当前位置:文档之家› 【CN110287508A】一种多源三维城市模型的可视化融合系统【专利】

【CN110287508A】一种多源三维城市模型的可视化融合系统【专利】

【CN110287508A】一种多源三维城市模型的可视化融合系统【专利】
【CN110287508A】一种多源三维城市模型的可视化融合系统【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910232941.0

(22)申请日 2019.03.26

(71)申请人 江苏海事职业技术学院

地址 211170 江苏省南京市江宁区格致路

309

申请人 江苏意渊工业大数据平台有限公司

(72)发明人 李冰蟾 毛波 

(74)专利代理机构 南京源古知识产权代理事务

所(普通合伙) 32300

代理人 马晓辉

(51)Int.Cl.

G06F 17/50(2006.01)

(54)发明名称一种多源三维城市模型的可视化融合系统(57)摘要本发明公开了城市数字化系统技术领域的一种一种多源三维城市模型的可视化融合系统,包括HBase分布式数据库,处理单元,融合单元,检索/索引单元,Web浏览器和用户端,将标准化的CityGML三维城市模型,OSM数据以及Collada 三维建筑模型整合起来,用HBase分布式数据库对其进行存储和管理,并为其设计了全新的row key便于快速地检索和索引,同时利用MapReduce 并行计算框架和Hadoop平台实现了针对城市模型中建筑物的综合简化算法,最终将多源数据集成融合在浏览器中可视化,实验结果显示为HBase设计的row key在检索时较大的提升了检索效率,提出的综合简化算法也能有效降低三维城市模型的复杂度,同时不会过多的削弱其视觉效果,生成的简化模型可以用于用户端的可视化

应用。权利要求书1页 说明书7页 附图5页CN 110287508 A 2019.09.27

C N 110287508

A

权 利 要 求 书1/1页CN 110287508 A

1.一种多源三维城市模型的可视化融合系统,其特征在于:包括

HBase分布式数据库,用于存入准化的CityGML三维城市模型,OSM数据以及Collada三维建筑模型,将其进行整合、存储和管理;

处理单元,用于简化、过滤和提取三维建筑对象;

融合单元,用于将处理后的简化模型进行集成融合;

检索/索引单元,用于对空间位置矢量数据的检索和索引,并迅速定位需要返回的结果;

Web浏览器,用于将融合后的三维模型进行可视化;

用户端,通过Web浏览器对可视化的三维模型进行浏览,并进行反馈。

2.根据权利要求1所述的一种多源三维城市模型的可视化融合系统,其特征在于:所述存入方式采用base64转码的方式。

3.根据权利要求1所述的一种多源三维城市模型的可视化融合系统,其特征在于:所述CityGML三维城市模型,基于XML格式的开源数据模型,包括用于描述单个城市种各种不同实体的cityObjectMember元素和包含各种不同实体外观信息的appearanceMember元素;

所述OSM数据,包括道路元素配合Bing地图服务形成的二维底图;

所述Collada三维建筑模型,用于模型交换,包括KML,用于可视化地理数据的文件格式。

4.根据权利要求1所述的一种多源三维城市模型的可视化融合系统,其特征在于:所述HBase分布式数据库还包括ZooKeeper和YARN,用于管理、调度集群各项资源与进程的互相协同工作,Ma pRed uce,并行计算框架用于保障大量数据的并发快速处理,Had oo p Streaming,指导顶层应用的运行。

5.根据权利要求1所述的一种多源三维城市模型的可视化融合系统,其特征在于:所述处理单元包括

简化模块,采用LoD3细节层次的三维建筑作为输入数据来简化模型;

过滤模块,用于过滤建筑物墙上的门或者窗户信息;

提取模块,用于提取建筑物的墙面和屋顶表面信息。

6.根据权利要求1所述的一种多源三维城市模型的可视化融合系统,其特征在于:所述处理单元还包括修补模块,用于修补门或者窗户产生的空洞。

7.根据权利要求1所述的一种多源三维城市模型的可视化融合系统,其特征在于:所述检索/索引单元采用Geohash算法,Geohash算法将经纬度转化成一维的字符串,将这一维的字符串作为HBase分布式数据库的row key索引。

8.根据权利要求1所述的一种多源三维城市模型的可视化融合系统,其特征在于:所述融合单元采用Cesium融合平台,包括3D Tiles,3D Tiles用于以数据流的形式展示三维内容,包括建筑物,树木,点云和矢量数据。

9.根据权利要求8所述的一种多源三维城市模型的可视化融合系统,其特征在于:所述Cesium融合平台与CityGML三维城市模型和Collada三维建筑模型数据只支持glTF格式,与OSM数据只支持Geojson格式。

2

专利检索的优点及基本检索字段

专利检索的优点及基本检索字段 专利检索含义和优缺点 计算机的出现与发展,以及空间技术、通信技术以及数据传输技术的不断进步,互联网的普及使得全球范围内的计算机信息检索最终成为现实。同样,计算机检索在专利信息领域也得到了极大的普及和应用。 1.含义 所谓的专利信息计算机检索,就是将专利信息的检索需求按一定的查询语言和检索命令输入计算机系统,系统将用户的提问与专利数据库中存储的专利数据进行匹配运算,查找出与用户所需信息一致的内容,并把检索结果由数据库中调取出来反馈给用户。它的基本原理是由计算机对提问词与数据库中的检索词进行比较,找出与提问词一致的检索词,并根据该检索词将所有包含它的专利信息由数据库中调取出来。这些工作是通过计算机检索机读专利信息目录实现的。 2.优点 由于计算机的发展和普及,传统的专利信息手工检索正在向新的计算机信息检索过渡。与手工检索相比,专利信息的计算机检索具有以下优点。 (1)查找迅速、反馈及时,以及资源共享。由于专利联机检索系统中的中央主机采用分时技术,系统对用户指令的响应通常只需几秒钟,检索反馈极快,可根据系统的反馈,随时调整检索策略;而网络检索真正做到了世界信息资源共享,用户可在办公室或家里通过互联

