中2004年产量达30×104t以上的有30家,超过50×104 t 的已有4家。大型合成氨设备有30套,设计能力为9.28×10。t/a,实际生产能力为1.0×107 t/a;约占中国合成氨总生产能力的22%。中型合成氨设备有55套,生产能力为4.64×106 t/a;约占中国合成氨总生产能力的11%,小型合成氨设备有700多套,生产能力为28×106 t/a,约占中国合成氨总生产能力的66%。

中国合成氨年实际生产能力2005年已达4596×104t,但合成氨一直是化工产业的耗能大户。2005年6月7~8日,全国合成氨节能改造项目技术交流会在北京召开,明确了“十一五”期间合成氨节能工程在降耗、环保等方面要达到的具体目标。

根据《合成氨能量优化节能工程实施方案》规划,这一重点节能工程的目标是:大型合成氨装置采用先进节能工艺、新型催化剂和高效节能设备,提高转化效率,加强余热回收利用;以天然气为原料的合成氨推广一段炉烟气余热回收技术,并改造蒸汽系统;以石油为原料的合成氨加快以洁净煤或天然气替代原料油改造;中小型合成氨采用节能设备和变压吸附回收技术,降低能源消耗。煤造气采用水煤浆或先进粉煤气化技术替代传统的固定床造气技术。到2010年,合成氨行业节能目标是:单位能耗由目前的1 700kg标煤/t下降到1 570kg 标煤/t;能源利用效率由目前的42.0%提高到45.5%;实现节能(570---585)×104t标煤,减少排放二氧化碳(1377---1413)×104t。

十多年来,合成氨装置先后经过油改煤、煤改油、油改气和无烟煤改粉煤等多次反复的原料路线改造和节能改造。但由于装置原料路线、资源供应、运输、资金与技术成熟度等诸多方面原因,合成氨节能技术改造的效果始终未能达到预期目标。到2004年底,合成氨单位能耗平均为1700kg标煤/t,吨氨平均能耗水平与国际先进水平相差600--~700kg标煤。

2.市场供需情况分析及预测

中国作为农业大国,也是化肥生产大国,合成氨生产大国。最近十多年来中国合成氨生产能力大幅增长,2002年中国合成氨总生产能力约4500×10。t/a,实际产量3654×10。t/a,能力和产量已居世界第一位。国内氮肥消费量经过了近20年的高速增长,目前已进入平稳发展阶段,根据国家“十五”化肥发展规划,预计2000~2010年中国化肥需求增长率约为1.5 %,化肥用氨稍有增长,而工业用氨变化不大。目前中国合成氨生产基本上已满足氮肥工业的需要,今后氮肥工业的发展重点是调整产品结构,对合成氨的需求将缓慢成长。

我国合成氨工业的现状及发展趋势

我国合成氨工业的现状及发展趋势 合成氨工业的现状及发展趋势 一、我国合成氨工业已走过了五十多年的路程,从小到大从弱到强,从3000吨/年——5000吨/年到45万吨/年,从碳铵到尿素。根据中国氮肥协会统计2019年合成氨产量5864.1万吨/年,位居世界第一,其中88%用来生产化肥;30万吨/年工厂有74家约占 49.4%,8万吨/年上以工厂有223家占82.4%,合成氨工业由3000吨/年发展到今天40万 吨/年(单系列),全国从1000个厂到今只有300个厂,然而总产量不但没有下降,反而 有所增加,尿素2019年出口355.95万吨,从而保证了粮食生产连年丰收。(据农业部门 反映一吨尿素可增产粮食几吨),我国粮食为什么连年丰收增产,一是靠国家支农、惠农、护农政策,二是靠优良品种,三是靠化肥支撑。因此对于我们这样一个有13.4亿人的大国,如果粮食生产不能稳定,那是不堪设想的。因此合成氨工业是国家发展的需要,也是 人民生活的需要。 二、我国合成氨工业发展趋势 由于我国人多地少,粮食需求量大,因此合成氨工业必须由小变大,向大型化、现代 化发展,过去小规模用块煤的技术已远远不能满足国民经济发展需要,发展趋势主要是: 1. 由小变大,扶大压小; 2. 由块煤变粉煤; 3. 由低压向中压、高压气化发展; 具体有以下几点: 1. 中压、高压造气 不管用水煤浆气化炉、干粉煤气化炉,还是块煤炉,流化床气化炉都要向中压、高压 发展,现在有的气化炉已做到8.7Map ,一般都在4.0Map 左右。 透平压缩这样可以省电3%左右。 2. 低压合成氨。 过去为了追求产量合成氨压力由低压向高压发展,现在从降低能耗的角度又能向低压,目前已成功运用15Map ,10Map 即正在试验中,这样可以做到电耗最低。 3. 高度净化,为了保证催化剂长周期运行气体净化已达到PPM 级,甚至PPb 级。 4. 消灭三废,最少做到达标排放,最终做到零排放。

我国农民工职业病文献综述

我国农民工职业病文献综述 安全工程专业学生:金霄 摘要:近年来随着经济的发展,职业病已经成为威胁我国广大农民工作者身心健康,制约劳动力资源可持续发展的重要因素,引起了广大学者的关注,而对于职业病的研究,已经成为包括医学,社会保障学等学科研究的一个新的重心,本文通过阅读2000年以来发表在学术期刊上的197篇关于职业病的文献,对职业病的现状,危害以及职业病防治三个方面进行了梳理和整合,并做了简要评述。关键词:职业病,危害,防治。 前言 职业病是指企业、事业单位和个体经济组织的劳动者在职业活动中,因接触粉尘、放射性物质和其他有毒、有害物质等因素而引起的疾病。各国法律都有对于职业病预防方面的规定,一般来说,凡是符合法律规定的疾病才能称为职业病。职业病的诊断,一般由卫生行政部门授权的,具有一定专门条件的单位进行。最常见的职业病有尘肺、职业中毒、职业性皮肤病等。 一,职业病现状 在我国关于就业问题一直是我国国策中的重中之重,对于就业中无论是国家还是个人都存在着许多问题,而个人问题也是占其中大多数。首先,对于许多在职人员都或多或少的存在着一些职业病,例如:生物因素所致职业病、职业性哮喘、职业性肿瘤、职业性耳鼻喉口腔疾病、职业性眼病、物理因素所致职业病等,这一系列的病状都显示了我国劳动人民面临着巨大的生理和心理的问题,然而许多人对自己的工作的危险性并不了解,这也更导致了职业病在我国多发以及扩大。 对于现如今的我国再就业问题中,不仅要保证就业率,而且还应该保证劳动者的生命健康问题,这也使得我国就业压力的更多的扩大了。 职业病现状让人揪心,从2009年河南农民工张海超“开胸验肺”事件到今年的苹果中国供应商员工中毒事件,职业病诊断难、鉴定难、监管难、获赔难、维权难等问题一直备受社会关注。古浪县是甘肃省中部的一个国家级贫困县,该县很多农村青壮年都选择去邻近矿藏丰富的肃北县务工。据报道,近几年,在肃北县务工的古浪农民工中,暴发了大规模的尘肺病。“偶尔矿长会发口罩,干活碍事,我们也不爱用,并且觉得也没什么用,戴上口罩嘴和鼻子里照样都是灰。”工人这样描述他们的劳动状况。 在职业病患者中,尘肺病患者最为普遍。卫生部《2009年全国职业病报告情况》显示,截至2009年底,全国累计报告职业病72万余例,其中尘肺病65.3万例。近年来,平均每年报告新发病例1万多例,每年因尘肺病给国家造成的直接经济损失达80亿元。然而,如此严重的情况却无法有效地维权,卫生部提供的数据显示,我国现有存在有毒有害作业场所的企业约1600万家,其中在从事劳动过程中遭受不同程度职业病危害的劳动者高达2亿人,而37.8%的职业病患者未获赔偿。

