当前位置:文档之家› 离散型随机变量的期望值和方差讲义

离散型随机变量的期望值和方差讲义

离散型随机变量的期望值和方差讲义
离散型随机变量的期望值和方差讲义

离散型随机变量的期望值和方差

一、基本知识概要:

1、期望的定义:

则称Eξ=x1P1+x2P2+x3P3+…+x n P n+…为ξ的数学期望或平均数、均值,简称期望。

它反映了:离散型随机变量取值的平均水平。

若η=aξ+b(a、b为常数),则η也是随机变量,且Eη=aEξ+b。E(c)= c

特别地,若ξ~B(n,P),则Eξ=n P

2、方差、标准差定义:

Dξ=(x1-Eξ)2·P1+(x2-Eξ)2·P2+…+(x n-Eξ)2·P n+…称为随机变量ξ的方差。

D=δξ叫做随机变量的标准差。

Dξ的算术平方根ξ

随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。

且有D(aξ+b)=a2Dξ,可以证明Dξ=Eξ2- (Eξ)2。

若ξ~B(n,p),则Dξ=npq,其中q=1-p.

3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应

用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。

二、例题:

例1、(1)下面说法中正确的是()

A.离散型随机变量ξ的期望Eξ反映了ξ取值的概率的平均值。

B.离散型随机变量ξ的方差Dξ反映了ξ取值的平均水平。

C.离散型随机变量ξ的期望Eξ反映了ξ取值的平均水平。

D.离散型随机变量ξ的方差Dξ反映了ξ取值的概率的平均值。

(2)、(2001年高考题)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是。

例2、设ξ是一个离散型随机变量,其分布列如下表,试求Eξ、Dξ

练习:已知ξ的分布列为

(1)求E ξ, D ξ, δξ,

(2) 若η=2ξ+3,求E η,D η

例3、人寿保险中(某一年龄段),在一年的保险期内,每个被保险人需交纳保险费a 元,被保险人意外死亡则保险公司赔付3万元,出现非意外死亡则赔付1万元,经统计此年龄段一年内意外死亡的概率是1p ,非意外死亡的概率为2p ,则a 需满足什么条件,保险公司才可能盈利?

例4:把4个球随机地投入4个盒子中去,设ξ表示空盒子的个数,求E ξ、D ξ

例5、已知两家工厂,一年四个季度上缴利税如下:(单位:万元)

例6、(1)设随机变量ξ具有分布列为P(ξ=k)=

6

1

(k=1,2,3,4,5,6), 求E ξ、E(2ξ+3)和D ξ。

(2) 设随机变量ξ的分布列为P(ξ=k)=

n

1

(k=1,2,3,…,n),求E ξ和D ξ。 (3)一次英语测验由50道选择题构成,每道有4个选项,其中有且仅有一个是正确的,每个选对得3分,选错或不选均不得分,满分150分,某学生选对每一道题的概率为0.7,求该生在这次测验中的成绩的期望与方差。

三、课堂小结:

1、利用离散型随机变量的方差与期望的知识,可以解决实际问题。利用所学知识分析和解决实际问题的题型,越来越成为高考的热点,应予重视。

2、常生产生活中的一些问题,我们可以转化为数学问题,借助于函数、方程、不等式、概率、统计等知

识解决。同时,要提高分析问题和解决问题的能力,必须关注生产和生活。

四、布置作业:教材P195页闯关训练

离散型随机变量及其分布列教案

离散型随机变量及其分布列第一课时 2.1.1离散型随机变量 教学目标:1、引导学生通过实例初步了解随机变量的作用,理解随机变量、离散型随机变量的概念.初步学会在实际问题中如何恰当地定义随机变量. 2、让学生体会用函数的观点研究随机现象的问题,体会用离散型随机变量思想 描述和分析某些随机现象的方法,树立用随机观念观察、分析问题的意识. 3、发展数学应用意识,提高数学学习的兴趣,树立学好数学的信心,逐步认识 数学的科学价值和应用价值. 教学重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.教学难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究. 教学方法:启发讲授式与问题探究式. 教学手段:多媒体 教学过程: 一、创设情境,引出随机变量 提出思考问题1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示? 启发学生:掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但可以将结果于数字建立对应关系. 在让学生体会到掷骰子的结果与出现的点数有对应关系后,也能创造性地提出用数字表示掷一枚硬币的结果.比如可以用1表示正面向上的结果,用0表示反面向上的结果.也可以分别用1、2表示正面向上与反面向上的结果. 再提出思考问题2:一位篮球运动员3次罚球的得分结果可以用数字表示吗? 让学生思考得出结论:投进零个球——— 0分 投进一个球——— 1分 投进两个球——— 2分 投进三个球——— 3分 得分结果可以用数字0、1、2、3表示. 二、探究发现 1、随机变量 问题1.1:任何随机试验的所有结果都可以用数字表示吗? 引导学生从前面的例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示.由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量. 问题1.2:如果我们将上述变量称之为随机变量,你能否归纳出随机变量的概念? 引导学生归纳随机变量的定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量. 随机变量常用字母X、Y、ξ、η来表示. 问题1.3:随机变量与函数有类似的地方吗? 引导学生回顾函数的理解: 函数 实数实数 在引导学生类比函数的概念,提出对随机变量的理解:

知识讲解离散型随机变量的均值与方差(理)(基础)

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p … n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为 于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ

∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+22 2)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中 的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系: 22()()D E E ξξξ=- 4.方差的性质: 若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,2 ()D D a b a D ηξξ=+=; 要点三:常见分布的期望与方差 1、二点分布: 若离散型随机变量ξ服从参数为p 的二点分布,则 期望E p ξ= 方差(1).D p p ξ=-

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概 率()i i P X x p ==(12)i =、……称为X 的概率分 布或分布律,表格表示形式如下: [2] 性质: ? 0i p ≥ ?11n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞= ? 则称X 为连续型随机变量,()f x 称为概率密度函 数或者密度函数。

[2] 连续型随机变量的密度函数的性质 ?()0f x ≥ ? ()1f x dx +∞ -∞=? ?{}()()()P a X b F b F a f x dx +∞ -∞<≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= (3) 连续型随机变量和离散型随机变量的区别: [1] 由连续型随机变量的定义,连续型随机变量的定义域是 (),-∞+∞,对于任何x ,000 {}()()0P X x F x F x ==--=;而对于离散型随机变量的分布函数有有限个或可列个间 断点,其图形呈阶梯形。 [2] 概率密度()f x 一定非负,但是可以大于1,而离散型随 机变量的概率分布i p 不仅非负,而且一定不大于1. [3] 连续型随机变量的分布函数是连续函数,因此X 取任何 给定值的概率都为0. [4] 对任意两个实数a b <,连续型随机变量X 在a 与b 之间 取值的概率与区间端点无关,即:

离散型随机变量及其分布范文

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ??????、ξ取每一个值()1,2,i x i =???的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) 01,2,i p i ≥=???,;12(2) 1P P ++ = 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+ 知识点二:两点分布: 若随机变量X 的分布列: 则称 X 的分布列为两点分布列. 特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1) 为成功率. (2)两点分布又称为0-1分布或伯努利分布 (3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究. 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

离散型随机变量的方差教案教学内容

精品文档 精品文档 离散型随机变量的方差 一、三维目标: 1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程与方法:了解方差公式“D (aξ+b )=a 2Dξ”,以及“若ξ~Β(n ,p ),则Dξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。 3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 二、教学重点:离散型随机变量的方差、标准差 三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入: 1..数学期望 则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 3. 期望的一个性质: b aE b a E +=+ξξ)( 5、如果随机变量X 服从二项分布,即X ~ B (n,p ),则EX=np (二)、讲解新课: 1、(探究1) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则所得的平均环数是多少? (探究2) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则这组数据的方差是多少? 2、离散型随机变量取值的方差的定义: 设离散型随机变量X 的分布为: 则(x i -EX)2描述了x i (i=1,2,…n)相对于均值EX 的偏离程度,而 DX 为这些偏离程度的加权平均,刻画了随机变量X 与其均值EX 的平均偏离程度。我们称DX 为随机变量X 的方差,其算术平方根DX 叫做随机变量X 的标准差. 随机变量的方差与标准差都反映了随机变量偏离于均值的平均程度的平均程度,它们的值越小,则随机变量偏离于均值的平均程度越小,即越集中于均值。 (三)、基础训练 求DX 和 解:00.110.220.430.240.12EX =?+?+?+?+?= 104332221111+++++++++=X 2101 4102310321041=?+?+?+?=] )()()[(122212x x x x x x n s n i -++-++-=ΛΛ1 ])24()23()23()22()22()22()21()21()21()21[(10 1 22222222222=-+-+-+-+-+-+-+-+-+-=s 2 2222)24(101)23(102)22(103)21(104-?+-?+-?+-?=s ∑=-=n i i i p EX x 1 2)(DX