网到各种专利数据库中进行检索,获得所需要的专利信息。 (2)检索全面、实时性强。联机专利检索系统通常能提供数十个专利数据库的检索,功能齐全,对检索的全面性和准确性提供了一定的保证:互联网上的专利信息更新也很及时,可随时查找和获得最新信息。 (3)使用方便、功能完善,以及组配灵活。计算机信息检索采用布尔( Boolean)逻辑运算,各类专利检索数据之间可以灵活组配。还可对检索词之间的位置关系和短语进行全文查找。满足多途径的检索要求。使用网络Web 浏览器,可快速查找互联网上的各种专利信息,使用极为方便。 3.缺点 当然,专利的计算机信息检索也有一些不足,主要表现如下。 (1)专利数据库追溯检索时间短,一般只提供1970 年以后的专利信息。 (2)系统的可靠性尚未能持续保持在高水平的状态,各种设备如出现故障将造成检索失败,带来时间和经济上的损失。 (3)要求检索人员有较宽的知识面、较高的外语水平及对不同数据库的了解。 (4)检索的适应性有时较差,当用户有一个明确的信息需求时,利用计算机检索能获得较高的检索质量和效果,但在需求不明朗或含糊不清时,检索效果常常不理想,尤其在互联网上检索时,有时会受网络速度和其他原因的影响。 检索的基本字段 专利信息是标准化的信息,在专利检索数据库中,一件专利为一个记录,每一个记录都

三维地矿模型可视化控件研究

收稿日期:2011-10-25;修回日期:2012-01-29基金项目:国家自然科学基金项目(70971059) 作者简介:王彦彬(1977-),男,河北保定人,博士研究生,研究方向为网络数字矿山系统。 三维地矿模型可视化控件研究 王彦彬,车德福,郭甲腾,张维国 (东北大学资源与土木工程学院,辽宁沈阳110004) 摘 要:三维建模与可视化是网络数字矿山系统的一个重要组成部分,在网络环境下实现地矿模型的三维可视化,需要在 客户端对原始数据或者模型数据进行三维再现。为了便于与前期工作相结合,同时为了提高系统的运行效率,文中在分析ActiveX 控件的基础上,采用ActiveX 控件结合OpenGL 图形库的方法实现地矿模型在网络环境下的显示与交互。结果表明,使用控件将业务逻辑进行封装实现三维地矿模型可视化,有利于软件复用,提高软件开发效率,并能有效解决客户端与服务端负载平衡问题。 关键词:数字矿山;控件;ActiveX ;OpenGL ;地矿模型中图分类号:TP31 文献标识码:A 文章编号:1673-629X (2012)06-0061-03 Research on Visual Control of 3D Geological Model WANG Yan -bin ,CHE De -fu ,GUO Jia -teng ,ZHANG Wei -guo (School of Resources &Civil Engineering ,Northeastern University ,Shenyang 110004,China ) Abstract :3D modeling and visualization is important parts of web digital mine system.It needs to reconstruct the raw or model data to re-alize 3D visualization of geological model.In order to combine with the early works and to improve the working efficiency ,analyzed the realization of ActiveX controls ,realized the visualization and interaction under the internet environment by ActiveX and Open GL.The re-sults showed that using controls could benefit to software reusing ,help to improve programming efficiency and could efficiently solve the load balance between client and server. Key words :data mine ;controls ;ActiveX ;OpenGL ;geological model 0引 言 随着计算模式和网络的发展,B /S 模式得到广泛应用 [1] ,数字矿山系统的建设也逐渐与网络结合。数 字矿山系统建设中,三维地矿模型的建模与可视化是一个重要的组成部分,通过三维地矿模型工作人员可以直观地观察地质体内部结构和特征,同时也利于对模型进行空间分析,帮助地学工作者在动态场景中分析、推理,深入了解相关的变化特征以及规律。 网络数字矿山系统建设的重点之一就是在网络环境下再现三维地矿模型,当前网络三维可视化技术主要有VRML (X3D )、 Java3D (JOGL )以及采用控件结合DirectX3D 或者OpenGL 的方法进行实现 [2] 。其中 VRML (X3D )的运行需要相关插件的支持,虽然开发过程比较容易,比如现在的3D MAX 等建模软件均提供了对它的支持,可以直接将建模结果输出为VRML (X3D )文件,但是它很难与数据库结合,同时它的运 行效率也待进一步提高;Java3D (JOGL )是在Java 环境下进行三维模型开发的主要技术手段, 本身具有很多的优点,比如便于和数据库连接,具有跨平台性等,但是它也有一些缺点,如执行速度的问题、显示效果的问题等;采用控件结合DirectX3D 或者OpenGL 的方法可以提高渲染速度,并且可以方便地与前期开发的C ++成果进行结合,目前也有很多的软件和相关工作采用控件的方法进行实现,因此在网络数字矿山系统建设中可以采用控件结合OpenGL 的方式实现客户端模型的可视化。 1 ActiveX 控件 ActiveX 技术是微软公司提供的一种基于COM 的 综合技术,它与Windows 系列操作系统紧密结合,在很多领域得到广泛应用 [3 6] 。ActiveX 控件是ActiveX 技 术的重要组成部分,一个ActiveX 控件基本上是一个 支持IUnknown 接口的OLE Object [7] ,需要在ActiveX 容器中才能运行,容器通过控件中定义的方法、属性、事件等与控件进行通信。 ActiveX 控件具有如下的优点:容量小能通过IE 第22卷第6期2012年6月 计算机技术与发展 COMPUTER TECHNOLOGY AND DEVELOPMENT Vol.22No.6June 2012

