当前位置:文档之家› 探究固体熔化时温度的变化规律实验报告单

探究固体熔化时温度的变化规律实验报告单

探究固体熔化时温度的变化规律实验报告单
探究固体熔化时温度的变化规律实验报告单

水温自动控制系统实验报告汇总

水温控制系统(B题) 摘要 在能源日益紧张的今天,电热水器,饮水机和电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费。但是利用AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成的控制系统却能解决这个问题。单片机可将温度传感器检测到的水温模拟量转换成数字量,并显示于1602显示器上。该系统具有灵活性强,易于操作,可靠性高等优点,将会有更广阔的开发前景。 水温控制系统概述 能源问题已经是当前最为热门的话题,离开能源的日子,世界将失去一切颜色,人们将寸步难行,我们知道虽然电能是可再生能源,但是在今天还是有很多的电能是依靠火力,核电等一系列不可再生的自然资源所产生,一旦这些自然资源耗尽,我们将面临电能资源的巨大的缺口,因而本设计从开源节流的角度出发,节省电能,保护环境。 一、设计任务 设计并制作一个水温自动控制系统,控制对象为 1 升净水,容器为搪瓷器皿。水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。 二、要求 1、基本要求 (1)温度设定范围为:40~90℃,最小区分度为1℃,标定温度≤1℃。 (2)环境温度降低时温度控制的静态误差≤1℃。 (3)能显示水的实际温度。 第2页,共11页

2、发挥部分 (1)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。 (2)温度控制的静态误差≤0.2℃。 (3)在设定温度发生突变时,自动打印水温随时间变化的曲线。 (4)其他。 一系统方案选择 1.1 温度传感器的选取 目前市场上温度传感器较多,主要有以下几种方案: 方案一:选用铂电阻温度传感器。此类温度传感器线性度、稳定性等方面性能都很好,但其成本较高。 方案二:采用热敏电阻。选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:采用DS18B20温度传感器。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出远端引入。此器件具有体积小、质量轻、线形度好、性能稳定等优点其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此选用方案三。 1.2温度显示模块 方案一:采用8个LED八段数码管分别显示温度的十位、个位和小数位。数码管具有低能耗,低损耗、寿命长、耐老化、对外界环境要求低。但LED八度数码管引脚排列不规则,动态显示时要加驱动电路,硬件电路复杂。 方案二:采用带有字库的12864液晶显示屏。12864液晶显示屏具有低功耗,轻薄短小无辐射危险,平面显示及影像稳定、不闪烁、可视面积大、画面

51系列单片机闭环温度控制 实验报告

成绩: 重庆邮电大学 自动化学院综合实验报告 题目:51系列单片机闭环温度控制 学生姓名:蒋运和 班级:0841004 学号:2010213316 同组人员:李海涛陈超 指导教师:郭鹏 完成时间:2013年12月

一、实验名称: 51系列单片机闭环温度控制实验 ——基于Protuse仿真实验平台实现 基本情况: 1. 学生姓名: 2. 学号: 3. 班级: 4. 同组其他成员: 二、实验内容(实验原理介绍) 1、系统基本原理 计算机控制技术实训,即温度闭环控制,根据实际要求,即加温速度、超调量、调节时间级误差参数,选择PID控制参数级算法,实现对温度的自动控制。 闭环温度控制系统原理如图: 2、PID算法的数字实现 本次试验通过8031通过OVEN 是模拟加热的装置,加一定的电压便开始不停的升温,直到电压要消失则开始降温。仿真时,U形加热器为红色时表示正在加热,发红时将直流电压放过来接,就会制冷,变绿。T端输出的是电压,温度越高,电压就越高。

8031对温度的控制是通过可控硅调控实现的。可控硅通过时间可以通过可控硅控制板上控制脉冲控制。该触发脉冲想8031用软件在P1.3引脚上产生,受过零同步脉冲后经光偶管和驱动器输送到可控硅的控制级上。偏差控制原理是要求对所需温度求出偏差值,然后对偏差值处理而获得控制信号去调节加热装置的温度。 PID控制方程式: 式中e是指测量值与给定值之间的偏差 TD 微分时间 T 积分时间 KP 调节器的放大系数 将上式离散化得到数字PID位置式算法,式中在位置算法的基础之上得到数字PID 增量式算法: 3、硬件电路设计 在温度控制中,经常采用是硬件电路主要有两大部分组成:模拟部分和数字部分,对这两部分调节仪表进行调节,但都存在着许多缺点,用单片机进行温度控制使构成的系统灵活,可靠性高,并可用软件对传感器信号进行抗干拢滤波和非线性补偿处理,可大大提高控制质量和自动化水平;总的来说本系统由四大模块组成,它们是输入模块、单片机系统模块、计算机显示与控制模块和输出控制模块。输入模块主要完成对温度信号的采集和转换工作,由温度传感器及其与单片机的接口部分组成。利用模拟加热的