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。若 是随机变量, a b ,其中a 、b 是常数,则 也 是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列 出,而连续性随机变量的结果不可以 --------------------- 列出 离散型随机变量的分布列:设离散型随机变量可能取的值为X i 、X 2 X i 取每一 个值X i i 1,2, 的概率为P( X ) p ,贝U 称表 为随机变量的概率分布,简称的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0 P(A) 1,并且不可能事件的概率为0,必然事 件的概率为 1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) P i 0, i 1,2, ; (2) RP.L 1 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即P( 知识点二:两点分布: 若随机变量X 的分布列: 特别提醒:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1为成 功 率? (2) 两点分布又称为0-1分布或伯努利分布 ⑶两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正 品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究? 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 C k C n k X k ) P( X k ) P( X k 1) L 则称X 的分布列为两点分布列

离散型随机变量的方差()

离散型随机变量的方差(一) 白河一中 邓启超 教学目标: 1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程与方法:会利用离散型随机变量的均值(期望)和方差对所给信息进行整合和分析,得出相应结论。 3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 二、教学重点:离散型随机变量的方差、标准差 三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入: 1..数学期望 则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,也称为随机变量的均值。 3. 期望的一个性质: b aE b a E +=+ξξ)( 4、常见特殊分布的变量的均值(期望) (1)如果随机变量X 服从二项分布(包括两点分布),即X ~ B (n,p ),则 E ξ=np (2)如果随机变量X 服从超几何分布,即X ~H (N ,M ,n ),则 E ξ= N M n (二)、讲解新课: 1、(探究1):A ,B 两种不同品牌的手表,它们的“日走时误差”分别为X ,Y (单位: S ),X A 型手表 B 型手表 np EX =

问题:(1)分别计算X,Y 的均值,并进行比较; (2)这两个随机变量的分布有什么不同,如何刻画这种不同 分析:EX=EY,也就是说这两种表的平均日走时误差都是0. 因此,仅仅根据平均误差,不能判断出哪一种品牌的表更好。 进一步观察,发现A品牌表的误差只有01.0±而B品牌的误差为±0.05 结论:A品牌的表要好一些。 探究(2):甲、乙两名射手在同一条件下射击,所得环数X1, X2分布列 2 8 9 10 0.4 0.2 0.4 分析: 甲和乙射击环数均值相等,甲的极差为2,乙的极差也为2,该如何比较? 思考:怎样定量刻画随机变量的取值与其均值的偏离程度呢? 样本方差: 类似的,随机变量X 的方差: 222221)(......)......()()(EX X EX X EX X EX X DX n i -+-+-+-= =2)(EX X E i - 思考:离散型随机变量的期望、方差与样本的期望、方差的区别和联系是什 9 ,921==EX EX ? ? ????-++-+-=---2 n 22212)x (x )x (x )x (x n 1s ...n 1)x (x n 1)x (x n 1)x (x s 2n 22212? -++?-+?-=---...