三维数字化制造

三维数字化制造 为实现贯穿于飞机全生命周期的三维数字化制造技术,以集成的三维数字化模型替代二维工程图纸成为唯一制造依据的本质,建立了三维数字化设计制造一体化集成应用体系,真正达到无图纸、无纸质工作指令的三维数字化集成制造。 当前,我国航空制造业的数字化技术发展迅猛,三维数字化设计技术和数字化样机技术得到了深入应用。同时,随着计算机和数控加工技术的发展,传统以模拟量传递的实物标工协调法被数字量传递为基础的数字化协调法代替,缩短了型号研制周期,提高了产品质量。但是,在当前我国的三维数字化模型并没有贯穿于整个飞机数字化制造过程中,二维数字化模型依然是飞机制造过程的主要依据。因此,在制造过程中需要把三维数字化模型转化为二维数字化模型,并把二维数字化模型输出形成纸质工程图纸作为指导生产的依据。 因此,本文借鉴波音公司使用MBD技术的成功经验,研究建立适合我国国情的飞机三维数字化设计制造一体化技术应用体系,以提升我国航空制造业的整体制造能力。 MBD的内涵 MBD(Model Based Definition),即基于模型的工程定义,是一个用集成的三维实体模型来完整表达产品定义信息的方法体,它详细规定了三维实体模型中产品尺寸、公差的标注规则和工艺信息的表达方法。MBD改变了传统由三维实体模型来描述几何形状信息,而用二维工程图纸来定义尺寸、公差和工艺信息的分步产品数字化定义方法。同时,MBD使三维实体模型作为生产制造过程中的唯一依据,改变了传统以工程图纸为主,而以三维实体模型为辅的制造方法。MBD在2003年被ASME批准为机械产品工程模型的定义标准,是以三维实体模型作为唯一制造依据的标准体。 MBD数据模型通过图形和文字表达的方式,直接地或通过引用间接地揭示了一个物料项的物理和功能需求。MBD模型分为装配与零件模型,其组织定义如图1所示。MBD零件模型由以简单几何元素构成的、用图形方式表达的设计模型和以文字表达的注释、属性数据组成。MBD装配模型则由一系列MBD零件模型组成的装配零件列表加上以文字表达的注释和属性数据组成。零件设计模型以三维方式描述了产品几何形状信息,属性数据表达了产品的原材料规范、分析数据、测试需求等产品内置信息;而注释数据包含了产品尺寸与公差范围、制造工艺和精度要求等生产必须的工艺约束信息。 基于MBD的三维数字化制造技术应用体系 MBD使用一个集成化的三维数字化实体模型表达了完整的产品定义信息,成为制造过程中的唯一依据。MBD三维数字化产品定义技术不仅使产品的设计方式发生了根本变化,不再需要生成和维护二维工程图纸,而且它对企业管理及设计下游的活动,包括工艺规划、车间生产等产生重大影响,引起了数字化制造技术的重大变革,真正开启了三维数字化制造时代。采用MBD技术,将彻底改变飞机产品数据定义、生成、授权与传递的制造模式,实现三维数字化产品定义、三维数字化工艺开发和三维数字化数据应用,形成一个完整的、基于MBD 的三维数字化制造技术应用体系,如图2所示。 在该应用体系中,通过建立基于MBD的数字化协调规范和数字化定义规范,采用三维建模系统进行数字化产品定义,建立起满足协调要求的飞机全机级三维数字样机和三维工装模型,进行三维数字化预装配。工艺人员在工艺设计规范的指导下,直接依据三维实体模型开

国家知识产权专利检索

竭诚为您提供优质文档/双击可除国家知识产权专利检索 篇一:专利检索 关于专利检索相关问题的研究 一、意义 二、检索方法 三、多重价值 四、世界专利 五、检索系统 六、快速检索 七、高级检索 八、号码检索 九、途径 概念 专利检索就是根据一项或数项特征,从大量的专利文献或专利数据库中挑选符合某一特定要求的文献或信息的过程。对于企业的成长,对于全球生产力的节省与提高,是有举足轻重的作用的。

一、意义使企业明晰世界专利的动态、避免重复开发与资金浪费,对企业而言功劳甚大。由于全世界专利众多,且具有优先权的特征,任何人都不能保证自己的想法是世界上独一无二的,你能想到的发明专利,别人很有可能也想到,所以任何个人和企业在申请专利前,都应认真检索——是否自己的想法已经被别人实现,是否专利已经出现在世界各大专利局的数据库中而不自知。 专利研究和申请切不能存有侥幸心理,据不完全统计,各国因未查阅专利文献、使研究课题失去价值,每年造成的损失数以十亿计,间接损失就更多了,我国在“七五”期间,大众企业的近万个课题,约有三分之二都是重复研究。 所以,专利检索[3]对于企业的成长,对于全球生产力的节省与提高,是有举足轻重的作用的。 专利检索成为专利人和企业之间的一座桥梁,为推动专利转化做出了不朽的贡献,专利人只需提供,专利名称;专利人姓名;专利号等其中任何一项,企业就可以通过专利检索来查询专利的真实性和法律状态。 专利申请所需费用的一半甚至更多,但由于其中的重要作用,这一步骤已成为专利申请的必要步骤之一。专利申请前专利检索的作用和重要意义可以归纳为以下几点: 一、可以评价专利申请获得授权的可能性。 据国外专利机构调查,有66%以上的发明专利最后不能

矿井三维模型可视化系统的设计与实现教学提纲

矿井三维模型可视化系统的设计与实现

矿井三维模型可视化系统的设计与实现 摘要:巷道包含了复杂的拓扑信息和空间信息,是矿井其他信息的空间载体,其建模尤为重要。本文针对矿井三维模型可视化的需要,设计并实现了一套基于Java语言的矿井三维可视化模型。系统主要包括不同断面巷道模型的分类和参数化构建、矿井液压支架模型的实现、巷道纹理材质库的选择、光照选择,巷道漫游等。 关键词:矿井三维可视化,JOGL,Java,巷道 1引言 数字矿山作为一种复杂的三维空间信息系统,不仅能够存储、分析和表达真实矿山中各种空间实体对象的属性信息,而且涉及大量复杂的空间定位特征及可能拓扑关系的组织和管理。因而,数字矿山的三维空间数据模型是联结真实矿山世界和计算机中抽象的矿山世界的桥梁[1]。 本研究就是对矿井三维模型可视化系统进行设计与实现。 通过数字矿山建设至少可以在以下几个方面给矿山企业带来好处: 1、提高矿山企业的生产效率和资源优化; _________________________________________________ _