温度控制电路实验报告

温度控制电路实验报告 篇一:温度压力控制器实验报告 温度、压力控制器设计 实 验 报 告 设计题目:温度、压力控制器设计 一、设计目的 1 ?学习基本理论在实践中综合运用的初步经验,掌握微机控制系统设计的基本方法; 2.学会单片机模块的应用及程序设计的方法; 3?培养实践技能,提高分析和解决实际问题的能力。 二、设计任务及要求 1.利用赛思仿真系统,以MCS51单片机为CPU设计系统。 2?设计一数据采集系统,每5分钟采集一次温度信号、10分钟采集一次压力信号。并实时显示温度、压力值。 3.比较温度、压力的采集值和设定值,控制升温、降温及升压、降压时间,使温度、压力为一恒值。 4?设温度范围为:-10—+40°C、压力范围为0—100P&;升温、降温时间和温度上升、下降的比例为1°C/分钟,升压、降压时间和压力上升、下降的比例为10P"分钟。

5?画出原理图、编写相关程序及说明,并在G6E及赛思 仿真系统上仿真实现。 三、设计构思 本系统硬件结构以80C51单片机为CPU进行设计,外围扩展模数转换电路、声光报警电路、LED显示电路及向上位PC机的传输电路,软件使用汇编语言编写,采用分时操作的原理设计。 四、实验设备及元件 PC机1台、赛思仿真系统一套 五、硬件电路设计 单片微型计算机又称为微控制器,它是一种面向控制的大规模集成电路芯片。使用80C51来构成各种控制系统,可大大简化硬件结构,降低成本。 1.系统构架 2.单片机复位电路 简单复位电路中,干扰易串入复位端,在大多数情况下不会造成单片机的错误复位,但会引起内部某些寄存器的错误复位,故为了保证复位电路的可靠性,将RC电路接斯密特电路后再接入单片机和外围IC的RESET引脚。 3.单片机晶振电路 晶振采用12MHz,即单片机的机器周期为1卩so 4.报警电路

温度控制电路设计---实验报告

温度控制电路设计一、设计任务 设计一温度控制电路并进行仿真。 二、设计要求 基本功能:利用AD590作为测温传感器,T L 为低温报警门限温度值,T H 为高 温报警门限温度值。当T小于T L 时,低温警报LED亮并启动加热器;当T大于 T H 时,高温警报LED亮并启动风扇;当T介于T L 、T H 之间时,LED全灭,加热器 与风扇都不工作(假设T L =20℃,T H =30℃)。 扩展功能:用LED数码管显示测量温度值(十进制或十六进制均可)。 三、设计方案 AD590是美国ANALOG DEVICES公司的单片集成两端感温电流源,其输出电流与绝对温度成比例。在4V至30V电源电压范围内,该器件可充当一个高阻抗、恒流调节器,调节系数为1μA/K。AD590适用于150℃以下、目前采用传统电气温度传感器的任何温度检测应用。低成本的单芯片集成电路及无需支持电路的特点,使它成为许多温度测量应用的一种很有吸引力的备选方案。应用AD590时,无需线性化电路、精密电压放大器、电阻测量电路和冷结补偿。 主要特性:流过器件的电流(μA) 等于器件所处环境的热力学温度(K) 度数;AD590的测温范围为- 55℃~+150℃;AD590的电源电压范围为4~30 V,可以承受44V正向电压和20V反向电压,因而器件即使反接也不会被损坏;输出电阻为710mΩ;精度高,AD590在-55℃~+-150℃范围内,非线性误差仅为±0.3℃。 基本使用方法如右图。 AD590的输出电流是以绝对温度零度(-273℃)为基准, 每增加1℃,它会增加1μA输出电流,因此在室温25℃时,其 输出电流I out =(273+25)=298μA。 V o 的值为I o 乘上10K,以室温25℃而言,输出值为 10K×298μA=2.98V 。 测量V o 时,不可分出任何电流,否则测量值会不准。 温度控制电路设计框图如下: 温度控制电路框图 由于Multisim中没有AD590温度传感器,根据它的工作特性,可以采用恒流源来替代该传感器,通过改变电流值模拟环境温度变化。通过温度校正电路得