一个复合随机变量的方差

一个复合随机变量的方差 王福昌 (防灾科技学院 河北三河 065201) 【摘要】:对于比较复杂的复合随机变量的方差,一般没有简单公式去求解。这里结合具体例子进行了详细剖析。 【关键词】复合随机变量;方差 随机变量的数字特征在对积极变量的研究中占有重要的地位[1]。在教学过程中,我们发现学生在对简单的随机变量求方差时还能应付,对于稍微复杂的随机变量,不知如何下手。本文通过求一个复合随机变量的方差,指出遇到这种情形时应注意的一些问题. 如果一个随机变量X,它服从的分布与一个参数Y 有关,而Y 也是一个随机变量,它服从一个确定的分布,这时我们称随机变量X 为一个服从复合分布的复合随机变量。在应用问题中,常常遇到服从复合分布的随机变量[2]。下面给出一个例子。 设随机变量X ,以概率0.2服从均值为5的泊松分布,以概率0.8服从均值为1的泊松分布,求X 的方差。 解:由泊松分布性质可得,服从参数λ泊松分布的期望与方差相等,且都等于其参数λ。 设)5(~1πX ,)1(~2πX ,由题设和条件概率公式、全概率公式 ,设全集 } {}{21X X X X S =?==,对于 ,,21=k ()()()} {8.0}{2.0}{}{}{}{} ,{} ,{}{}{}{}{}{2122112121k X P k X P X X k X P X X P X X k X P X X P k X X X P k X X X P X X X X k X P S k X P k X P =+=====+=====+===?=?==?===条件概率可加性 所以 8 .118.052.0} {8.0}{2.0} {)(0 20 10 =?+?==?+=?===∑∑∑∞ =∞=∞ =k k k k X kP k X kP k X kP X E 由方差定义 )()()(22X E X E X D -=,所 以 ) ()()(122 11X E X E X D -=,) ()()(222 22X E X E X D -=,所 以 30 55)()()(21212 1=+=+=X E X D X E , 211)()()(22222 2=+=+=X E X D X E , 6 .728.0302.0) (8.0)(2.0} {8.0}{2.0} {)(2 2210 220 12022 =?+?=?+?==?+=?===∑∑∑∞ =∞=∞ =X E X E k X P k k X P k k X P k X E k k k 所以 36.48.16.7)()()(222=-=-=X E X E X D . 通过这个例子可以看出概率解题方法的灵活多样性。一个有效的策略是吃透概念,从定义和基本公式出发,利用一直的基本性质和技巧往往可使复杂方差的计算变得简捷. 看起来复杂的问题,往往可通过最根本的基本定义和方法解决。 【参考文献】 [1] 邓健,生志荣. 一个随机变量的分布列及数学期望的计算[J].数学学习与研究,2010,(1):93,95. [2]张尚志. 复合随机变量高阶矩的一个积分表达式[J].江西大学学报(自然科学版),1980,4(1):135-137.

离散型随机变量的方差

2.3.2离散型随机变量的方差 整体设计 教材分析 本课仍是一节概念新授课,方差与均值都是概率论和数理统计的重要概念,是反映随机变量取值分布的特征数.离散型随机变量的均值与方差涉及的试题背景有:产品检验问题、射击、投篮问题、选题、选课、做题、考试问题、试验、游戏、竞赛、研究性问题、旅游、交通问题、摸球问题、取卡片、数字和入座问题、信息、投资、路线等问题.从近几年高考试题看,离散型随机变量的均值与方差问题还综合函数、方程、数列、不等式、导数、线性规划等知识,主要考查能力. 课时分配 1课时 教学目标 知识与技能 了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差. 过程与方法 了解方差公式“D(aX+b)=a2D(X)”,以及“若X~B(n,p),则D(X)=np(1-p)”,并会应用上述公式计算有关随机变量的方差. 情感、态度与价值观 承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值. 重点难点 教学重点:离散型随机变量的方差、标准差. 教学难点:比较两个随机变量的均值与方差的大小,从而解决实际问题. 教学过程 复习旧知 1 则称Eξ=x1p1+x2p2+…+x i p i+…+x n p n为ξ的数学期望. 2.数学期望的一个性质:E(aξ+b)=aEξ+b. 3.若ξ~B(n,p),则Eξ=np. 教师指出:数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示随机变量在随机试验中取值的平均值.但有时两个随机变量只用这一个特征量是无法区别它们的,还需要对随机变量取值的稳定与波动、集中与离散的程度进行刻画.探究新知 已知甲、乙两名射手在同一条件下射击,所得环数ξ1、ξ2的分布列如下:

图解常用离散型随机变量

第 22卷第1期2019年1月 高等数学研究 STUDIES IN COLLEGE MATHEMATICS Vol.22,No. 1Jan. , 2019 doi : 10. 3969/j. issn. 1008-1399. 2019. 01. 033 图解常用离散型随机变量 杨夜茜 (同济大学数学科学学院,上海200092) 摘要在 概 率论的学习中,一个重要章节就是常用的离散型随机变量的学习.离 散 型随机变量包括伯努利分布, 二项分布,泊松分布,几何分布,超几何分布和负二项 分布等等.在本文中,首先借 助时间流的图形表达,从伯努利 试验次数和成功次数角度 区分其中的一些常用变量;其次通过一个流程图的方式柢理这些常用的离散型随 机 变量 的定义.本文的目的在于,基于常规的离散型随机变量的分布律等介绍之余,首次尝试从不同的比较汇总角度,借 助图表方法对常用的离散型 随 机 变量进行梳理和总结 ,起 到 区 分 变 量 的 差 异 ,加 强对常用离散型随机变量概念 的 理 解 . 关键词 常 用 离 散 型 随 机 变 量 ;伯 努 利 试 验 次 数 ;成 功 次 数 ;时 间 流 ;流 程 图 中图分类号 0211 文献标识码 A 文章编号 1008-1399(2019)01 -0118-03 Explanation of Discrete Random Variable by Diagrams Y A N G Xiaohan (School of Mathematics Science, Tongji University, Shanghai 200092, China) Abstract This paper uses time flows and flow charts to describe discrete random variables , such as Ber - n o u lli , Binom ial , Poisson , Geometric , and Negative Binomial variables , based on two key points : number of tria ls , and number of successes . Keywords discrete random variable,num ber of tria ls , number of successes,time flo w , flo w chart i 引言 关于常用的离散型随机变量,它们的定义、分 布律、概率、期望和方差等,在教科书或者是文献 中,已经有非常明确的定义[1_3].在笔者多年的教学 中发现,学生在学习这些随机变量的时候,通常会 出现计算题准确率很高,但涉及定义的问题回答模 糊.因此在本文中,不重复介绍离散型随机变量的 分布律等,尝试从不同的比较和汇总的角度借助图 表方法对这些常用的离散型随机变量进行梳理.在 文献[4]中,George C asella 给出了随机变量间的关 系图,描述了大部分的离散型和连续型随机变量两 两变量之间的联系.与他的关系图侧重点不同,在 本文中,首次设计了两种图形表述方式:时间流和 收稿日期: 2017-12-19 修改日期=2018 -03 -13 作者简介:杨筱菡(1977 —),女,江苏,博士,副教授,概率统计, Email :xiaohyang @tongji . edu . cn 流程图.时间流的图形很具象,简单明了切中随机 变量定义的关键点.而在自上而下的流程图中,通 过回答每一个是与否的简单问题而找到变量的归 属.这两种图形方式,能快速理清每个常用的离散 型随机变量的定义,区分不同变量概念上的差异, 加强对概念的理解. 注这里要特别说明的是,本文中提及的常用的 随机变量仅是在本科公共基础课程“概率论与数理 统计”中提及的常用离散型随机变量,它们只是常 用离散型随机变量中的一部分,并非全部,例如二 项分布的推广一多项分布等就不在此文讨论的范 围内. 2时间流区分法 通常常用的离散型随机变量总是从讲述伯努 利试验开始,伯努利试验是一类可重复、独立的试 验,且一次试验的样本空间只有两个样本点,6卩{成 功,失败},有时把样本点“成功”描述为“事件A 发

离散型随机变量的方差

2.3.2 离散型随机变量的方差 1.理解取有限个值的离散型随机变量的方差及标准差的概念. 2.能计算简单离散型随机变量的方差,并能解决一些实际问题.(重点) 3.掌握方差的性质以及两点分布、二项分布的方差的求法,会利用公式求它们的方差.(难点 ) [基础·初探] 教材整理1 离散型随机变量的方差的概念 阅读教材P 64~P 66上面第四自然段,完成下列问题. 1.离散型随机变量的方差、标准差 (1)定义:设离散型随机变量X 的分布列为 则(x i -E (X ))描述了i D (X )=∑i =1n (x i -E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X ) 的平均偏离程度.称D (X )为随机变量X 的方差,其算术平方根D (X )为随机变量X 的标准差. (2)意义:随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小. 2.随机变量的方差与样本方差的关系 随机变量的方差是总体的方差,它是一个常数,样本的方差则是随机变量,是随样本的变化而变化的.对于简单随机样本,随着样本容量的增加,样本的方

差越来越接近于总体的方差. 1.下列说法正确的有________(填序号). ①离散型随机变量ξ的期望E (ξ)反映了ξ取值的概率的平均值; ②离散型随机变量ξ的方差D (ξ)反映了ξ取值的平均水平; ③离散型随机变量ξ的期望E (ξ)反映了ξ取值的波动水平; ④离散型随机变量ξ的方差D (ξ)反映了ξ取值的波动水平. 【解析】 ①错误.因为离散型随机变量ξ的期望E (ξ)反映了ξ取值的平均水平. ②错误.因为离散型随机变量ξ的方差D (ξ)反映了随机变量偏离于期望的平均程度. ③错误.因为离散型随机变量的方差D (ξ)反映了ξ取值的波动水平,而随机变量的期望E (ξ)反映了ξ取值的平均水平. ④正确.由方差的意义可知. 【答案】 ④ 2.已知随机变量ξ,D (ξ)=1 9,则ξ的标准差为________. 【解析】 ξ的标准差D (ξ)=19=13. 【答案】 1 3 3.已知随机变量ξ的分布列如下表: 则ξ的均值为【解析】 均值E (ξ)=x 1p 1+x 2p 2+x 3p 3=(-1)×12+0×13+1×16=-1 3; 方差D (ξ)=(x 1-E (ξ))2 ·p 1+(x 2-E (ξ))2 ·p 2+(x 3-E (ξ))2 ·p 3=5 9. 【答案】 -13 59 教材整理2 离散型随机变量的方差的性质