2、加强矿山的安全管理,积极的预防矿难事故; 3、降低决策的风险性,提高企业快速反应能力。 本文针对煤矿井下环境抽象出各类图元,在空间上模拟真实井下系统,实现了矿井三维模型可视化系统[2-3]。 2 JOGL图形库 JOGL是Java对OpenGL API绑定的开源项目并设计为采用Java开发的应用程序提供2D/3D图形硬件支持。JOGL 对OpenGL 2.0[4-5]规范中的API和几乎所有第三方开发商的扩展提供完整访问,而且集成了AWT和Swing界面组件。JOGL函数库的简单抽象要比高度抽象如Java 3D函数库执行起来高效的多,因为其大部分代码是自动生成的,所以JOGL的升级可以迅速的与OpenGL升级相统一[6-8]。 3矿井三维模型可视化的设计 3.1巷道图元三维模型分析 巷道由于存在于地下,其数据提取不像地表实体一样简单。巷道图元与巷道图元间采用非直线形式,以实际角度进行弧形连接。根据巷道的不同用途,其断面形状, _________________________________________________ _

数字化三维仿真模拟城市管理系统项目实施计划方案

数字化三维仿真模拟城市管理系统项目实施方案

版本控制 修改记录说明

1.概述 1.1.项目建设背景 “数字城市”是城市信息化发展的方向,是数字地球的一部分,三维地理信息是“数字城市”的重要基础空间信息。三维城市的建立能够全方位地、直观地给人们提供有关城市的各种具有真实感的场景信息,并可以以第一人称的身份进入城市,感受到与实地观察相似的体验感。 随着二十一世纪的互联网技术、计算机技术、3S(GIS/RS/GPS)技术、虚拟现实、航空与航天技术等的飞速发展,给地理信息技术手段带来前所未有的变革,利用高分辨率卫星影像以及航空像片,通过对影像的平面、高程、结构、色彩等的数字化处理,按照统一坐标无缝拼接而成可以迅速建立基于真实影象的“三维数字城市”,人们可以直观的从三维城市上判读处山川、河流、楼宇、道路。借助传统平面地图的概念,叠加空间矢量数据,地物兴趣点数据、以及三维模型数据形成可视化“三维数字”城市展示系统。 与传统二维地图相比,“三维数字城市”展示系统突破平面地图对空间描述二维化、三维空间尺度感差、没有要素结构与纹理信息等诸多限制,通过对真实地形、地物、建筑的数字化三维模拟和三维表达,提供给使用者一个与真实生活环境一样的三维城市环境。通过数字化三维仿真模拟城市的实现对城市的管理,把传统的限于二维的城市管理范围扩展到了三维甚至多维的管理范畴,为城市建设、政务管理、企业信息发布与公众查询提供多维的、可持续发展的信息化服务,将大大提高城市整体信息化管理和经营管理水平,并有利于提高公众参与城市管理的积极性和参与性。

1.2.项目建设目标 以先进的技术手段,在三维仿真模拟城市场景中实现朝阳辖区单位、人口、部件、事件、社区绿化等相关信息的管理,进一步提高**政府城市管理水平,提高居民参与城市管理的积极性。另一方面,能够很好的展现数字朝阳的建设成果。最终为建设和谐朝阳提供技术保障,为数字奥运做出贡献。 1.3.建设内容 1.3.1.数据库内容

地质体三维可视化表达的现状与趋势

地质体三维可视化表达的现状与趋势 地质体的三维建模与可视化融合基础的地理数据、钻孔数据、物探解译剖面数据,利用相关技术构建三维空间数据场,采用硬件技术实现立体化。它运用可视化技术揭示了地下世界,是地质学的前沿课题之一。以可视化技术为基础,地学问题为核心,通过地质专家的逻辑和形象思维,地质信息的三维动态的反馈来分析相关的地学问题。由于地质构造比较复杂,同时又缺乏时势性的实际问题,这也致使地质三维建模技术成为了国内外研究的热点。 1 地质体的三维可视化 1)可视化。可视化是一个心智处理过程,主要是促进对事物的观察力及建立概念等。 2)地质体三维可视化。是地学可视化的一个分支,它的主要内容是进行地下地质矿体的三维空间可视化实现。 3)地学可视化。地学可视化是关于地学数据的视觉表达与分析,是科学计算可视化与地球科学结合而形成的概念,是关于地学数据的视觉表达与分析。 2 现状

2.1 国内研究现状 随着数据可视化的发展,应用计算机技术,使得地质三维技术在国内取得了一定的研究成果。地质体的可视化在国内基本上都是以2D的形式出现的,很少有3D。目前,真正的地质体可视化还不很成熟。目前国内的三维地质系统有:地大的GeoView 以及东方泰坦有限公司的TitanT3m,南京大学与胜利油田合作研发的SLGRAPh以及中国油田大学的RDMS关于高校的发展有:成都理工大学黄润秋教授等人结合大型水利工程研制开发岩体结构三维建模,建立了一套岩体结构信息管理信息系统。还有曹代勇等人基于Ope nGL提出了相关方法并应用在了三维地质模型的可视化研究上。国内的地质三维可视化技术软件在功能的实现以及功能的完备性上差于国外的技术,比如空间分析和配色方案上仍然不能解决实际问题。 当前国内主要是对在三维可视化技术的实现过程上对一些具体的算法的研究。由于现在地质工作在不断的深化,实际中出现的问题越来越复杂化,国内研发地质信息系统已经无法满足目前的研究与需求,而国外三维建模的软件对我国地质研究的针对性不强,无法满足地质生产和研究。国内开发的软件在地质工程中的应用较少,对复杂的工程地质结构体的建模能力的缺失,具体算法的实现的缺乏,导致 在很多工作中无法解决复杂多变的实际问题 2.2 国外研究现状