仪表实验报告——温度控制系统

实验四 温度控制系统(一) 一. 实验目的: 1?了解温度控制系统的组成环节和各环节的作用。 2. 观察比例、积分、微分控制规律的作用,并比较其余差及稳定性。 3. 观察比例度3、积分时间T I 、微分时间T D 对控制系统(闭环特性)控制 品质的影 响。 二. 温度控制系统的组成: 电动温度控制系统是过程控制系统中常见的一种,其作用是通过一套自 动控制装 置,见图4-1,使炉温自动维持在给定值。 图4-1温度控制系统 炉温的变化由热电偶测量,并通过电动温度变送器转化为 DDZ- n 型表的 标准信 号0?10mA 直流电流信号,传送到电子电位差计 XWC 进行记录,同 时传送给电动控制器 DTL ,控制器按偏差的大小、方向,通过预定控制规律 的运算后,输出0?10mA 直流电流信号给可控硅电压调整器 ZK-50,通过控 制可控硅的导通角,以调节加到电炉(电烙铁)电热元件上的交流电压,消 除由于干扰产生的炉温变化,稳定炉温,实现自动控制。 可控硅输出电压 o 干扰开关 电烙铁 电炉

三.实验内容与步骤: (一)观察系统各环节的结构、型号、电路的连接,熟悉可控硅电压调整器和电动控制器上各开关、旋钮的作用。 (二)控制系统闭环特性的测定: 在以下实验中使用以下具体数值:S 1(50%) , S 2(80%), T I i(50s), T I 2 (40s), T DI(30S)来观察比例与积分控制规律的作用 (1) 考察比例作用 将S置于某值50%记住S旋钮在S i的位置,积分时间置最大 (T I =max), 微分开关切向0,将干扰开关从“短”切向“干扰”, 产生一个阶跃干扰(此时为反向干扰) ,同时在记录仪的记录线上作一记 号,以记录阶跃干扰加入的时刻,观察并记录在纯比例作用下达到稳定 的时间及余差大小。 ( 2) 考察积分作用保持S S 1不变,置T I =T I 1,同时在记录仪的记录线上作一记号,以记录积分作用加入的时刻,注意观察积分作用如何消除余差, 直到过程基本稳定。 2.观测Pi 控制作用下的过渡过程 保持S 1, T I 1不变,将干扰开关从“干扰”切向“短”,产生一个正向阶跃干扰,观察过渡过程到基本稳定。 3. 考察S对余差的影响 置S = S 2 , T I =max ,将干扰开关从“短”切向“干扰”,产生一个反向阶跃干扰,同时在记录仪的记录线上作一记号,以记录阶跃干扰加入的时刻,观察并记录在纯比例作用下达到稳定的时间及余差大小。并与1(1)中S =S 1 时的余差相比较。 再加入积分作用T i =T i 1 以消除余差直到过程基本稳定。 4. 考察T i 对过渡过程的影响 置S = S 1 , T I =T I 2 ,将干扰开关从“干扰”切向“短”,产生一个正向阶跃干扰,同时在记录仪的记录线上作一记号,以记录阶跃干扰加入的时刻,观察过渡

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

温度控制器实验报告

单片机课程设计实验报告 ——温度控制器 班级:学号: 电气0806 姓名: 08291174 老师: 李长城 合作者: 姜久春 李志鹏

一、实验要求和目的 本课程设计的课题是温度控制器。 ●用电压输入的变化来模拟温度的变化,对输入的模拟电压通过 ADC0832转换成数字量输出。输入的电压为0.00V——5.00V, 在三位数码显示管中显示范围为00.0——99.9。其中0V对应00.0,5V对应99.9 ●单片机的控制目标是风机和加热器。分别由两个继电器工作来 模拟。系统加了一个滞环。适合温度为60度。 ◆当显示为00.0-50.0时,继电器A闭合,灯A亮,模拟加热 器工作。 ◆当显示为为50.0-55.0时,保持继电器AB的动作。 ◆当显示为55.0-65.0时,继电器A断开,灯A熄灭,模拟加 热器停止工作。 ◆当显示为65.0-70.0时,保持继电器AB的动作 ◆当显示为70.0-99.9时,继电器B闭合,灯B亮,模拟风机的 工作。 二、实验电路涉及原件及电路图 由于硬件系统电路已经给定,只需要了解它的功能,使用proteus 画出原理图就可以了。 实验设计的电路硬件有: 1、AT89S52 本温度控制器采用AT89C52单片机作为CPU,12MHZ晶振