随机变量的方差

第五周随机变量函数的分布及随机变量的数字特征 5.3随机变量的方差 方差:随机变量偏离期望的程度(随机变量分布的分散程度) ()()()( )2Var X E X E X =-,()()()()2Var X E X E X =-()() ()222E X XE X E X =-+()()()()222E X E XE X E X =-+()()()()222E X E X E X E X =-+()()2 2E X E X =-()()()22Var X E X E X =-,()()()2Var aX b Var aX a Var X +==() X σ=, 标准差,X σ也记作()()() Var X Y Var X Var Y +≠+方差通常缩写为()Var X (varience)或()D X (deviation)。*************************************************************例5.3.1项目1:投资10万元 可能回收10万元保本;40%可能回收15万元,盈利5万元 10 5~3255X ?? ? ? ??? ,平均收益为()13205255E X =?+?=万元,项目2:投资10万元 60%可能回收0万元,亏损10万元;40%可能回收30万元,盈利20万元 21020~325 5X -?? ? ? ???,平均收益为()2321020255E X =-?+?=万元

()22132051055 E X =?+?=,()()()221116Var X E X E X =-=;()()222232102022055 E X =-?+?=,()()()22222216Var X E X E X =-=。两项投资的期望相等,均为2万元,但它们的方差一个是6,一个是216,差异非常大。期望刻画平均收益,而方差则刻画收益的波动,反映了投资的风险程度。*************************************************************

常见离散型随机变量的分布列

4.常见离散型随机变量的分布列 (1>两点分布像 这样的分布列叫做两点分布列. 如果随机变量X的分布列为两点分布列,就称X服从分布,而称p=P(X=1> 为成功概率. (2>超几何分布列 一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为 P(X=k>=错误!,k=0,1,2,…,m, 其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.称分布列为超几何分布列.如果随机变量X的分布列为超几何分布列,则称随机变量X服从超几何分布. 1设离散型随机变量X 求:(1>2X+1的分布列; (2>|X-1|的分布列. 【思路启迪】利用p i≥0,且所有概率之和为1,求m;求2X+1的值及其分布列;求|X-1|的值及其分布列. 【解】由分布列的性质知: 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 首先列表为: 4 9 3 则常数c=________,P(X=1>=________.X的所有可能取值x i(i=1,2,…,>; (2>求出取各值x i的概率P(X=x i>;(3>列表,求出分布列后要注意应用性质检验所求的结果是否准确.常用类型有:(1>由统计数据求离散型随机变量的分布列,关键是由统计数据利用事件发生的频率近似表示该事件的概率,由统计数据得到的分布列可以帮助我们更好地理解分布列的作用和意义.(2>由古典概型来求随机变量的分布列,这时需利用排列、组合求概率.(3>由相互独立事件同时发生的概率求分布列无

论是何种类型,都需要深刻理解随机变量的含义及概率分布.3.(2018年福建>受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下: (1>从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率; (2>若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;(3>该厂预计今后这两种品牌轿车销量相当,因为资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.【解】(1>设“甲品牌轿车首次出现故障发生在保修期内”为事件A ,则P (A >=错误!=错误!.(2>依题意得,X 1的分布列为 X 2的分布列为 (3>由(2>得,E (X 1>=1×错误!+2× 错误!+3×错误!=2.86(万元>, E (X 2>=1.8×错误!+2.9×错误!=2.79(万元>.因为E (X 1>>E (X 2>,所以应生产甲品牌轿车. 4.(2018年湖南>某商店试销某种商品20天,获得如下数据: 试销结束后(2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1>求当天商店不进货的概率; (2>记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望. 解:(1>P (“当天商店不进货”>=P (“当天商品销售量为0件”>+P (“当天商品销售量为1件”> =错误!+错误!=错误!. (2>由题意知,X 的可能取值为2,3. P (X =2>=P (“当天商品销售量为1件”>=错误!=错误!;P (X =3>=P (“当天商品销售量为0件”>+P (“当天商品销售量为2件”>+P (“当天商品销售量为3件”>=错误!+错误!+错误!=错误!.故X 的分布列为