合成氨发展史及未来的发展方向

合成氨 发展史及未来的发展方向

合成氨发展史及未来的发展方向 各位同事工友们,下午好: 我今天演讲的题目是“合成氨发展史及未来的发展方向”,是一种科普性质的讲义,作为一个搞氨合成的专业技术人员来说,知道合成氨的发展历史和未来的发展方向,对把握我们公司的发展和了解我们的现状,很有必要和意义。 一、为什么叫合成氨 我们把氨叫做合成氨,为什么在氨的前面加了“合成”两个字,我们知道氨的分子式是NH3,由于氨的不活泼性,使得人们直到19世纪晚期仍然普遍认为将氮与氨直接合成氨是不可能的,20世纪初,虽然有人借助催化剂的作用合成了氨,但仍然认为无法工业化,因为确实遇到了诸如可供实际工业使用的催化剂难以找到、高温高压能够抵抗氢腐蚀的材料无法解决等问题,可以认为合成氨的技术开发历程阻力重重,举步维艰,经过千万次的不懈努力,才使得世界上第一座工业规模的氨系统于1913年在德国建成投产。从此开创了氮肥工业的新纪元。为了纪念氨开发的艰难,特在氨前面加“合成”两个字。 二、合成氨在国民经济中的地位和作用 1、用氨制造氮肥。我们知道土壤所缺的养份主要是氮磷、钾。从解放前直至改革开放初期,中国的粮食产量一直不能自给自足,主要原因是中国几乎所有的土壤都需补氮。

由于合成氨工业不能满足农业施肥的需要,土壤补氮不足,农作物只能在低产水平上徘徊(300斤过黄河,400斤跨长江),为了满足粮食生产的需要,我国一直把发展化肥工业作为整个化学工业的首要任务,中国要以全世界7%的耕地来养活全世界22%的人口。经过60多年的发展,我国合成氨制造和氮肥产量已居世界首位,合成氨作为制造氮肥的主要原料,为粮食增产、农民增收、社会稳定立下了汗马功劳。 2、氨的工业用途 氨是氮的一种固定形式,除少数场合直接使用外,更主要的是使用其中的氮与其他物质化合而成各种不同的含氮化合物,然后再用于各工业领域。 虽然氮分子只由两个氮原子组成,但是氮原子可以形成三个键,如果这三个键都与氢原子相联,就形成了氨(NH3),将氨的氢原子以各种不同的化学物质取代,就会的到不同的衍生物。 氨中的氢原子被碳(C)取代后,由于碳的加入,氨由无机物而变为有机物---胺,按取代氢原子数目多少而依次排列为伯胺、仲胺和叔胺,这些都是重要的化工原料。在特殊情况下,氮还可以产生第四个键,如也被碳(C)取代,即成为季胺,这是构成人体的重要组成部分:胆胺及胆碱的基础。 氨基与苯环相联,就构成苯胺,这是苯胺系如染料的基