论述可视化三维模型的建模实例

论述可视化三维模型的建模实例 1、技术路线 由于部队“直线加方块”的生活特殊性,部队营房建设相对居民生活小区来说,要规则很多。由于部队保密的规定,不能实地完成数据采集任务,住宿楼、办公楼、训练场地的基本数据以我校北区海军楼为主体。在纹理制作过程中,结合使用了photoshop8.0等相应软件。 2、建模过程 对于一个全新的模型数据库来说,用户需要确定一些关于数据库的基本参数来决定它的大小和范围。 (1)用File/New命令创建一个新的文档aaaa.flt; (2)将窗口边缘向上拉伸使视图分割为模型视图和层级视图; (3)打开Info/Preferences面板,点击Flight tab按钮。将默认的单位设置为“Meters”,点击“OK”按钮并关闭面板,所有单位都变为“米”; (4)打开View panel并为网格设置合适的参数。参数大小可根据需要自行调整; (5)在层级视图中,按下Alt键同时单击g2节点,将g2设置为父节点,选择g2,按Ctrl+J键将其改名为“aaaa”,则所有新建立的模型都将附属于这一父节点或它的子节点; (6)这时视图如下图所示。将view视图拖到一边以备用。 2.1 地形建模 由于受视角范围限制,场景的可视范围比较小,所以地面仿真对地形模型的精度要求就比较高,同时也需要更加精细、更加逼真的地物模型和特征模型。标准的数字地面高程模型DEM,或者其他类型的地形数据必须转换成DED格式才能被Creator读取,继而为创建地形模型数据库所使用。另外,Creator还提供了功能强大的DED数据文件生成器,以用于灵活创建数字高程数据。对于原始地形数据损坏导致DED无法获取的情况,还可以通过地形模型数据库生成相应的DED数据文件。 由于本论文所建造的可视化军营模型以生活区为主,考虑到生活区域地表起伏变化不大,故将地形设置为平面。

三维建模数字化设计与制造

附件4: 山西省第九届职业院校技能大赛(高职组) “三维建模数字化设计与制造”赛项规程 一、赛项名称 赛项名称:三维建模数字化设计与制造 赛项组别:高职组 赛项归属产业:加工制造类 二、竞赛目的 本项竞赛旨在考核机械制造、数控技术应用等机械类相关专业的学生,组队完成三维逆向扫描、逆向建模设计、机械创新设计、数控加工技术应用等方面的任务,展现参赛队选手先进技术与设备的应用水平和创新设计等方面的能力,以及跨专业团队协作、现场问题的分析与处理、安全及文明生产等方面的职业素养。引领全省职业院校机械制造类专业将新技术、新工艺、新方法应用于教学,加快校企合作与教学改革,提升人才培养适应我国制造业更新换代快速发展的需要。 三、竞赛内容与方式 (一)竞赛内容 竞赛内容将以任务书形式公布。 针对目前批量化生产的具有鲜明自由曲面的机电类产品(或零部件)进行反求、建模,并对产品(或产品局部)外形进行数控编程与加工,对无自由曲面的结构或零件根据机械制造类专业知识按要求进行

局部的创新(或改良)设计。 整个竞赛过程,分为第一阶段“数据采集与再设计”和第二阶段“数控编程与加工”这两个可以分离、前后又相互关联的部分,分别为60%和40%的权重。 1、第一阶段:数据采集与再设计 该阶段竞赛时间为3小时,竞赛队完成三项竞赛任务。 任务1:样品三维数据采集。利用给定三维扫描设备和相应辅助用品,对指定的外观较为复杂的样品进行三维数据采集。该模块主要考核选手利用三维扫描设备进行数据采集的能力; 任务2:三维建模。根据三维扫描所采集的数据,选择合适软件,对上述产品外观面进行三维数据建模。该模块主要考核选手的三维建模能力,特别是曲面建模能力; 任务3:产品创新设计。利用给定样品和已经完成的任务2内容,根据机械制造知识,按给定要求对样品中无自由曲面部分的结构或零件或附属物进行创新设计。该模块主要考核选手应用机械综合知识进行机械创新设计的能力。 2、第二阶段:数控编程与加工 竞赛时间为3小时,竞赛队完成两项竞赛任务。 任务4:数控编程与加工。赛场提供第一阶段被测样品的标准三维数据模型,选手根据这组三维模型数据和赛场提供的机床、毛坯,选择合适软件对该产品进行数控编程和加工。主要考核选手选用刀具,以最佳路径和方法按时高质量完成指定数控加工任务。并考核选

【CN110287508A】一种多源三维城市模型的可视化融合系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910232941.0 (22)申请日 2019.03.26 (71)申请人 江苏海事职业技术学院 地址 211170 江苏省南京市江宁区格致路 309 申请人 江苏意渊工业大数据平台有限公司 (72)发明人 李冰蟾 毛波  (74)专利代理机构 南京源古知识产权代理事务 所(普通合伙) 32300 代理人 马晓辉 (51)Int.Cl. G06F 17/50(2006.01) (54)发明名称一种多源三维城市模型的可视化融合系统(57)摘要本发明公开了城市数字化系统技术领域的一种一种多源三维城市模型的可视化融合系统,包括HBase分布式数据库,处理单元,融合单元,检索/索引单元,Web浏览器和用户端,将标准化的CityGML三维城市模型,OSM数据以及Collada 三维建筑模型整合起来,用HBase分布式数据库对其进行存储和管理,并为其设计了全新的row key便于快速地检索和索引,同时利用MapReduce 并行计算框架和Hadoop平台实现了针对城市模型中建筑物的综合简化算法,最终将多源数据集成融合在浏览器中可视化,实验结果显示为HBase设计的row key在检索时较大的提升了检索效率,提出的综合简化算法也能有效降低三维城市模型的复杂度,同时不会过多的削弱其视觉效果,生成的简化模型可以用于用户端的可视化 应用。权利要求书1页 说明书7页 附图5页CN 110287508 A 2019.09.27 C N 110287508 A