常见离散型随机变量分布列示例

常见随机事件的概率与分布列示例 1、耗用子弹数的分布列 例 某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列. 分析:确定ξ取哪些值以及各值所代表的随机事件概率,分布列即获得. 解:本题要求我们给出耗用子弹数ξ的概率分布列.我们知道只有5发子弹,所以ξ的取值只有1,2,3,4,5.当1=ξ时,即9.0)1(==ξP ;当2=ξ时,要求第一次没射中,第二次射中,故09.09.01.0)2(=?==ξP ;同理,3=ξ时,要求前两次没有射中,第三次射中,009.09.01.0)3(2=?==ξP ;类似地,0009.09.01.0)4(3=?==ξP ;第5次射击不同,只要前四次射不中,都要射第5发子弹,也不考虑是否射中,所以41.0)5(==ξP ,所以耗用子弹数ξ的分布列为: 说明:搞清5=ξ的含义,防止这步出错.5=ξ时,可分两种情况:一是前4发都没射中,恰第5发射中,概率为0.14×0.9;二是这5发都没射中,概率为0.15,所以, 5 41.09.01.0)5(+?==ξP .当然, 5 =ξ还有一种算法:即 0001.0)0009.0009.009.09.0(1)5(=+++-==ξP . 2、独立重复试验某事件发生偶数次的概率 例 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________. 分 析 : 发 生 事 件 A 的 次 数 () p n B ,~ξ,所以, ),,2,1,0,1(,)(n k p q q p C k p k n k k n =-===-ξ其中的k 取偶数0,2,4,…时,为二项式 n q p )(+ 展开式的奇数项的和,由此入手,可获结论.

随机变量的方差

§2.3 随机变量的方差 随机变量X 的数学期望)(X E 是该随机变量X (或其分布)的一种位置特征数,是随机变量X 取值的一个“中心”.但它并没有告诉我们X 的取值相对于这个“中心”的偏离程度,或者说波动程度等方面的信息。无论在理论上还是实用中,这方面的信息都是非常重要和有意义。比如,考虑测量误差X ,如果该测量没有系统误差则意味着X 的均值0)(=X E ,这往往是个基本要求,而我们会更关注测量误差围绕其均值0)(=X E 波动的程度。再比如,考虑某项风险投资的收益X ,除了关注平均收益)(X E 外,还会关注收益的波动情况。等等。 由于数学期望)(X E 是其取值的一个中心位置,自然地,度量X 取值的波动程度的一个合理的方法是考察X 取值与)(X E 的距离。一种方式就是考虑X 取值与)(X E 的距离|)(|X E X -的均值|)([|X E X E -。但是,由于绝对值在数学上处理很不方便,人们就考虑另一种方式:先 把距离|)(|X E X -平方,再取其均值2)()(X E X E -。把它作为X 取值散 布程度的度量,这个量就叫做方差。 定义 设X 的期望为μ,且)(2X E 存在,则称2)(μ-X E 为X (或其分布)的方差,记为)(X Var 或)(X D 。即 2)()(μ-=X E X Var 称方差的平方根)(X Var 为X 的标准差,记为)(X σ。 方差和标准差都是用以刻画随机变量取值的散布程度的特征数,差别主要体现在量纲上。方差或标准差越小,随机变量取值越集中,反之越分散。从方差的定义可以看出随机变量方差X 是X 的函数

2))(X E X -(的期望,那么在有了X 的分布列)(i x p 或概率密度)(x p 后,利用上一节介绍的随机变量函数的期望的计算方法,可得 ∑∞ =-=12)())()(i i i x p X E x X Var ( 或 ?+∞ ∞--=dx x p X E x X Var )())(()(2 方差的计算更多地用以下公式: 22)]([)()(X E X E X Var -= 这个公式的推导留给同学们完成。 这个公式变形为 22)]([)()(X E X Var X E += 在已知期望和方差的情况下,利用上式可方便地求出)(2X E ,易见对任意随机变量X ,总有22)]([)(X E X E ≥。上面等式可推广至更一般的情况:对于任一常数c ,有 22])([)())((c X E X Var c X E -+=- 可见,对于任一常数c ,有 )())((2X Var c X E ≥- 并且等号成立当且仅当)(X E c =。换言之,随机变量X 的期望)(X E 是函数2)()(t X E t f -=的最小值点,且最小值就是X 的方差。 例 随机变量X 的密度函数为 ?????<<=else x x x p ,020,2-1)(