合成氨的历史

合成氨的历史 利用氮、氢为原料合成氨的工业化生产曾是一个较难的课题,从第一次实验室研制到工业化投产,约经历了150年的时间。1795年有人试图在常压下进行氨合成,后来又有人在50个大气压下试验,结果都失败了。19世纪下半叶,物理化学的巨大进展,使人们认识到由氮、氢合成氨的反应是可逆的,增加压力将使反应推向生成氨的方向;提高温度会将反应移向相反的方向,然而温度过低又使反应速度过小;催化剂对反应将产生重要影响。当时物理化学的权威、德国的能斯特就明确指出:氮和氢在高压条件下是能够合成氨的,并提供了一些实验数据。法国化学家勒夏特列第一个试图进行高压合成氨的实验,但是由于氮氢混和气中混进了氧气,引起了爆炸,使他放弃了这一危险的实验。 氮气和氢气的混和气体可以在高温高压及催化剂的作用下合成氨。但什么样的高温和高压条件为最佳?用什么样的催化剂为最好?在物理化学研究领域有很好基础的哈伯决心攻 克这一令人生畏的难题。哈伯首先进行一系列实验,他并不盲从权威,而是依靠实验来探索,终于证实了能斯特的计算是错误的。哈伯以锲而不舍的精神,经过不断的实验和计算,终于在1909年取得了鼓舞人心的成果,这就是在600℃的高温、200个大气压和锇为催化剂的条件下,能得到产率约为8%的合成氨。8%的转化率当然会影响生产的经济效益,怎么办?哈伯认为若能使反应气体在高压下循环加工,并从这个循环中不断地把反应生成的氨分离出来,这个工艺过程是可行的。于是他成功地设计了原料气的循环工艺。根据哈伯的工艺流程,德国当时最大的化工企业——巴登苯胺和纯碱制造公司,组织了以化工专家波施为首的工程技术人员将哈伯的设计付诸实施。工程师们改进了哈伯所使用的催化剂,两年间,他们进行了多达6500次试验,测试了2500种不同的配方,最后选定了含铅镁促进剂的铁催化剂。开发适用的高压设备也是工艺的关键,当时能受得住200个大气压的低碳钢,却害怕氢气的脱碳腐蚀。波施想了许多办法,最后决定在低碳钢的反应管子里加一层熟铁的衬里,熟铁虽没有强度,却不怕氢气的腐蚀,这样总算解决了难题。 哈伯的合成氨设想终于在1913年得以实现,一个日产30吨的合成氨工厂建成并投产。合成氨生产方法的创立不仅开辟了获取固定氮的途径,更重要的是这一生产工艺的实现对整个化学工艺的发展产生了重大的影响。鉴于合成氨工业生产的实现和它的研究对化学理论发展的推动,1918年诺贝尔化学奖授予了德国化学家哈伯。 翻阅诺贝尔化学奖的记录,就能看到1916一1917年没有颁奖,因为这期间,欧洲正经历着第一次世界大战,1918年颁了奖,化学奖授予德国化学家哈伯。这引起了科学家的议论,英法等国的一些科学家公开地表示反对,他们认为,哈伯没有资格获得这一荣誉。这究竟是为什么?随着农业的发展,对氮肥的需求量在迅速增长。在19世纪以前,农业上所需氮肥的来源主要来自有机物的副产品,如粪类、种子饼及绿肥。 1809年在智利发现了一个很大的硝酸钠矿产地,并很快被开采。一方面由于这一矿藏有限,另一方面,军事工业生产炸药也需要大量的硝石,因此解决氮肥来源必须另辟途径。一些有远见的化学家指出:考虑到将来的粮食问题,为了使子孙后代免于饥饿,我们必须寄希望于科学家能实现大气固氮。因此将空气中丰富的氮固定下来并转化为可被利用的形式,在20世纪初成为一项受到众多科学家注目和关切的重大课题。哈伯就是从事合成氨的工艺条件试验和理论研究的化学家之一。 利用氮、氢为原料合成氨的工业化生产曾是一个较难的课题,从第一次实验室研制到工业化投产,约经历了150年的时间。1795年有人试图在常压下进行氨合成,后来又有人在50个大气压下试验,结果都失败了。19世纪下半叶,物理化学的巨大进展,使人们认识到由氮、氢合成氨的反应是可逆的,增加压力将使反应推向生成氨的方向:提高温度会将反

废热锅炉文献综述资料

废热锅炉 1.废热锅炉概论 废热锅炉是利用工业生产过程中的余热来生产蒸汽的锅炉。它属于一种 高温、高压的换热器。废热锅炉较早是用来产生一些低压蒸汽,回收的热量有限,只 是作为生产的一般辅助性设备。随着生产技术的发展,废热锅炉的参数逐渐提高,废 热锅炉由生产低压蒸汽的工艺锅炉转变为生产高压蒸汽的动力锅炉。废热研究 的新成果不断涌现研究的新成果不断涌现得在废热锅炉设计、制造、使用、安 全管理等领域的研究的新成果不断涌现 。 1.1 废热锅炉的特点 废热锅炉与普通动力锅炉一样, 都是生产动力蒸汽的一种高温高压设备, 所不同的是热源不同。它不是采用煤油、天然气、煤等燃料, 而是利用化工生 产工艺气中的废热。因此, 它既是一种能量回收装置, 也是一种化工介质工艺 设备。废热锅炉的共同特点是: 操作条件比较恶劣( 如高温、高压、热流强度 大, 锅炉受压元件的热应力大等) , 并要求连续、稳定地安全运行, 对高温工 艺气的温度和冷却速度的控制要求十分严格。废热锅炉的运行比常规锅炉更复 杂, 废热锅炉利用的是余热, 不仅是高温气体的显热, 而且还利用某些废气中 所含少量的可燃物质( 如一氧化碳、氢气、甲烷) 等化学热能。例如, 催化裂 解装置中再生器排出的再生气体, 其温度可达550 ℃~750 ℃ 。另外催化裂 解装置再生器排出的高温烟气中含有很多粉状催化剂。烟气中灰分含量高, 不 但对流受热面的磨损加剧, 而且因为受热面积灰严重, 需要经常除灰和定期停 炉清扫, 给生产带来一定困难。有些高温烟气中含有较多的二氧化硫和三氧化 硫,使得烟气露点升高, 受热面的低温腐蚀严重, 检修工作量增加。 1.2 废热锅炉的分类 在废热锅炉中进行的是热量传递的过程,因此废热锅炉的基本结构也是一具 有一定传热表面的换热设备。但是由于化工生产中,各种工艺条件和要求差别很 大,因此化工用的废热锅炉结构类型也是多种多样的。 1.2. 1 按照炉管是水平还是垂直放置,废热锅炉可以分为卧式(大都采用火管式,即 管内走高温工艺气体,而管外走饱和水或水蒸气) 和立式(比卧式锅炉水循环速 度快,传热速率较高,蒸汽空间也较大,因此这种锅炉蒸发量大) 两大类。 1.2. 2 按照锅炉操作压力的大小,废热锅炉可以分为低压(蒸汽压力在1. 3MPa 以下) 、中压(蒸汽压力在1. 4 —3. 9MPa 范围内) 、高压(蒸汽力在4. 0 — [1] [2]