AT89C52的引脚结构图: AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes 的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash 存储单元,功能强大的AT89C52单片机可为您提供许多较复杂系统控制应用场合。 AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89C52可以按照常规方法进行编程,也可以在线编程。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。 此外,AT89S52设计和配置了振荡频率可为0Hz并可通过软件设置

计算机温度控制实验报告1

目录 一、实验目的---------------------------------2 二、预习与参考------------------------------- 2 三、实验(设计)的要求与数据------------------- 2 四、实验(设计)仪器设备和材料清单-------------- 2 五、实验过程---------------------------------2 (一)硬件的连接- --------- ----------------------- 2 (二)软件的设计与测试结果--------------------------3 六、实验过程遇到问题与解决--------------------11 七、实验心得--------------------------------12 八、参考资料-------------------------------12

一、实验目的 设计制作和调试一个由工业控制机控制的温度测控系统。通过这个过程学习温度的采样方法,A/D变换方法以及数字滤波的方法。通过时间过程掌握温度的几种控制方式,了解利用计算机进行自动控制的系统结构。 二、预习与参考 C语言、计算机控制技术、自动控制原理 三、实验(设计)的要求与数据 温度控制指标:60~80℃之间任选;偏差:1℃。 1.每组4~5同学,每个小组根据实验室提供的设备及设计要求,设计并制作出实际电路组成一个完整的计算机温度控制测控系统。 2.根据设备情况以及被控对象,选择1~2种合适的控制算法,编制程序框图和源程序,并进行实际操作和调试通过。 四、实验(设计)仪器设备和材料清单 工业控制机、烘箱、温度变送器、直流电源、万用表、温度计等 五、实验过程 (一).硬件的连接 图1 硬件接线图

温度检测与控制实验报告材料

实验三十二温度传感器温度控制实验 一、实验目的 1.了解温度传感器电路的工作原理 2.了解温度控制的基本原理 3.掌握一线总线接口的使用 二、实验说明 这是一个综合硬件实验,分两大功能:温度的测量和温度的控制。 1.DALLAS最新单线数字温度传感器DS18B20简介 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压围,使系统设计更灵活、方便。 DS18B20测量温度围为 -55°C~+125°C,在-10~+85°C围,精度为±0.5°C。DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。 DS18B20部结构 DS18B20部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接 着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验 码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样 就可以实现一根总线上挂接多个DS18B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 232221202-12-22-32-4 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 S S S S S 262524这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的

恒温恒湿房间的仿真模拟控制实验报告

建筑自动化实验报告 题目:恒温恒湿房间的仿真模拟控制实验 班级:建环1302班 姓名:陈文博 学号:U201315938 指导教师:徐新华 完成时间:2016年5月 页脚内容- 1 -

页脚内容2 一、 实验目的 本次模拟仿真的目的是要满足在 秋(过渡季)、夏、冬三季的温湿度控制。控制对象为温度和湿度,其中湿度为相对湿度,因为温度与相对湿度的耦合关系,而且在实际工况中,对温、湿度又有不同的精度要求,因此我们只需要在温湿度中选取其中一个进行精调,另外一个满足一定条件即可。我们要做的工作便是在上述外界环境下,分别对温湿度进行控制。 其中温度控制:230.1t C =±,%1060±=φ 湿度控制:%160±=φ,231t C =± 本次实验主要是利用Mat lab 中Simulink 仿真模型模拟恒温恒湿机组在各种工作环境下的运行情况。在模拟过程中,对于各季环境差异,我们主要考虑的是环境温度的不同,即显热负荷的差异。同时,我们假设各种条件下房间内的产湿都是相同的,这主要是基于室内设备、人员没有变化。我们需利用Simulink 仿真模型模拟恒温恒湿机组在各种工作环境下的运行情况,通过仿真实验找到合适的控制策略,实现房间里的恒温恒湿控制。 二、 实验控制方法 由于所用控制器件的惯性及精度影响,很难在第一刻就能使调节后的空气温湿度达到要求。而且处于保护设备和节能的角度考虑,我们没有必要总使设备运行在满负载工况下,同时避免在很小的区域内由于控制目标的波动而是其频繁启

