当前位置:文档之家› 2018届高三高考数学中求轨迹方程的常见方法

2018届高三高考数学中求轨迹方程的常见方法

2018届高三高考数学中求轨迹方程的常见方法
2018届高三高考数学中求轨迹方程的常见方法

高考数学中求轨迹方程的常见方法

一、直接法当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.

例1 已知点)0,2(-A 、).0,3(B 动点),(y x P 满足2

x =?,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线

解:),3(),,2(y x y x --=---= ,2)3)(2(y x x +---=?∴

226y x x +--=. 由条件,2226x y x x =+--,整理得62+=x y ,此即点P 的轨迹方程,所以P 的

轨迹为抛物线,选D.

二、定义法

定义法是指先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程.

例 2 已知ABC ?中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且

b c a >>,2=AB ,求顶点C 的轨迹方程.

解:如右图,以直线AB 为x 轴,线段AB 的中点为原

点建立直角坐标系. 由题意,b c a ,,构成等差数列,∴b a c +=2, 即4||2||||==+AB CB CA ,又CA CB >,∴C 的轨迹为椭圆的左半部分.在此椭圆中,1,2='='c a ,

3='b ,故C 的轨迹方程为)2,0(13

42

2-≠<=+x x y x .

三、代入法

当题目中有多个动点时,将其他动点的坐标用所求动点P 的坐标y x ,来表示,再代入到其他动点要满足的条件或轨迹方程中,整理即得到动点P 的轨迹方程,称之代入法,也称相关点法、转移法.

例3 如图,从双曲线1:2

2

=-y x C 上一点Q 引直线

2:=+y x l 的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.

解:设),(),(11y x ,Q y x P ,则)2,2(11y y x x N --.ΘN

.22211=-+-∴y y x x ① 又l PN ⊥得

,11

1

=--x x y y 即011=-+-x y y x .②

联解①②得???

????-+=-+=22

322311

x y y y x x .又点Q 在双曲线C 上,1)223()223(22=-+--+∴x y y x ,化简整理得:01222222=-+--y x y x ,此即动点P 的轨迹方程.

四、几何法

几何法是指利用平面几何或解析几何知识分析图形性质,发现动点的运动规律和要满足的条件,从而得到动点的轨迹方程.

例4 已知点)2,3(-A 、)4,1(-B ,过A 、B 作两条互相垂直的直线1l 和2l ,求1l 和2l 的交点M 的轨迹方程.

解:由平面几何知识可知,当ABM ?为直角三角形时,点M 的轨迹是以AB 为直径的圆.此圆的圆心即为AB 的中点)1,1(--,半径为

2

5221=AB ,方程为13)1()1(2

2=+++y x . 故M 的轨迹方程为13)1()1(22=+++y x .

五、参数法

参数法是指先引入一个中间变量(参数),使所求动点的横、纵坐标y x ,间建立起联系,然后再从所求式子中消去参数,得到y x ,间的直接关系式,即得到所求轨迹方程.

例 5 过抛物线px y 22

=(0>p )的顶点O 作两条互相垂直的弦OA 、OB ,求弦AB 的中点M 的轨迹方程.

解:设),(y x M ,直线OA 的斜率为)0(≠k k ,则直线OB 的斜率为k

1

-

.直线OA 的方程为kx y =,由???==px y kx y 22解得??????

?=

=k

p

y k p

x 222,即)2,2(2k p k p A ,同理可得)2,2(2pk pk B -.

由中点坐标公式,得???

???

?-=+=pk k p y pk k p x 2

2

,消去k ,得)2(2p x p y -=,此即点M 的轨迹方程. 六、交轨法

求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程,称之交轨法.

例6 如右图,垂直于x 轴的直线交双曲线122

22=-b

y a x 于

M 、N 两点,21,A A 为双曲线的左、右顶点,求直线M A 1与

N A 2的交点P 的轨迹方程,并指出轨迹的形状

.

解:设),(y x P 及),(),,(1111y x N y x M -,又)0,(),0,(21a A a A -,可得 直线M A 1的方程为)(11a x a x y y ++=

①;直线N A 2的方程为)(11

a x a

x y y -+-=②. ①×②得)(2

22

21212

a x a

x y y ---=③. 又,1221221=-b y a x Θ)(2122221x a a b y -=-∴,代入③得)(2

2222

a x a

b y --=,化简得12222=+b

y a x ,此即点P 的轨迹方程. 当b a =时,点P 的轨迹是以原点为

圆心、a 为半径的圆;当b a ≠时,点P 的轨迹是椭圆.