合成氨循环气分离工艺设计

文献综述 1.氨的性质及主要用途 氨是一种无色、有刺激性气味的气体,极易溶于水(1:700),密度比空气小,易液化(在常压下冷却至-33.5℃或常温下加压至70-80bar)。氨是制造化肥、硝酸、炸药的重要原料。氨对地球上的生物相当重要,它是许多食物和肥料的重要成分。氨也是所有药物直接或间接的组成。氨有很广泛的用途,同时它还具有腐蚀性等危险性质。由于氨有广泛的用途,氨是世界上产量最多的无机化合物之一,多于八成的氨被用于制作化肥。 2.世界(或国内)合成氨的生产现状及发展前景 2.1合成氨的生产现状 国际肥料工业协会在第七十七届年会上发布《全球肥料和原材料供需展望》报告,预期全球合成氨产量将由2008年的1.809亿吨(实物量NH3,下同)增长至2013年的2.178亿吨,届时全球合成氨海运贸易总量将达到2060万吨。其中,全球新建合成氨装置中有三分之一来自中国,其余来自阿尔及利亚、特立尼达、委内瑞拉、沙特、巴基斯坦、印度等国家。随着新建合成氨装置的投产,区域合成氨贸易将继续增加,全球合成氨生产和海运贸易都将迎来新的增长期。 据IFA对全球合成氨产量的调查显示,2008年全球合成氨产量接近1.528亿吨,比2007年减少了1%。中国、澳大利亚、欧洲、俄罗斯、特立尼达和多巴哥、印度、沙特等国均由于市场需求疲软而减少,伊朗、加拿大、印度尼西亚、墨西哥、委内瑞拉等需求继续增加。2008年全球合成氨产能达到1.809亿吨,比2007年增加500万吨,主要来自于中国、非洲、西亚等地区。 目前,约有80%的合成氨用来生产化学肥料,其余作为生产其他化工产品的原料。除了生产尿素,硝酸及硝酸铵等产品间接用于工业生产外,合成氨还直接用于丙烯腈、己内酰胺等产品的生产。同时,在其他工业领域也有十分广泛的应用,如用作制冰箱、空调、冷藏系统的制冷剂,在冶金工业中用来提炼矿石中的铜、镍等金属、在医药和生物化学方面用作生产磺胺类药物、维生素、蛋氨酸和其他氨基酸等[1]。 2.2我国合成氨及下游产品工业消费现状与预测 我国是世界上最大的合成氨生产国,产量约占世界总产量的1/3。“十一五”期间,合成

合成氨工业发展史

合成氨工业发展史 一、人口增加与粮食需求 农业出现在12000年以前,是人类企图用增加食物供给来增强自己生存的开始。那时的人口约1500万。在2000 年前,由于农业的发展使人口增加到2.5亿。到1650年,人口又增长一倍,达到5亿。然后,到1850年世界人口就翻了一番,高达10亿,这段历程仅仅花了200 年时间。80 年后的1930年,人口超过了20亿。这种增长速度还未减缓,到1985年地球上供养的人数已达50亿。如果每年以1985年人口的2%水平继续增长下去的话,到2020年的世界人口将是100亿左右。因此限制人口的增长势在必行。目前,人口自然增长率在世界范围内正开始下降,据美国华盛顿人口局(1997年):2000年全球人口将由目前的58 亿增至61 亿,2025 年将达68 亿。人口局称,人口增长最快的是全球最贫困的国家。1996 年全球58 亿人中发展中国家的人口占了47 亿,占全球人口总增长率的98%。中国人口增长的形势也不容乐观。根据国家统计局的统计,中国人口已于1995年2 月15 日达到12亿。据预测,到2000 年中国人口将突破13.5亿。 显然,人类将面临日益严重的问题是给自己提供充足的食物和营养,以及从根本上限制人口增长。估计,到20 世纪末,严重营养不良的人数将达6.5 亿。解决问题的出路,必然需要科学的帮助,化学看来是最重要的学科之一。它之所以重要,首先是因为它能增加食物供给,其次它能给那些有意限制人口增长的人提供可靠的帮助。 在历史上,化学曾在扩大世界粮食供应过程中起过关键作用。这就是合成氨的发明和现代农药的使用,以及它们的工业化。 二、合成氨工业发展史 20 世纪初化学家们所面临的突出问题之一,是如何为大规模利用大气中氮找到一种实用的途径。氮化合物是肥料和炸药所必不可少的。但在当时,这种化合物的质量最优和最大来源是智利硝石。但智利地处南美而且远离世界工业中心;可是全世界无论何处,大气的五分之四都是氮。如果有人能学会大规模地、廉价地把单质的氮转化为化合物的形式,那么,氮是取之不尽、用之不竭的。 利用氮气与氢气直接合成氨的工业生产曾是一个较难的课题。合成氨从实验室研究到实现工业生产,大约经历了150年。直至1909年,德国物理化学家F ·哈伯(Fritz Haber,1868—1934)用锇催化剂将氮气与氢气在17.5MPa~20MPa和500℃~600℃下直接合成,反应器出口得到6%的氨,并于卡尔斯鲁厄大学建立一个每小时80g合成氨的试验装置。但是,在高压、高温及催化剂存在的条件下,氮氢混合气每次通过反应器仅有一小部分转化为氨。为此,哈伯又提出将未参与反应的气体返回反应器的循环方法。这一工艺被德国巴登苯胺纯碱公司所接受和采用。由于金属锇稀少、价格昂贵,问题又转向寻找合适的催化剂。该公司在德国化学家A ·米塔斯提议下,于1912 年用2500 种不同的催化剂进行了6500 次试验,并终于研制成功含有钾、铝氧化物作助催化剂的价廉易得的铁催化剂。而在工业化过程中碰到的一些难题,如高温下氢气对钢材的腐蚀、碳钢制的氨合成反应器寿命仅有80h 以及合成氨用氮氢混合气的制造方法,都被该以司的工程师 C ·博施(Carl Bosch,1874—1940)所解决。此时,德国皇帝威廉二世准备发动战争,急需大量炸药,而由氨制得的硝酸是生产炸药的理想原料,于是巴登苯胺纯碱公司于1912年在德国奥堡建成世界上第一座日产30t合成氨的装置,1913年9月9 日开始运转,氨产量很快达到了设计能力。人们称这种合成氨法为哈伯-博施法,它标志着工业上实现高压催化反应的第一个里程碑。由于哈伯和博施的突出贡献,他们分别获得1918、1931年度诺贝尔化学奖金。其他国家根据德国发表的论文也进行了研究,并在哈伯-博施法的基础上作了一些改进,先后开发了合成压力从低压到高压的很多其他方法(表18-1)。

年产合成氨30万吨

目录 一、绪论 (1) 、概述 (3) 、设计任务的依据 (1) 二、装置流程及说明 (2) 、生产工艺流程说明 (2) 、粗苯洗涤 (4) 、粗苯蒸馏 (4) 三、吸收工段工艺计算 (7) 、物料衡算 (7) 、气液平衡曲线 (8) 、吸收剂的用量 (9) 、塔底吸收液 (10) 、操作线 (10) 、塔径计算 (10) 、填料层高度计算 (13) 、填料层压降计算 (16) 四、脱苯工段工艺计算 (17) 、管式炉 (17) 、物料衡算 (18) 、热量衡算 (22)

五、主要符号说明 (25) 六、设计心得 (26) 七、参考文献 (27)