停,同时还得兼顾进行微调所能达到的幅度,因而根据设备自身参数要求,设定一个合适的粗调区是很重要的。因此,我们的实验控制方法是先确定一个合适的房间温湿度粗调区,根据我们所需控制的恒温恒湿房间的温湿度控制要求:t=23℃,φ=60%,我们可以确定温度的粗调区为:T=23±1℃,φ=60%±10%,如下图所示: 粗调使室内温湿度环境满足条件之后,便可以集中对温湿度中的一个因素进行调节。对于温度和湿度的控制必须有一个是精确控制,而另外一个则有一个比较宽的变化,我们分别通过ctrl_T.m和ctrl_D.m分别完成对温度和湿度的精确控制中精调过程。但在实际的Simulink模拟模型中,我们不可能直接将温湿度调节 页脚内容3

工控机实验报告

工业控制计算机实验报告 电气211 宋少杰 2120302078

实验一A/D、D/A 转换实验 一、实验目的 1.了解温控系统的组成。 2.了解NI 测量及自动化浏览器的使用并对数据采集卡进行设置。 3.了解Dasylab 软件的各项功能,并会简单的应用。 4.通过实验了解计算机是如何进行数据采集、控制的。 二、实验设备 微型计算机、NI USB 6008 数据采集卡、温度控制仪、温箱。 三、实验内容 1.了解温度控制系统的组成。 2.仔细观察老师对数据采集卡输入输出任务建立的过程及设置还有dasylab 基本功能 的演示。 3.仔细阅读dasylab 相关文档,了解其基本使用方法。 4.动手实践,打开范例,仔细揣摩,并独立完成数据采集卡输入输出任务的建立并建 立并运行虚拟的AD 及DA 系统,完成之后,按照自己的需要及兴趣搭建几个简单的系统运行。 四、温控系统的组成 计算机温度控制系统由温度控制仪与计算机、数据采集卡一起构成,被控对象为温箱, 温箱内装有电阻加热丝构成的电炉,还有模拟温度传感器A D590。 系统框图如图1-1 所示:

图 1-3 图 1-1系 统框图 五、温控仪基本工作原理 温度控制仪由信号转换电路、电压放大电路、可控硅移相触发器及可控硅加 热电路组成。 被控制的加热炉允许温度变化范围为 0~100℃.集成电路温度传感器 AD590(AD590 温 度传感器输出电流与绝对温度成正比关系,灵敏度为 1uA/K).将炉温的变化转换为电流的变化送入信号转换、电压放大电路.信号转换电路将 AD590 送来的电流信号转换为电压信号, 然后经精密运算放大器放大、滤波后变为 0~5V 的标准电压信号,一路送给炉温指示仪表, 直接显示炉温值。另一路送给微机接口电路供计算机采样.计算机通过插在计算机 U SB 总线 接口上的 N I USB 6008 12 位数据采集卡将传感器送来的 0~5V 测量信号转换成 0~FFFH 的12 位数字量信号,经与给定值比较,求出偏差值,然后对偏差值进行控制运算,得到控制温度 变化的输出量,再经过 N I USB 6008 将该数字输出量经 12 位 D /A 转换器变为 0~5V 的模拟电 压信号送入可控硅移相触发器,触发器输出相应控制角的触发 脉冲给可控硅,控制可控硅的 导通与关断,从而达到控制炉温的目的。 六、思考题 1.数据采集系统差分输入与单端输入有些什么区别?各有什么优缺点? 答: 单端输入的输入信号均以共同的地线为基准.这种输入方法主要应用于输入信号电压较高(高于1 V),信号源到模拟输入硬件的导线较短(低于15 ft),且所有的输入信号共用一个基准地线.如果信号达不到这些标准,此时应该用差分输入。 对于差分输入,每一个输入信号都有自有的基准地线;由于共模噪声可以被导线所消除,从而减小了噪声误差.单端输入时, 是判断信号与 GND 的电压差. 差分输入时, 是判断两个信号线的电压差. 信号受干扰时, 差分的两线会同时受影响, 但电压差变化不大. (抗干扰性较佳) 而单端输入的一线变化时, GND 不变, 所以电压差变化较大(抗干扰性较差)。