高考动点轨迹问题专题讲解

(一)选择、填空题

1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段

2.( )设(0,5)M ,(0,5)N -,MNP ?的周长为36,则MNP ?的顶点P 的轨迹方程是

(A )

22125169x y +=(0x ≠) (B )22

1144169x y +=(0x ≠) (C )

22116925x y +=(0y ≠) (D )22

1169144

x y +=(0y ≠) 3.与圆2

2

40x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;

4.P 在以1F 、2F 为焦点的双曲线

22

1169

x y -=上运动,则12F F P ?的重心G 的轨迹方程是 ;

5.已知圆C

:22

(16x y +=

内一点)A ,圆C 上一动点Q , AQ 的垂直平

分线交CQ 于P 点,则P 点的轨迹方程为 .2

214

x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶

点C 的轨迹方程是 ;

22

1916

x y -=(3x >)

变式:若点P 为双曲线

22

1916

x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;

推广:若点P 为椭圆

22

1259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;

7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .2

12y x =

8.抛物线2

2y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .

4

k

x =(28k y >) 9.过抛物线2

4y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,

设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,

2

(1),4y k x y x

=-??=? 消去y 得 2222

(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有

21222,22(1).x x k x k y k x k ?++==???

?=-=??

消k 得22(1)y x =-. 当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足

所求方程.

故所求轨迹方程为2

2(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,

由2112224,4.

y x y x ?=??=?? 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,

当12x x ≠时,有121224y y y x x -?=-,又1

PQ MF y

k k x ==-,

所以,21

y

y x ?

=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为2

2(1)y x =-.

10.过定点(1, 4)P 作直线交抛物线:C 2

2y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-

(二)解答题

1.一动圆过点(0, 3)P ,且与圆2

2

(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)

2.过椭圆

22

1369

x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.

3.已知1A 、2A 是椭圆22

221x y a b +=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和

2QA 的交点M 的轨迹.(交轨法)

4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足

||||MA MC =u u u r u u u u r , GM AB R λλ=(∈)u u u u r u u u r

(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =u u u r u u u r

试求k 的取值范围.

解:(1)设(,)C x y ,则由重心坐标公式可得(,)33

x y G .

∵ GM AB λ=u u u u r u u u r ,点M 在x 轴上,∴ (,0)3x

M .

∵ ||||MA MC =u u u r u u u u r

,(0,1)A -,∴

=,即 2213

x y +=. 故点C 的轨迹方程为2

213

x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22

,

3 3.

y kx b x y =+??

+=?消y ,得222

(13)63(1)0k x kbx b +++-=.

∴ 22

2

2

3612(13)(1)0k b k b ?=-+->,即22

130k b +->. ①

又122

613kb

x x k

+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 22

3(,)1313kb b

N k k -

++.

∵ ||||AP AQ =u u u r u u u r

,∴ AN PQ ⊥,∴ 1AN

k k =-,即 22

1113313b

k kb k k ++=--

+, ∴ 2132k b +=,又由①式可得 2

20b b ->,∴ 02b <<且1b ≠.

∴ 20134k <+<且2

132k +≠,解得11k -<<

且k ≠. 故k 的取值范围是11k -<<

且k ≠. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ?=?u u u r u u u u r u u u r u u u u r

(Ⅰ)求动点P 的轨迹C 的方程;(直接法)

(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=u u u r u u u r

.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ?u u u r u u u r

为定值.

解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+u u u r ,(0,4)MN =u u u u r ,(,2)PN x y =--u u u r

,

48MP MN y ?=+u u u r u u u u r

PN MN ?=u u u r u u u u r

……………………………………………3分

∵MP MN PN MN ?=?u u u r u u u u r u u u r u u u u r ,∴48y +=整理,得 2

8x y =.

即动点P 的轨迹C 为抛物线,其方程为2

8x y =.

6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =u u u r u u u r

(1m >),0MN AF =?u u u u r u u u r ,1()2ON OA OF =+u u u r u u u r u u u r

,//AM ME u u u u r u u u r .求点M 的轨迹W 的方程.

解:∵0MN AF ?=u u u u r u u u r ,1()2

ON OA OF =+u u u r u u u r u u u r

∴ MN 垂直平分AF .

又//AM ME u u u u r u u u r

,∴ 点M 在AE 上,

∴ ||||||||2AM ME AE m EF m +===u u u u r u u u r u u u r u u u r ,

||||MA MF =u u u r u u u r , ∴ ||||2||ME MF m EF +=>u u u r u u u r u u u r ,

∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 2

2

2

2

1b a c m =-=-.