一、绪论 概述 氨是重要的化工产品之一,用途很广。在农业方面,以氨为主要原料可以生产各种氮素肥料,如尿素、硝酸铵、碳酸氢氨、氯化铵等,以及各种含氮复合肥料。液氨本身就是一种高效氮素肥料,可以直接施用。目前,世界上氨产量的85%—90%用于生产各和氮肥。因此,合成氨工业是氮肥工业的基础,对农业增产起着重要的作用。合成氨工业对农业的作用实质是将空气中游离氮转化为能被植物吸收利用的化合态氮,这一过程称为固定氮。 氨也是重要的工业原料,广泛用于制药、炼油、纯碱、合成纤维、合成树脂、含氮无机盐等工业。将氨氧化可以制成硝酸,而硝酸又是生产炸药、染料等产品的重要原料。生产火箭的推进剂和氧化剂,同样也离不开氨。此外,氨还是常用的冷嘲热讽冻剂。 合成氨的工业的迅速发展,也促进了高压、催化、特殊金属材料、固体燃料气化、低温等科学技术的发展。同时尿素的甲醇的合成、石油加氢、高压聚合等工业,也是在合成氨工业的基础上发展起来的。所以合成氨工业在国民经济中占有十分重要的地位,氨及氨加工工业已成为现代化学工业的一个重要部门。 在合成氨工业中,脱硫倍受重视。合成氨所需的原料气,无论是天然气、油田气还是焦炉气、半水煤气都人含有硫化物,这些硫化物主要是硫化氢(S H 2)、二硫化碳(2CS )、硫氧化碳(COS )、硫醇(SH -R )和噻吩(S H C 44)等。其中硫化氢属于无机化合物,常称为“无机硫”。 合成氨在生产原料气中硫化物虽含量不高,但对生产的危害极大。 ①腐蚀设备、管道。含有S H 2的原料气,在水分存在时,就形成硫氢酸(HSH ),腐蚀金属设备。其腐蚀程度随原料气中S H 2的含量增高而加剧。 ②使催化剂中毒、失活。当原料气中的硫化物含量超过一定指标时,硫化物与催化剂活性中心结合,就能使以金属原子或金属氧化物为活性中心的催化剂中毒、失活。包括转化催化剂、高温变换催化剂、低温变换催化剂、合成氨催化剂

工业合成氨发展史

氨是一种制造化肥和工业用途众多的基本化工原料。随着农业发展和军工生产的需要,20世纪初先后开发并实现了氨的工业生产。从氰化法演变到合成氨法以后,近30年来,原料不断改变,余热逐渐利用,单系列装置迅速扩大,推动了化学工业有关部门的发展以及化学工程进一步形成,也带动了燃料化工中新的能源和资源的开发。 早期氰化法1898年,德国 A.弗兰克等人发现空气中的氮能被碳化钙固定而生成氰氨化钙(又称石灰氮),进一步与过热水蒸气反应即可获得氨: Ca(CN)2+3H2O─→2NH3+CaCO3 1905年,德国氮肥公司建成世界上第一座生产氰氨化钙的工厂,这种制氨方法称为氰化法。 第一次世界大战期 间,德国、美国主要 采用该法生产氨,满 足了军工生产的需 要。氰化法固定每吨 氮的总能耗为153GJ, 由于成本过高,到30 年代被淘汰。 合成氨法利 用氮气与氢气直接合 成氨的工业生产曾是 一个较难的课题。合 成氨从实验室研究到实现工业生产,大约经历了150年。直至1909年,德国物理化学家F.哈伯用锇催化剂将氮气与氢气在17.5~20MPa和500~600℃下直接合成,反应器出口得到6%的氨,并于卡尔斯鲁厄大学建立一个每小时80g合成氨的试验装置。 但是,在高压、高温及催化剂存在的条件下,氮氢混合气每次通过反应器仅有一小部分转化为氨。为此,哈伯又提出将未参与反应的气体返回反应器的循环方法。这一工艺被德国巴登苯胺纯碱公司所接受和采用。由于金属锇稀少、价格昂贵,问题又转向寻找合适的催化剂。该公司在德国化学家A.米塔斯提议下,于1912年用2500种不同的催化剂进行了6500次试验,并终于研制成功含有钾、铝氧化物作助催化剂的价廉易得的铁催化剂。而在工业化过程中碰到的一些难题,如高温下氢气对钢材的腐蚀、碳钢制的氨合成反应器寿命仅有80h以及合成氨用氮氢混合气的制造方法,都被该公司的工程师 C.博施所解决。此时,德国国王威廉二世准备发动战争,急需大量炸药,而由氨制得的硝酸是生产炸药的理想原料,于是巴登苯胺纯碱公司于1912年在德国奥堡建成世界上第一座日产30t合成氨的装置,1913年9月9日开始运转,氨产量很快达到了设计能力。人们称这种合成氨法为哈伯-博施法,它标志着工业上实现高压催化反应的第一个里程碑。由于哈伯和博施的突出贡献,他们分别获得1918、1931年度诺贝尔化学奖。其他国家根据德国发表的论文也进行了研究,并在哈伯-博施法的基础上作了一些改进,先后开发了合成压力从低压到高压的很多其他方法。

年产40万吨合成氨合成工段工艺设计

目录 摘要 (3) ABSTRACT (4) 第一章总论 (5) 1.1 概述 (5) 1.2 氨的性质 (5) 1.2.1 氨的物理性质 (5) 1.2.2氨的化学性质 (6) 1.3 原料气来源 (6) 1.4 文献综述 (6) 1.4.1 合成氨工业的发展 (7) 1.4.2我国合成氨工业的现状 (7) 1.4.3合成氨工业的发展趋势 (7) 1.5 设计任务的项目来源 (8) 第二章流程方案的确定 (9) 2.1生产原理 (9) 2.2各生产方法及特点 (9) 2.3工艺条件的选择 (10) 2.4合成塔进口气的组成 (11) 第三章工艺流程简述 (13) 3.1 合成工段工艺流程简述 (13) 3.2 工艺流程方框图 (14) 第四章工艺计算 (15) 4.1 物料衡算 (15) 4.1.1设计要求 (15) 4.1.2计算物料点流程图 (16) 4.1.3合成塔入口气组分 (16) 4.1.4合成塔出口气组分 (17) 4.1.5合成率 (18)