温度采集实验报告

课程设计任务书 题目基于AD590的温度测控系统设计 系(部) 信息科学与电气工程学院 专业电气工程及其自动化 班级电气092 学生姓名刘玉兴 学号090819210 月日至月日共周 指导教师(签字) 系主任(签字) 年月日

摘要 温度是工业生产和自动控制中最常见的工艺参数之一。过去温度检测系统设计中,大多采用模拟技术进行设计,这样就不可避免地遇到诸如传感器外围电路复杂及抗干扰能力差等问题;而其中任何一环节处理不当,就会造成整个系统性能的下降。随着半导体技术的高速发展,特别是大规模集成电路设计技术的发展, 数字化、微型化、集成化成为了传感器发展的主要方向。 以单片机为核心的控制系统.利用汇编语言程序设计实现整个系统的控制过程。在软件方面,结合ADC0809并行8位A/D转换器的工作时序,给出80C51单片机与ADC0908并行A /D转换器件的接口电路图,提出基于器件工作时序进行汇编程序设计的基本技巧。本系统包括温度传感器,数据传输模块,温度显示模块和温度调节驱动电路,其中温度传感器为数字温度传感器AD590,包括了单总线数据输出电路部分。文中对每个部分功能、实现过程作了详细介绍。 关键词:单片机、汇编语言、ADC0809、温度传感器AD590

Abstract Temperature is the most common one of process parameters in automatic control and industrial production. In the traditional temperature measurement system design, often using simulation technology to design, and this will inevitably encounter error compensation, such as lead,complex outside circuit,poor anti-jamming and other issues, and part of a deal with them Improperly, could cause the entire system of the decline. With modern science and technology of semiconductor development, especially large-scale integrated circuit design technologies, digital, miniaturization, integration sensors are becoming an important direction of development. In the control systems with the core of SCM,assembly language programming is used to achieve the control of the whole system.Combining with the operation sequence of ADC0809,the interface circuit diagrams of 80C51 SCM and ADC0809 parallel A/D conveger ale given.The basic skills of assembly language programming based on the operation se—quenee of the chip ale put forward.This system include temperature sensor and data transmission, the moduledisplays

温控实验报告

篇一:温控电路实验报告 温控电路实验报告 一实习目的 1,了解自锁,互锁的概念; 2,掌握电动机自锁的工作原理及操作方法; 3,掌握交流接触器互锁控制电路的工作原理及操作方法;4,掌握用时间继电器使y-△联结互换; 5,掌握交流接触器的常用触电和常关触点在电路中的作用。 二材料工具 继电器,红色发光二极管,绿色发光二极管,4148二极管,5.1伏二极管,热敏电阻,s9013三极管,1.2k欧电阻,20k欧电阻,1m欧电阻各一个;5k欧电阻,3k欧电阻,3.6k欧电阻各两个。 四实习过程 1,看懂温控电路原理图,合理规划电路板上的各元件布局,掌握色环电阻的数值读法,将所需的色环电阻找出; 2,在电路板上安装各元器件,安装二极管时,注意它的正负极;3,将电烙铁连接电源,烙铁头加热到温度高于焊锡熔点后,左手拿焊锡丝,右手拿电烙铁,进行焊接; 4,焊接完成后,认真,细致地检查焊接电路是否有误,检查无误后,将电路板接通12伏稳压直流电源,观察发光二极管是否正常工作,(红灯亮时,当调动可调电阻时,绿灯会亮也会熄灭),若发光二极管不正常工作,则用万用表检查各元件,找出故障原因,解决故障。5 清理实验台,打扫卫生。 五总结 我做这个实验还是蛮顺利的,上了认真听老师讲,记录下细节,焊接之前我还特意把我画的电路原理图给老师看,确保无误后再开始耐心焊接,所以,这次实验我总结出上课认真听讲的重要性,虽然事后自己可以专研出误区,但那要耗费大量时间精力,认真听老师说还是很有必要的。电动机自锁控制电路跟正反转的控制 一实验目的 (1)了解三相电动机接触器联锁正反转控制的接线和操作方法; (2)理解互锁与自锁的概念; (3)掌握电动机接触器的正反转控制的基本原理与实物连接的要求; 二实验器材 三相异步电动机,万用表,空气开关,单相空气开关,交流接触器,组合按钮,导线若干,螺丝刀 三实验原理三相异步电动机的旋转取决于磁场的旋转方向,而磁场的旋转方向取决于电源相序,所以电源的相序决定了电动机的旋转方向。任意改变电源相序,电动机的旋转方向也随之改变。 四实验内容 (1)先熟悉各按钮开关,结构方式,动作原理及接线方法。 (3)将电器摆放整齐,紧凑,并用螺丝刀安装好,紧固各元件时用力均匀; (4)按电路原理正确连接好线路; 五总结 在这周实验里,深刻认识到团队合作的重要性,对仪器自己有很多不认识,都在组内讨论后才慢慢了解到,而且自己意识里认为正确的线路,其实是有很大误区的,特别是最后一个实验,我们组是最后一个完成的,在实验室人慢慢变少的过程中,我们组员沉着,冷静,终于