权 利 要 求 书1/1页CN 110287508 A 1.一种多源三维城市模型的可视化融合系统,其特征在于:包括 HBase分布式数据库,用于存入准化的CityGML三维城市模型,OSM数据以及Collada三维建筑模型,将其进行整合、存储和管理; 处理单元,用于简化、过滤和提取三维建筑对象; 融合单元,用于将处理后的简化模型进行集成融合; 检索/索引单元,用于对空间位置矢量数据的检索和索引,并迅速定位需要返回的结果; Web浏览器,用于将融合后的三维模型进行可视化; 用户端,通过Web浏览器对可视化的三维模型进行浏览,并进行反馈。 2.根据权利要求1所述的一种多源三维城市模型的可视化融合系统,其特征在于:所述存入方式采用base64转码的方式。 3.根据权利要求1所述的一种多源三维城市模型的可视化融合系统,其特征在于:所述CityGML三维城市模型,基于XML格式的开源数据模型,包括用于描述单个城市种各种不同实体的cityObjectMember元素和包含各种不同实体外观信息的appearanceMember元素; 所述OSM数据,包括道路元素配合Bing地图服务形成的二维底图; 所述Collada三维建筑模型,用于模型交换,包括KML,用于可视化地理数据的文件格式。 4.根据权利要求1所述的一种多源三维城市模型的可视化融合系统,其特征在于:所述HBase分布式数据库还包括ZooKeeper和YARN,用于管理、调度集群各项资源与进程的互相协同工作,Ma pRed uce,并行计算框架用于保障大量数据的并发快速处理,Had oo p Streaming,指导顶层应用的运行。 5.根据权利要求1所述的一种多源三维城市模型的可视化融合系统,其特征在于:所述处理单元包括 简化模块,采用LoD3细节层次的三维建筑作为输入数据来简化模型; 过滤模块,用于过滤建筑物墙上的门或者窗户信息; 提取模块,用于提取建筑物的墙面和屋顶表面信息。 6.根据权利要求1所述的一种多源三维城市模型的可视化融合系统,其特征在于:所述处理单元还包括修补模块,用于修补门或者窗户产生的空洞。 7.根据权利要求1所述的一种多源三维城市模型的可视化融合系统,其特征在于:所述检索/索引单元采用Geohash算法,Geohash算法将经纬度转化成一维的字符串,将这一维的字符串作为HBase分布式数据库的row key索引。 8.根据权利要求1所述的一种多源三维城市模型的可视化融合系统,其特征在于:所述融合单元采用Cesium融合平台,包括3D Tiles,3D Tiles用于以数据流的形式展示三维内容,包括建筑物,树木,点云和矢量数据。 9.根据权利要求8所述的一种多源三维城市模型的可视化融合系统,其特征在于:所述Cesium融合平台与CityGML三维城市模型和Collada三维建筑模型数据只支持glTF格式,与OSM数据只支持Geojson格式。 2

三维可视化建模技术在地质勘查中的应用

三维可视化建模技术在地质勘查中的应用 摘要:根据地质勘查的数据特点,利用三维可视化建模技术。实现了以真三维模型来恢复地表以下地质体的结构、形态特征以及空间展布,能对其进行旋转、漫游、切片分析、虚拟钻探等操作,动态地研究其内部细节,了解目标对象与周围地质环境之间的关系,为地质信息的进一步定量分析、探索与利用提供了强有力的支持。 关键字:地质勘查三维可视化建模技术虚拟钻探 引言 在地质勘查工作中,地质工作者越来越迫切地希望建立一套完善的地质体三维可视化与分析系统,实现对地质体信息的三维可视化仿真,丰富地质勘查成果的表现形式,为地质信息的进一步定量分析、探索与利用提供强有力的支持。随着计算机软件和硬件的飞速发展,针对地质体的三维建模与可视化,综合运用三维仿真、数学地质、计算机图形学、虚拟现实、科学计算可视化、计算机软件开发等成熟的理论方法与技术,实现复杂地质条件下的三维地质建模。 二.三维地质建模数据来源与特点分析 在三维地质建模中,用来反映地质体特征的数据来源多种多样,包括地质勘探数据、地球物理勘探数据、地球化学勘探数据、工程地质数据等等。 由于地质原始数据的多源性、离散性和定性特征在很大程度上阻碍了三维地质建模研究的发展。因此,在三维地质建模工作中需要耦合多源信息,对场区地质构造进行分析、解译,将定性描述的数据定量化,尽量以数值型数据和图形数据来进行表达,将离散不确定的数据通过各种插值拟合的手段转化为连续确定的数据,为三维地质建模提供合适的数据源。 三.三维地质建模的难点与关键技术问题分析 通过对三维地质建模数据来源与特点的分析可知,建立一个客观准确的三维地质模型必须满足三个条件:足够多的原始地质采样数据、能够真实反映复杂地下空间关系的地质解译分析、合适的数据结构。就目前复杂地质体的三维建模主要面临的困难可归纳为以下3点: (1)原始地质数据获取艰难。地质体通常位于地表以下,人们无法直接全面地观察到地质体的各种特征,往往只能通过物探、化探等手段获得地质体的部分特征信息,并通过对这些信息的分析、解释、推断来获得地质体的基本信息。 (2)地下地质体及其空间关系极其复杂。地质条件和地质作用复杂多变,在其影响下,地层被切割成不连续的空间分布,岩体内复杂的岩性变化,以及地

GOCAD 软件三维地质建模方法

GOCAD 软件三维地质建模方法 1建模方法 GOCAD 三维地质建模主要包括两类:一类是构造模型(structural modeling)建模,一类是三维储层栅格结构(3D Reservoir Grid Construction)建模。 (1)构造模型(structural modeling)建模建立地质体构造模型具有非常重要的意义。通过建立构造模型能够模拟地层面、断层面的形态、位置和相互关系;结合反映地质体的各种属性模型的可视化图形,还能够用于辅助设计钻井轨迹。此外,构造模型还是地震勘探过程中地震反演的重要手段。 (2)三维储层栅格结构(3D Reservoir Grid Construction)建模根据建立的构造模型,在3D Reservoir Grid Construction 中可以建立其体模型;同时地质体含有多种反映岩层岩性、资源分布等特性的参数,如岩层的孔隙度、渗透率等,可对这些物性参数进行计算和综合分析,得到地质体的物性参数模型。 当采样值在地质体内密集、规则分布时,可以直接建立采样值到应用模型的映射关系,把对采样值的处理转化为对物性参数的处理,这样可以充分利用计算机的存储量大、计算速度快的特点。 当采样值呈散乱分布,并且数据量有限时,需要采用数学插值方法,拟合出连续的数据分布,充分利用由采样值所隐含的数据场的内部联系,精确的模拟模型中属性场的分布。 图1-1孔隙度参数模型分布图 2 建模流程 2.1数据分析 (1)钻孔、测井分布及数据分析 支持三维建模的数据主要为钻孔和测井。由于对区域范围和建立三维地质建模的精度要求不同,得对所得到的钻孔、测井的分布和根据其取得的数据进行分析和处理是的必要。根据钻孔、测井的分布范围和稠密程度可以大致确定地层的分布界限,对钻孔较少区域采取补充钻探或者采用其它方法进行处理。 (2)地质剖面