4.1.6氨分离器气液平衡计算 (18) 4.1.7冷交换器气液平衡计算 (20) 4.1.8液氨贮槽气液平衡计算 (21) 4.1.9合成系统物料计算 (24) 4.1.10合成塔物料计算 (25) 4.1.11水冷器物料计算 (26) 4.1.12氨分离器物料计算 (27) 4.1.13冷交换器物料计算 (27) 4.1.15氨冷器物料计算 (30) 4.1.17液氨贮槽物料计算 (30) 4.2 热量衡算 (30) 4.2.1冷交换器热量计算 (30) 4.2.2 氨冷凝器热量衡算 (33) 4.2.3循环机热量计算 (33) 4.2.4合成塔热量衡算 (35) 4.2.5废热锅炉热量计算 (37) 4.2.6热交换器热量计算 (38) 4.2.7水冷器热量衡算 (39) 第五章设备选型及设计计算 (40) 5.1 合成塔催化剂层设计 (40) 5.2 废热锅炉设备工艺计算 (42) 5.2.1计算条件 (42) 5.2.2管内给热系数的计算 (42) 5.2.3管外给热系数 (46) 5.2.4传热总系数K (46) 5.2.5传热温差 (47) 5.2.6传热面积 (47) 参考文献 (50) 致谢 (51)

(完整版)合成氨生产工艺及其意义

论文名称合成氨生产工艺及其意义

氨是重要的无机化工产品之一,合成氨工业在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。 我国合成氨装置很多,但合成氨装置的控制水平都比较低,大部分厂家还停留在半自动化水平,靠人工控制的也不少,普遍存在的问题是:能耗大、成本高、流程长,自动控制水平低。这种生产状况下生产的产品成本高,市场竞争力差,因此大部分化肥行业处于低利润甚至处于亏损状态。为了改变这种状态,除了改变比较落后的工艺流程外,实现装置生产过程优化控制是行之有效的方法。 合成氨生产装置是我国化肥生产的基础,提高整个合成氨生产装置的自动化控制水平,对目前我国化肥行业状况,只有进一步稳定生产降低能耗,才能降低成本,增加效益。而实现合成氨装置的优化是投资少、见效快的有效措施之一。 合成氨装置优化控制的意义是提高整个合成氨装置的自动化水平,在现有工艺条件下,发挥优化控制的优势,使整个生产长期运行在最佳状态下,同时,优化系统的应用还能节约原材料消耗,降低能源消耗,提高产品的合格率,增强产品的市场竞争能力。 关键字合成氨农业化学肥料意义

摘要 (2) 关键字 (2) 目录 (3) 正文 (4) 一前言 (4) 1.1 物理性质 (4) 1.2化学性质 (4) 二合成氨工业产品的用途 (5) 2.1氨气用途 (5) 2.2氨水用途 (5) 三合成氨的生产工艺及影响因素 (5) 3.1 原料气制备 (5) 3.1.1 一氧化碳变换过程 (6) 3.1.2 脱硫脱碳过程 (6) 3.1.3 气体精制过程 (6) 3.1.4 氨合成 (7) 3.2 影响合成氨的因素 (7) 3.2.1 温度对氨合成反应的影响 (7) 3.2.2 压力对氨合成反应的影响 (7) 3.2.3 空速对氨合成反应的影响 (7) 3.2.4 氢氮比对氨合成反应的影响 (8) 四.合成氨工艺流程图 (8) 五.研究现状 (8) 六.发展趋势 (9) 6.1原料路线的变化方向 (9) 6.2节能和降耗 (10) 6.3产品联合生产 (10) 7.1合成氨对农业的意义 (10) 7.1.1提高粮食产量 (10) 7.1.2提高土壤肥力 (10) 7.1.3发挥良种潜力 (11) 7.1.4补偿耕地不足 (11) 7.2合成氨对工业生产的意义 (11) 7.3合成氨对其他行业的意义 (12) 致谢 (13) 参考文献 (14)

纳米材料文献综述

北京化工大学北方学院NORTH COLLEGE OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY 碳纳米管的性质与应用 姓名:赵开 专业:应用化学 班级: 0804 学号: 080105097 2011年05月

文献综述 前言 本人论题为《碳纳米管的性质与应用》。碳纳米管是一维碳基纳米材料,其径向尺寸为纳米级,轴向尺寸为微米量级,管子两端基本上都封口。碳纳米管具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等力学,电磁学特点。近年来,碳纳米管在力学、电磁学、医学等方面得到了广泛应用。 本文根据众多学者对碳纳米管的研究成果,借鉴他们的成功经验,就碳纳米管的性质及其功能等方面结合最新碳纳米管的应用做一些简要介绍。本文主要查阅近几年关于碳纳米管相关研究的文献期刊。

碳纳米管(CNT)是碳的同素异形体之一,是由六元碳环构成的类石墨平面卷曲而成的纳米级中空管,其中每个碳原子通过SP2杂化与周围3个碳原子发生完全键合。碳纳米管是由一层或多层石墨按照一定方式卷曲而成的具有管状结构的纳米材料。由单层石墨平面卷曲形成单壁碳纳米管(SWNT),多层石墨平面卷曲形成多壁碳纳米管(MWNT)。自从1991年日本科学家lijima发现碳纳米管以来,其以优异的力学、热学以及光电特性受到了化学、物理、生物、医学、材料等多个领域研究者的广关注。 一、碳纳米管的性质 碳纳米管的分类 研究碳纳米管的性质首先要对其进行分类。(1)按照石墨层数分类,碳纳米管可分为单壁碳纳米管和多壁碳纳米管。(2)按照手性分类,碳纳米管可分为手性管和非手性管。其中非手性管又可分为扶手椅型管和锯齿型管。(3)按照导电性能分类,碳纳米管可分为导体管和半导体管。 碳纳米管的力学性能 碳纳米管无缝管状结构和管身良好的石墨化程度赋予了碳纳米管优异的力学性能。其拉伸强度是钢的100倍,而质量只有钢的1/ 6,并且延伸率可达到20 %,其长度和直径之比可达100~1000,远远超出一般材料的长径比,因而被称为“超强纤维”。碳纳米管具有如此优良的力学性能是一种绝好的纤维材料。它具有碳纤维的固有性质,强度及韧性均远优于其他纤维材料[1]。单壁碳纳米管的杨氏模量在1012Pa范围内,在轴向施加压力或弯曲碳纳米管时,当外力大于欧拉强度极限或弯曲强度,它不会断裂而是先发生大角度弯曲然后打卷形成麻花状物体,但是当外力释放后碳纳米管仍可以恢复原状。 碳纳米管的电磁性能