∴ 点M 的轨迹W 的方程为22

22

11

x y m m +=-(1m >). 7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++r

(2)b xi y j =+-r , 且||||8a b +=r r

(1)求点(,)M x y 的轨迹C 的方程;(定义法)

(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+u u u r u u u r u u u r

,是否存在这样的直线l ,使得四边

形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.

解:(1)

22

11216

x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.

Q 0OP OA OB =+=u u u r u u u r u u u r

,所以P 与O 重合,与四边形OAPB 是矩形矛盾.

故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .

由223,1,1216y kx x y =+???+

=?? 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ?=-+->0恒成立,

且1221843k x x k +=-

+,12

2

21

43x x k =-+, Q OP OA OB =+u u u r u u u r u u u r

,所以四边形OAPB 是平行四边形.

若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ?=u u u r u u u r

1122(,),(,)OA x y OB x y ==u u u r u u u r

Q , ∴ 12120OA OB x x y y ?=+=u u u r u u u r

即2

1212(1)3()90k x x k x x ++++=.

222

2118(1)()3()4343k k k k k +?-

+?-++ 90+=.2

516

k =,得54k =±. 故存在直线l :5

34

y x =±

+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF uuu r

=2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =u u u u r u u u u r ,点P 满足://PQ EF u u u r u u u r ,0PM FQ ?=u u u u r u u u r

(I )建立适当的直角坐标系,求动点P 的轨迹方程;

(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=, 当

3

4

πθπ≤<时,求直线1l 的斜率k 的取值范围. 解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y , 则(0, 1)F ,(0, 3)E ,:1l y =-.

∵ FM MQ =u u u u r u u u u r ,//PQ EF u u u r u u u r ,∴(,1)Q x -,(, 0)2

x

M .

∵0PM FQ ?=u u u u r u u u r ,∴ ()()(2)02

x

x y -?+-?-=,

即所求点P 的轨迹方程为2

4x y =.

(2)设点))(,(),,(212211x x y x B y x A ≠

设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y

由???=+=y

x kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x k

x x …………7分 9)4

(442212

22121==?=

∴x x x x y y 646)(22121+=++=+k x x k y y …………8分

)1)(1()1,(),1,,(21212211--+=?∴-=-=y y x x y x y x Θ

8

41

649121)(22212121--=+--+-=++-+=k k y y y y x x

)1)(1(||||21++=?y y Θ又16416491)(2

22121+=+++=+++=k k y y y y

4216484|

|||cos 2

222++-=+--=?=∴k k k k FB FA θ…………10分

由于

πθπ

<≤43 224

2122cos 122-≤++-<--≤<-∴k k 即θ…………11分 22224

2222≥∴≥

++∴k k k

解得4488-≤≥k k 或…………13分

∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或

9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,

且0PM PF ?=u u u u r u u u r ,||||PM PN =u u u u r u u u r

(1)求动点N 的轨迹方程;

(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ?=-u u u r u u u r

,且||AB ≤≤l 的斜率

k 的取值范围.

解:(1)设(,)N x y ,由||||PM PN =u u u u r u u u r

得(,0)M x -,

(0, )2y P ,(,)2y PM x =--u u u u r ,(1,)2

y

PF =-u u u r ,

又0PM PF ?=u u u u r u u u r ,∴2

04

y x -+=,即动点N 的轨迹方程为24y x =. 10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ?=u

,0MN MP +=r

(1)求P 点轨迹E 的方程;

(2)将(1)中轨迹E 按向量(0, 1)a =r

平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22

(1)1

x y ++=

的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.

解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-u u u u r 、(, 1)MF a =-u u u r

(, )MP x a y =-u u u r

由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -?-=??-+-=? ∴ 20,

, ,

2

a b x

a b y ?+=?

?==-?? ∴ 214y x =,

故动点P 的轨迹方程为2

14

y x =

. 11

.如图()A m 和(,)B n 两点分别在射线OS 、OT 上移动,且1

2

OA OB ?=-u u u r u u u r ,

O 为坐标原点,动点P 满足OP OA OB =+u u u r u u u r u u u r

(1)求m n ?的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?

(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =u

u u r u u u

r

,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ?=?=-=-u u u r u u u r , ∴ 1

4

mn =.

(2)设P 点坐标为(,)x y (0x >),由OP OA OB =+u u u r u u u r u u

u r

(,)(

)(,)x y m n =+(

))m n m n =+-,

∴,)

x m n y m n =+???=-?? 消去m ,n 可得2243y x mn -=,

又因14mn =,∴ P 点的轨迹方程为221(0)3

y x x -=>.

它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2

2

13

y x -=的右支.