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 一、离散型随机变量: (1)概念:设X 是一个随机变量,如果X 的取值是有限个或者无穷可列个,则称X 为离散型随机变量。 其相应的概率()i i P X x p ==(12)i =、……称为X 的概率分布或分布列,表格表示形式如下: (2)性质:?0i p ≥ ?1 1n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- 二、连续型随机变量: (1)概念:如果对于随机变量的分布函数()F x ,存在非负的函数()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞ = ? 则称X 为连续型随机变量,()f x 称为概率密度函数或者密度函数。 (2)连续型随机变量的密度函数的性质:?()0f x ≥ ? ()1f x dx +∞ -∞ =? ?{}()()()P a X b F b F a f x dx +∞ -∞ <≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= 三、连续型随机变量和离散型随机变量的区别: (1)由连续型随机变量的定义,连续型随机变量的定义域是(),-∞+∞,对于任何x ,000{}()()0P X x F x F x ==--=; 而对于离散型随机变量的分布函数有有限个或可列个间断点,其图形呈阶梯形。 (2)概率密度()f x 一定非负,但是可以大于1,而离散型随机变量的概率分布i p 不仅非负,而且一定不大于1. (3)连续型随机变量的分布函数是连续函数,因此X 取任何给定值的概率都为0. (4)对任意两个实数a b <,连续型随机变量X 在a 与b 之间取值的概率与区间端点无关,即: {}{}{}{}()() ()b a P a X b P a X b P a X b P a X b F b F a f x dx <<=≤≤=<≤=≤<=-= ? 即:{}{}()P X b P X b F x <=≤= 四、常用的离散型随机变量的分布函数: (1)0-1分布:如果离散型随机变量X 的概率分布为:

常见离散型随机变量的分布 (1)

新乡医学院教案首页单位:计算机教研室 课程名称医药数理统计方法 授课题目 2.1 常见离散型随机变量的分布授课对象05级药学专业 时间分配超几何分布15分钟二项分布35分钟泊松分布30分钟 课时目标理解掌握常见离散型随机变量的分布函数 掌握两点分布、二项分布、泊松分布之间的联系与区别授课重点伯努利试验、二项分布、泊松分布 授课难点两点分布、二项分布、泊松分布之间的联系与区别 授课形式小班理论课 授课方法启发讲解 参考文献医药数理统计方法刘定远主编人民卫生出版社概率论与数理统计刘卫江主编清华大学出版社北京交通大学出版社 高等数学(第五版)同济大学编高等教育出版社 思考题二项分布和超几何分布有何联系? 教研室主任及课程负责人签字教研室主任(签字)课程负责人(签字)年月日年月日

基 本 内 容 备 注 常见离散型随机变量的分布 一、超几何分布 例1 带活动门的小盒子里有采自同一巢的20只工蜂和10只雄蜂,现随机地放出5只作实验,表示X 放出的蜂中工蜂的只数,求X 的分布列。 解 X 1 2 3 4 5 P 052010530C C C 142010530C C C 232010530C C C 322010530C C C 412010530C C C 502010 5 30 C C C 定义 1 若随机变量X 的概率函数为 {} 0,1,2,,k n k M N M n N C C P X k k l C --?=== 其中N≥M>0,n≤N -M,l=min(M,n),则称X 服从参数为N,M,n 的超几何分布,记作X~H(N,M,n). 超几何分布的分布函数为()k n k M N M n k x N C C F x C --≤?=∑ 二、二项分布 1. Bernoulli 试验 只有两个可能结果的试验称为Bernoulli 试验。 例2 已知某药有效率为0.7,今用该药试治某病3例,X 表示治疗无效的人数,求X 的分布列。 解:X 可取0,1,2,3。 用A i 表示事件“第i 例治疗无效”,i=1,2,3.则()0.7i P A p == P{X=0}=33 123123()()()()(1)0.343P A A A P A P A P A p q ==-== P{X=1}=231312123()P A A A A A A A A A ++ 2231312123()()()30.441P A A A P A A A P A A A pq =++== P{X=2}=321121323()P A A A A A A A A A ++ 2321121323()()()30.189P A A A P A A A P A A A p q =++==

相关主题
文本预览
相关文档 最新文档