合成氨的发展历程是怎样的

合成氨的发展历程是怎样的 在探索合成氨崎岖的道路上,它不仅使两位杰出的化学家勒夏特列和能斯特折戟蒙羞,而且使一位对人类社会发展作出巨大贡献,并因此获得诺贝尔化学奖的哈伯堕落成为助纣为虐与人民为敌的可耻下场。后来人们把合成氨称为化学发展史上的“水门事件”。 1900年,法国化学家勒夏特列在研究平衡移动的基础上通过理论计算,认为N2和H2在高压下可以直接化合生成氨,接着,他用实验来验证,但在实验过程中发生了爆炸。他没有调查事故发生的原因,而是觉得这个实验有危险,于是放弃了这项研究工作,他的合成氨实验就这样夭折了。后来才查明实验失败的原因,是他所用混合气体中含有O2,在实验过程中H2和O2发生了爆炸的反应。 稍后,德国化学家能斯特通过理论计算,认为合成氨是不能进行的。因此人工合成氨的研究又惨遭厄运。后来才发现,他在计算时误用一个热力学数据,以致得到错误的结论。 在合成氨研究屡屡受挫的情况下,哈伯知难而进,对合成氨进行全面系统的研究和实验,终于在1908年7月在实验室用N2和H2在600℃、200个大气压下合成氨,产率仅有2%,却也是一项重大突破。当哈伯的工艺流程展示之后,立即引起了早有用战争吞并欧洲称霸世界野心的德国军政要员的高度重视,为了利用哈伯,德国皇帝也屈尊下驾请哈伯出任德国威廉研究所所长之职。而恶魔需要正好迎合了哈伯想成百万富翁的贪婪心理。从1911年到1913年短短的两年内,哈伯不仅提高了合成氨的产率,而且合成了1000吨液氨,并且用它制造出3500吨烈性炸药TNT。到1913年的第一次世界大战时,哈伯已为德国建成了无数个大大小小的合成氨工厂,为侵略者制造了数百万吨炸药,因而导致并蔓延了这场殃祸全球的世界大战。这就是第一次世界大战德国为什么能够坚持这么久的不解之谜谜底。 当事实真相大白于天下时,哈伯爱到了世界各国科学家的猛烈抨击,尤其当他获得1918年诺贝尔化学奖时,更激起世界人民的愤怒。 人工合成氨实验的成功令人欢欣鼓舞,它对工业、农业生产和国际科技的重大意义是不言而喻的,但对三位杰出的科学家而言则是黑色的“水门事件”。 1949年前,全国仅在南京、大连有两家合成氨厂,在上海有一个以水电解法制氢为原料的小型合成氨车间,年生产能力共为46kt氨。中华人民共和国成立以后,合成氨的产量增长很快。为了满足农业发展的迫切需要,除了恢复并扩建旧厂外,50年代建成吉林、兰州、太原、四川四个氨厂。以后在试制成功高压往复式氮氢气压缩机和高压氨合成塔的基础上,于60年代在云南、上海、衢州、广州等地先后建设了20多座中型氨厂。此外,结合国外经验,完成“三触媒”流程(氧化锌脱硫、低温变换、甲烷化)氨厂年产50kt的通用设计,并在石家庄化肥厂采用。与此同时开发了合成氨与碳酸氢铵联合生产新工艺,兴建大批年产5~20kt氨的小型氨厂,其中相当一部分是以无烟煤代替焦炭进行生产的。70年代开始到80年代又建设了具有先进技术,以天然气、石脑油、重质油和煤为原料的年产300kt氨的大型氨厂,分布在四川、江苏、浙江、山西等地。1983、1984年产量分别为16770kt、18373kt(不包括台湾省),仅次于苏联而占世界第二位。现在已拥有以各种燃料为原料、不同流程的大型装置15座,中型装置57座,小型装置1200多座,年生产能力近20Mt氨。 目前,中国是世界上最大的化肥生产和消费大国,合成氨年生产能力已达4222

合成氨文献综述

攀枝花学院 Panzhihua University 本科毕业设计(论文) 文献综述 院(系):生物与化学工程学院 专业:化学工程与工艺 班级: 2007级化工(2)班 学生姓名:陈有源学号: 200710901006 2011 年 3 月 13 日

本科生毕业设计(论文)文献综述评价表

文献综述: 合成氨工业综述 1.氨的性质 合成氨的化学名称为氨,氮含量为82.3%。氨是一种无色具有强烈刺激性、催泪性和特殊臭气的无色气体,比空气轻,相对密度0.596,熔点-77.7℃,沸点-33.4℃。标准状况下,1米3气氨重0.771公斤;1米3液氨重638.6公斤。极易溶于水,常温(20℃)常压下,一体积的水能溶解600个体积的氨; 标准状况下,一体积水能溶解1300体积的氨的水溶液称为氨水,呈强碱性。因此,用水喷淋处理跑氨事故,能收到较好的效果【1】。 氨与酸或酸酐可以直接作用,生成各种铵盐;氨与二氧化碳作用可生成氨基甲铵,脱水成尿素;在铂催化剂存在的条件下,氨与氧作用生成一氧化氮,一氧化氮继续氧化并与水作用,便能得到硝酸。氨在高温下(800℃以上)分解成氮和氢;氨具有易燃易爆和有毒的性质。氨的自燃点为630℃,氨在氧中易燃烧,燃烧时生成蓝色火焰。氨与空气或氧按一定比例混合后,遇明火能引起爆炸。常温下氨在空气中的爆炸范围为15.5~28%,在氧气中为13.5~82%。液氨或干燥的气氨,对大部分物质没有腐蚀性,但在有水的条件下,对铜、银、锌等有腐蚀作用【2】。 2.合成氨工艺 2.1依据合成条件—压力的不同的几种合成方法 氨的合成是合成氨生产的最后一道工序,其任务是将经过精制的氢氮混合气在催化剂的作用下多快好省地合成为氨。对于合成系统来说,液体氨即是它的产品。20世纪初先后实现了电弧法、氰化法和直接合成法生产合成氨的工业方法。工业上合成氨的各种工艺流程一般以压力的高低来分类【2】。 (1)高压法 操作压力70~100MPa,温度为550~650℃,这种方法的主要优点是氨合成效率高,混合气中的氨易被分离。故流程、设备都比较紧凑。但因为合成效率高,放出的热量多,催化剂温度高,易过热而失去活性,所以催化剂的使用寿命较短。又因为是高温高压操作,对设备制造、材质要求都较高,投资费用大。目前工业上很少采用此法生产。 (2)中压法