DSB温控实验报告副本

D S B温控实验报告副本Prepared on 21 November 2021

桂林航院电子工程系 单片机课程设计与制作说明书设计题目:DS18B20数字温度计的设计 专业:通信技术 班级: 学号: 姓名: 指导教师: 2012年 6 月28日 桂林航天工业学院 单片机课程设计与制作成绩评定表

单片机课程设计与制作任务书 专业:通信技术学号:2姓名: 一、设计题目:DS18B20数字温度计的设计 二、设计要求: 1.要求采集温度精确到0.1度。 2.显示测量温度 三、设计内容: 硬件设计、软件设计及样品制作 四、设计成果形式: 1、设计说明书一份(不少于4000字); 2、样品一套。 五.完成期限:2010年月日 指导教师:贾磊磊年月日 教研室:年月日 目录 一摘要 (1) 1.1设计要求 (1) 二理论设计 (2)

2.1硬件电路计 (2) 2.1.1芯片介绍 (2) 2.1.2DS18B20简介 (7) 2.2设计方案 (9) 2.2.1.显示方案 (9) 2.2.2.系统硬件电路设计 (11) 2.2.3软件设计流程及描述 (11) 三.系统的调试 (13) 3.1.硬件的调试 (13) 3.2实验结果 (19) 四、设计注意事项 (19) 4.1点阵设计注意事项 (20) 4.2单片机注意事项 (16) 4.3仿真器使用注意事项 (16) 五.设计心得体会 (17) 5.1总结与体会 (17) 摘要 在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。其中,温度控制也越来越重要。在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。采用单片机对温度进行控制不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的控制问题。

电子系统设计-温度控制系统实验报告

电子系统设计实验报告温度控制系统的设计 姓名:杨婷 班级:信息21 学校:西安交通大学

一、问题重述 本次试验采用电桥电路、仪表放大器、AD转化器、单片机、控制通断继电器和烧水杯,实现了温度控制系统的控制,达到的设计要求。 设计制作要求如下: 1、要求能够测量的温度范围是环境温度到100o C。 2、以数字温度表为准,要求测量的温度偏差最大为±1o C。 3、能够对水杯中水温进行控制,控制的温度偏差最大为±2o C,即温度波动不得超过2o C,测量的精度要高于控制的精度。 4、控制对象为400W的电热杯。 5、执行器件为继电器,通过继电器的通断来进行温度的控制。 6、测温元件为铂热电阻Pt100传感器。 7、设计电路以及使用单片机学习板编程实现这些要求,并能通过键盘置入预期温度,通过LCD显示出当前温度。 二、方案论证 1、关于R/V转化的方案选择 方案一是采用单恒流源或镜像恒流源方式,但是由于恒流源的电路较复杂,且受电路电阻影响较大,使输出电压不稳定。 方案二是采用电桥方式,由电阻变化引起电桥电压差的变化,电路结构简单,且易实现。 2、关于放大器的方案选择 方案一是采用减法器电路,但是会导致放大器的输入电阻对电桥有影响,不利于电路的调节。