三维地质自动建模与可视化

三维地质自动建模与可视化 北京国遥新天地信息技术有限公司遥感应用第一事业部柳蛟 (转载请注明出处和作者,侵权必究) 一、前言 1.1项目背景 数字城市建设方兴未艾。现在的数字城市建设正处于基础建设阶段,为完成该阶段的任务,必须采集包括地上、地表和地下等部分的三维数据,并实现其可视化。同时,各城市因其所处地质带的不同而不同程度地受到地震、地面沉降、滑坡、岩溶塌陷等地质灾害的影响。为此,一些城市正在进行有关地质灾害的预警和防治工作。其他很多领域,如城建工程、地下工程、水电工程、交通工程、环境工程、资源开发等都贯穿有地质问题。上述工作的开展和问题的解决迫切需要借助三维可视化技术对地质数据进行可视化,从而为相关工作提供帮助。因而,三维城市地质信息可视化受到很多学者和相关工作者的重视。 基于目前地下管网和地下建构筑物信息的基础,增加地质数据的收集整理,并进行直观的可视化三维建模分析,可更好的为地下工程建设,城市规划等问题提供决策信息支持,使地下空间信息管理单位对相关数据进行有效的管理。 基于现有地质数据采集、处理的成果,结合EV-Globe大型三维地理信息平台,从三维地质数据结构、三维地质钻孔数据展示、三维地质自动建模、三维城市地质信息可视化系统的功能设计等方面对三维城市地质信息可视化进行研究和应用。 1.2历史回顾 2002年开始,当时在海外工作的朱焕春博士和李浩博士试图将他们所应用的一些地质体三维可视化技术推广到国内,即便是在发达国家,当时这项技术也才刚刚开始应用。但是,因为这些国家已经具备了调研和开发过程的积累,以及技术市场商业化体制的优势,推广过程相对很快,到2005年,大部分已经全部采用三维可视化资料,包括地质体几何形态、测试资料、监测数据等全部打包在一个三维计算机图形和信息系统中,电子化和图形化为专业

三维可视化服务平台的管理模型研究

三维可视化服务平台的管理模型研究 发表时间:2019-09-19T10:12:57.113Z 来源:《电力设备》2019年第8期作者:杜军伟杜兰洲 [导读] 摘要:针对目前使用激光盘进行煤场库存盘点得到的三维数据点集散乱问题,提出了一种结合三维点云数据插值和计算机视觉修正方法的设计方案。 (山东电力工程咨询院有限公司山东济南 250013) 摘要:针对目前使用激光盘进行煤场库存盘点得到的三维数据点集散乱问题,提出了一种结合三维点云数据插值和计算机视觉修正方法的设计方案。通过对三维点云数据进行插值,根据插值结果进行三维网格点绘图,再根据电厂每日煤量进、耗、存实时基础数据进行修正,可以提高所绘的网格图与实际形状的拟合精度,利用Web、Unity3D与数据库进行数据交互,实现三维可视化展示,可实时提供煤场存煤量信息,动态修改网格图形状,为燃煤发电煤场煤场科学增效管理提供决策支撑。 关键词:数据插值; Unity3D;三维可视化 三维可视化建模在20世纪90年代初期开始为人类所重视,并逐渐成为数学地质、石油勘探、岩土工程、GIS和科学计算可视化领域的研究与应用热点。所谓三维可视化地质建模,按照Simon W Houlding的观点是指运用计算机技术,在三维环境下将空间信息管理、地质解译、空间分析、地学统计与预测、实体内容分析以及三维图形可视化等技术工具结合起来,实现地质模型的三维显示,并用于地质分析的技术。 1、三维可视化模型的建立 1.1资料收集 工作所收集的资料主要包括区域及各流域水文地质报告、构造分布图、水文地质图、地貌图、水文地质剖面图、第四系埋深图、潜水埋深图、电子地理底图、地表高程等值线图、各含水层顶底板高程等值线图、二维剖面图以及最重要的钻孔数据资料等,为模型建立做准备。由于峰峰煤矿曾进行过不同目的、不同精度的地质调查与评价工作,积累了大量的资料。 1.2资料分析 (1)在原有钻孔资料的基础上,加入从电子底图上提取的地面高程点数据,显示地表面的起伏状态;(2)当已有钻孔资料不足时,应在已有钻孔资料的基础上,依据剖面图、地质图和地质报告中的相关内容,虚拟一些钻孔;(3)结合工作区和现有资料,对钻孔数据进行修正和补充;(4)整理资料,录入GMS中。 1.3三维可视化模型构建 利用GMS软件建模时,应先建立坐标系,即将地理底图导入到GMS中定位。然后,利用GIS模块将*.shp文件转化到MAP模块中,根据定位好的地理底图,绘制确定计算区域边界,再由这些边界生成TINs。将整理好的钻孔资料导入到GMS中的Borehole模块中形成钻孔数据,以便对钻孔资料进行管理。通过编辑钻孔岩性及对每个钻孔进行编号,将每个钻孔上不同岩性的连接处设置水平地质,创建钻孔剖面,进而显示地层;在Borehole模块中选择Horizons->Solid命令,采用相应的插值方法,从而生成地质结构体,建立地质结构模型。Solid 则是水文地质结构模块。我们可以利用该模块来根据需要分解和组合不同的层,在任意层位、任意位置切剖面,查看剖面上地层的展布情况,并可对模型进行空间上的旋转,从不同角度观察模型结构。 2、曲面拟合 2.1 原始数据预处理 目前盘煤仪的数据较为精确,但是由于盘煤仪每次盘点耗时较长,不宜频繁使用;日存取煤总量则是与生产量直接对应,精度较高,但是由于缺乏煤场取煤位置信息,难以直接生成煤场立体图;皮带秤的数据则由于测量误差较大,仅作为参考与辅助;视频数据则是,煤场进行直接取样,需要复杂建模,方可提取有用数据;人工丈量是当前常用的方法,但是由于人为因素,丈量误差较大,可作为辅助数据。 激光扫描仪为三维煤场动态测控系统的主要传感器,按照一定频率发射激光线获取煤堆表面二维数据,并结合扫描仪激光器云台辅助旋转实现一定范围的三维数据快速采集。 煤场激光盘煤仪主要是利用二维高频率激光扫描仪对料场的表面进行高频率断面扫描获得高密度的断面数据,结合行程测量器获得的料场长度和回程测量器获得的扫描仪偏转角度数据,实现料场体积的计算、料场三维模型的显示。由于煤场表面非规则,即使扫描步距一定,最后得到的仍是三维散乱数据点集。因此图形显示及体积计算的关键在于曲面拟合,而曲线拟合的基础是准确的数据插值。 2.2 数据插值计算 由激光盘煤仪获得的三维散乱点云数据不能直接用于图像复现和图形拟合,所以要进行插值运算。近30年来,有很多的算法被提出来,大多数适用于中小规模的点云数据,主要的算法有:与距离成反比的加权算法、径向基函数插值法、有限元法等。点云数据的差值问题描述如下:设在二维平面上有n个点(xi , yi)(i=1,2,…,n)并有Zi=f (xi, yi)。插值计算的主要目的是要构造一个具有C1连续的函数F(x,y)。 (1)与距离成反比的加权法。 (3)有限元方法。 该方法主要是基于求解偏微分方程,在给出具有双自变量的点云数据点vi(xi , yi)及其函数zi=f(xi , yi)(i=1,2,…,n)以后,首先求出二维平面上点云点vi的凸包,并对其进行三角剖分,形成一系列的三角形Tj,k,l。然后,构造一系列的面片,使其插值于所有pi点的函数值zi。有限元方法需要对二维点集进行三角剖分,构造出插值于各点函数值的平面三角面片,要求各面片间具有C1连续的插值方法。 通过对比上述3种算法可知,与距离成反比的加权算法是最容易实现,而且算法复杂度最小;径向基函数法相对较难实现,复杂度居中;有限元方法中的积分微分运算量最大,算法较为复杂。因此对点云数据的插值来说,径向基函数法的插值效果最为合适。图1为由盘煤仪获得的点云数据经过径向基函数插值后得到的立体图。 2.3 三维渲染 三维数据场显示技术主要包括基于等值面重建的面绘制技术和采用体模型的直接体绘制方法[5],其中体绘制方法不依赖于视点,对场