《氨法脱硫工艺设计》文献综述

北京化工大学北方学院 毕业设计文献综述 题目名称《氨法脱硫工艺设计》文献综述 题目类别毕业设计 专业班级应化0906 学号 090105161 姓名王冲 指导老师尹建波老师 完成时间 2012年10月25日

引言 据统计,中国1995年SO2排放量为2370万吨,占世界第1位。 SO2排放量剧增使大多数城市SO2浓度处于较高的污染水平。SO2排放量的增加,使中国的酸雨发展异常迅速,严重的酸性降水和脆弱的生态系统使我国经济损失严重,1995年,仅酸雨污染给森林和农作物造成的直接经济损失已达几百亿。随着经济的发展、社会的进步和人们环保意识的增强,工业烟气脱除SO2日益受到重视。由于历史的原因,目前主流的脱硫技术仍为钙法,但钙法脱硫的二次污染、运行不经济等问题日益显现出来,于是,氨法脱硫技术逐渐受到关注,许多的企业、研究单位对氨法脱硫技术的前景作出了乐观的评价。国内已成功地在60MW机组烟气脱硫工程上使用了氨法,其各项经济技术指标居脱硫业的领先水平。由于氨法脱硫工艺自身的一些特点,可充分利用我国广泛的氨源生产需求大的肥料,并且氨法脱硫工艺在脱硫的同时又可脱氮,是一项较适应中国国情的脱硫技术。为帮助大家全面了解氨法,本文对氨法脱硫技术的发展、机理和不同技术的特点进行简述,并侧重介绍湿式回收法氨法脱硫技术。

1. 氨法脱硫技术概况 1.1 氨法脱硫工艺特点 氨法脱硫工艺是采用氨作为吸收剂除去烟气中的SO2的工艺。氨法脱硫工艺具有很多特点。氨是一种良好的碱性吸收剂,氨的碱性强于钙基吸收剂;而且氨吸收烟气中SO2是气-液或气-气反应,反应速度快、反应完全、吸收剂利用率高,可以做到很高的脱硫效率,相对于钙基脱硫工艺来说系统简单、设备体积小、能耗低。另外,其脱硫副产品硫酸铵是一种常用的化肥,副产品的销售收入能大幅度降低运行成本。 1.2 氨法脱硫的发展 70年代初,日本与意大利等国开始研制氨法脱硫工艺并相继获得成功。氨法脱硫工艺主体部分属化肥工业范筹,这对电力企业而言较陌生,是氨法脱硫技术未得到广泛应用的最大因素,随着合成氨工业的不断发展以及厂家对氨法脱硫工艺自身的不断完善和改进,进入90年代后,氨法脱硫工艺渐渐得到了应用。 国外研究氨法脱硫技术的企业主要有:美国:GE、Marsulex、Pircon、Babcock & Wilcox;德国:Lentjes Bischoff、Krupp Koppers;日本:NKK、IHI、千代田、住友、三菱、荏原;等等。 国内目前成功的湿式氨法脱硫装置大多从硫酸尾气治理技术中发展而来,主要的技术商有江南环保工程建设有限公司、华东理工大学等,现国内湿式氨法脱硫最大的业绩是天津永利电力公司的60MW机组的烟气脱硫装置。 近来出现的磷铵法、电子束法、脉冲电晕放电等离子体法等烟气脱硫脱硝技术皆是氨法的演变与发展,改进之处在于降低水耗、改进氧化及后处理、降低装置压降、提高脱硝能力等方面,以求使氨法烟气脱硫技术更加经济更加适应锅炉的运行。 2. 氨法脱硫的技术原理 氨法脱硫工艺皆是根据氨与SO2、水反应成脱硫产物的基本机理而进行的,主要有湿式氨法、电子束氨法、脉冲电晕氨法、简易氨法等。 2.1 电子束氨法(EBA法)与脉冲电晕氨法(PPCP法) 电子束氨法与脉冲电晕氨法分别是用电子束和脉冲电晕照射喷入水和氨的、已降温至70℃左右的烟气,在强电场作用下,部分烟气分子电离,成为高能电子,高能电子激活、裂解、电离其他烟气分子,产生OH、O、HO2等多种活性粒子和自由基。在反应器里,烟气中的SO2、NO被活性粒子和自由基氧化为高阶氧

合成氨发展史及未来的发展方向

精心整理合成氨 发展史及未来的发展方向 合成氨发展史及未来的发展方向 国建成投产。从此开创了氮肥工业的新纪元。为了纪念氨开发的艰难,特在氨前面加“合成”两个字。 二、合成氨在国民经济中的地位和作用 1、用氨制造氮肥。我们知道土壤所缺的养份主要是氮磷、钾。从解放前直至改革开放初期,中国的粮食产量一直不能自给自足,主要原因是

中国几乎所有的土壤都需补氮。由于合成氨工业不能满足农业施肥的需要,土壤补氮不足,农作物只能在低产水平上徘徊(300斤过黄河,400斤跨长江),为了满足粮食生产的需要,我国一直把发展化肥工业作为整个化学工业的首要任务,中国要以全世界7%的耕地来养活全世界22%的人口。经过60多年的发展,我国合成氨制造和氮肥产量已居世界首位,合 2 域。 碱的基础。 氨基与苯环相联,就构成苯胺,这是苯胺系如染料的基础原料,同时也是重要的有机化工原料,例如聚氨脂塑料以及医药的麻醉剂等。 氨基中的氮与羰基中的碳(C)相联,即成酰胺,这是尼龙以及部分抗生素的重要组成部分,氨基与羧基碳、氮相联即组成氨基酸,由此形成

蛋白质。氨基酸种类繁多,仅人体必需的就有19种以上。人们日常生活中的味精就是一种氨基酸的盐类。 氨的三个键如全部与同一碳原子相联而成CN2-,这种氰根与一价阳离子化合,例如与H+或Na+化合,就会形成剧毒的氢氰酸或氰化钠,但这种氰根和碳相联,就会形成有机腈,这种有机腈不但无毒,还可造福人类, 三、氨生产简史 合成氨的基础条件 直接法合成氨其化学方程式非常简单: 3H2+N2=2NH3+Q 从化学平衡理论出发,反应后体积缩小一半,无疑提高压力会促使反

相关主题
文本预览
相关文档 最新文档