方案二是采用仪表放大器电路,由于仪表放大器内部的对称,使电路影响较小,调整放大倍数使温度从0到100度,对应的电压为0-5V。 三、电路的设计 1、电桥电路 通过调节电位器R3使其放大器输出端在0度的时候输出为0实现调零,然后合理选择R1、R2的阻值配合后面放大器的放大倍数实现热电阻阻值向电压值的转化。 通过调节电位器R3使其放大器输出端在0度的时候输出为0实现调零,然后合理选择R1、R2的阻值配合后面放大器的放大倍数实现热电阻阻值向电压值的转化。本次实验中:R1=R2=10KΩ,R3为500Ω的变阻器。 2、仪表放大器

DS18B20温控实验报告 - 副本

桂林航院电子工程系 单片机课程设计与制作说明书设计题目:DS18B20数字温度计的设计 专业:通信技术 班级: 学号: 姓名: 指导教师: 2012年 6 月28 日

桂林航天工业学院 单片机课程设计与制作成绩评定表

单片机课程设计与制作任务书 专业:通信技术学号:2 姓名: 一、设计题目:DS18B20数字温度计的设计 二、设计要求: 1.要求采集温度精确到0.1度。 2.显示测量温度 三、设计内容: 硬件设计、软件设计及样品制作 四、设计成果形式: 1、设计说明书一份(不少于4000字); 2、样品一套。 五.完成期限:2010 年月日 指导教师:贾磊磊年月日 教研室:年月日

目录 一摘要 (1) 1.1设计要求 (1) 二理论设计 (2) 2.1 硬件电路计 (2) 2.1.1芯片介绍 (2) 2.1.2 DS18B20简介 (7) 2.2设计方案 (9) 2.2.1.显示方案 (9) 2.2.2.系统硬件电路设计 (11) 2.2.3软件设计流程及描述 (11) 三.系统的调试 (13) 3.1.硬件的调试 (13) 3.2实验结果 (19) 四、设计注意事项 (19) 4.1 点阵设计注意事项 (20) 4.2单片机注意事项 (16) 4.3仿真器使用注意事项 (16) 五.设计心得体会 (17) 5.1总结与体会 (17)

摘要 在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。其中,温度控制也越来越重要。在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。采用单片机对温度进行控制不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的控制问题。 单片机是一种集CPU、RAM、ROM、I/O接口和中断系统等部分于一体的器件,只需要外加电源和晶振就可实现对数字信息的处理和控制。因此,单片机广泛用于现代工业控制中。 本论文侧重介绍“单片机温度控制系统”的软件设计及相关内容。论文的主要内容包括:采样、滤波、键盘、LED显示和报警系统,加热控制系统等。作为控制系统中的一个典型实验设计,单片机温度控制系统综合运用了微机原理、自动控制原理、模拟电子技术、数字控制技术、键盘显示技术等诸多方面的知识,是对所学知识的一次综合测试。 温度控制系统在国内各行各业的应用虽然己经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。成熟的温控产品主要以“点位”控制及常规的PID控制器为主,它们只能适应一般温度系统控制,而用于较高控制场合的智能化、自适应控制仪表,国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少.随着我国经济的发展及加入WTO,我国政府及企业对此都非常重视,对相关企业资源进行了重组,相继建立了一些国家,企业的研发中心,开展创新性研究,使我国仪表工业得到了迅速的发展。 目前,温度控制器产品从模拟、集成温度控制器发展到智能数码温度控制器。智能温控器(数字温控器)是微电子技术、计算机技术和自动测试技术的结合,特点是能输出温度数据及相关的温度控制量,适配各种控制器,并且它是在硬件的基础上通过软件来实现控制功能的,其智能化程度也取决于软件的开发水平,现阶段正朝着高精度高质量的方向发展,相信以我国的实力,温控技术在不久的将来一定会为于世界前列! 一、设计要求:

传感器测试实验报告

实验一直流激励时霍尔传感器位移特性实验 一、实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生 电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍 尔电势 U H= K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中 沿水平方向移动,则输出的霍尔电动势为U H kx ,式中k—位移传感器的灵敏度。这样它就 可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场 梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座 中,实验板的连接线按图9-1进行。 1、 3 为电源±5V , 2、4 为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1 使数显表指示为零。 图 9-1直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填 入表 9-1。 表9- 1 X ( mm) V(mv)

作出 V-X 曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V ,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

相关主题
文本预览
相关文档 最新文档