数字化重建三维模型技术规范-

工厂数字化重建三维模型技术规范 南京恩吉尔工程发展研究中心 2014

目录 1 目标 (3) 2 范围 (3) 3 规范性引用文件 (3) 4 定义 (3) 4.1 建模对象 (3) 4.2 建模分类 (3) 4.3 建模区域 (3) 4.4 建模精度 (3) 5 建模范围 (4) 5.1 三维模型的建模范围 (4) 5.2 建模的功能分类与应用 (5) 6 建模精度要求 (6) 6.1 精度等级 (6) 6.2 专业建模描述 (7) 6.3 功能性建模 (8) 7 建模对象属性要求 (9) 7.1 一般对象属性 (9) 7.2 功能与属性的对照 (11) 8 装备拆解建模与建筑建模 (11) 8.1 装备建模 (11) 8.2 建筑建模 (12) 9 工厂信息采集及文档 (12) 9.1 建模文档及信息收集 (12) 9.2 三维扫描及场景照片 (13) 9.3 现场测绘及草图 (13) 9.4 工程变更信息收集 (13) 10 建模审查与交付 (14) 10.1 建模的中间审查 (14) 10.2 建模的终审与数字化交付 (14) 11 附件:资料收集一览表 (14)

1目标 工厂数模重建主要面向工厂的实际运营和维护需求的数字化,不同于三维工厂设计及建造建模,主要面向工厂建设和制造。而现代的数字化设计建造产生的数字化交付成果,可以通过迁移转换重用,还需要通过数字化的重建,补充大量的后续工厂数模信息,满足工程运维的数字化需求和大工厂物联网的大数据建设需求。 本规范适用于企业已建工厂的数字化重建工作。定义数字化三维模型重建工作中的建模类型、范围、编码规则、建模精度及模型属性等方面的要求和规则。 2范围 三维的数字化建模主要包括工厂的主装置区、辅助装置区、公用工程区、厂前区;以工厂的专属的站场、码头、管网、办公楼及辅助设施等。 3规范性引用文件 下列文件对于建模及信息收集应用是必不可少的。 ISO 15926(GB/T 18975)《工业自动化系统与集成及流程工厂(包括石油和天然气生产设施)生命周期数据集成》 GB/T 28170《计算机图形和图像处理可扩展三维组件》 HG/T 20519-2009《化工工艺施工图内容和深度统一规定》 4定义 4.1建模对象 指流程工厂模型的基本单元,如设备、管子、管件、结构、建筑、门、窗等。一个模型对象具有四类关键信息:唯一标识、几何属性、工程属性、拓扑关系(与其他模型对象间)。 4.2建模分类 三维工厂重建分为功能性建模和一般建模。 功能性建模:配合运维的管理功能要求,建立的符合一定功能需求的全息数模; 一般性建模:主要用于辅助管理功能要求的虚拟环境(如模型参考、信息索引、标识)的数模建模。 4.3建模区域 指按一定标准将工厂进行划分所得的空间分区(如装置区、功能区),区域间不可重叠。一般将以工程初始设计中的区域定义为准则。 4.4建模精度 建模精度按照一定的功能性需求分为:粗模、精模、全息模。分别在模型的尺寸及

相关主题
文本预览
相关文档 最新文档