(3)设直线l 的方程为2x ty =+,将其代入C 的方程得 2

2

3(2)3ty y +-= 即 2

2

(31)1290t y ty -++=

易知2

(31)0t -≠(否则,直线l 的斜率为

又2

2

2

14436(31)36(1)0t t t ?=--=+>,

设1122(,),(,)M x y N x y ,则1212

22129,31

31

t y y y y t t -+==--

∵ l 与C 的两个交点,M N 在y 轴的右侧

2

12121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131

t t t t t t t -+=?

+?+=->---, ∴ 2

310t -<,即2103t <<,又由120x x +>同理可得 2103

t <<,

由3ME EN =u u u r u u u r 得 1122(2,)3(2,)x y x y --=-, ∴ 1212

23(2)3x x y y -=-??-=?

由122222

123231t y y y y y t +=-+=-=--得22631

t y t =-,

由21222229(3)331y y y y y t =-=-=-得2

22331

y t =--,

消去2y 得

2222363(31)31

t t t =--- 解之得:2115t = ,满足2103t <<.

故所求直线l

0y --=

0y +-=.

12.设A ,B

分别是直线5y x =

和5

y x =-

上的两个动点,并且||AB =u u u r ,动点P 满足OP OA OB =+u u u r u u u r u u u r

.记动点P 的轨迹为C .

(I ) 求轨迹C 的方程;

(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=u u u u r u u u r

,求实数λ的取值范围.

解:(I )设(,)P x y ,因为A 、B

分别为直线y x =

和y x =上的点,故可设

11()A x x

,22(,)B x x . ∵OP OA OB =+u u u r u u u r u u u r ,

∴1212,)x x x y x x =+???=-??

∴1212,x x x x x y +=??

?-=??.

又AB =u u u r , ∴22

12124()()205

x x x x -++=.

∴22

542045

y x +=. 即曲线C 的方程为

2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.

∵ M 、N 在曲线C 上, ∴???????=+-+=+ 1.16)1616t (25

s 1,16

t 25s 2

222

2λλλ

消去s 得

116

)1616t (16)

t 16(2

22=+-+-λλλ.

由题意知0≠λ,且1≠λ,解得 1715

2t λλ

-=. 又 4t ≤, ∴

421517≤-λλ. 解得 3

5

53≤≤λ(1≠λ).

故实数λ的取值范围是3

5

53≤≤λ(1≠λ).

13.设双曲线22

213

y x a -

=的两个焦点分别为1F 、2F ,离心率为2. (1

)求此双曲线的渐近线1l 、2l 的方程;(y x =±

) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是

什么曲线.(

22

317525

x

y +=) 提示:||1010AB =

?

=,又11

y x =,22

y x =, 则1221)3y

y x x +=

-,2112)3

y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.

(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ?=u u u r u u u r

,若存在,求出直线l 的

方程;若不存在,说明理由.(不存在)

14.已知点(1, 0)F ,直线:2l x =

,设动点P 到直线l 的距离为d ,已知

||2PF d =,且23

32

d ≤≤. (1)求动点P 的轨迹方程;

15.如图,直线:1l y kx =+与椭圆22

:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点).

(1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)

(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(2

2

220x y y +-=(0y ≠))

16.双曲线C :22

221x y a

b

-=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且

2222

4||||||||3

OA OB OA OB +=?u u u r u u u r u u u r u u u r .(1)求双曲线C 的方程;

(2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围.

解:(I )依题意有:22

22222c 2,a 4a b a b ,3a b c .?=??

?+=??

?+=??

解得:.2,3,1===c b a

所求双曲线的方程为.13

2

2

=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分

当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1

y x b k

=-+.则M 、N 两点的坐标满足方程组

由221y x b,k

3x y 3.?=-+???-=?

消去y 得2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………9分 显然2

3k 10-≠,∴2222

(2kb)4(3k 1)(b 3)k 0???=---+>??.即2

2

2

k b 3k 10+->. ①

设线段MN 中点D (00x ,y )

则022

02kb x ,3k 13k b y .

3k 1-?=??-??=?-?

∵D (00x ,y )在直线l 上,∴22223k b k b 43k 13k 1-=+--.即22

k b=3k 1- ② 把②带入①中得 2

2

2

k b +bk 0>,解得b 0>或b 1<-.

∴223k 10k ->或22

3k 1<-1k

-.即k >或1

k 2

<,且k≠0.

∴k

的取值范围是11(,(,0)(0,)()3223

-∞--+∞U U U .…………………14分

17.已知向量OA u u u r

=(2,0),OC u u u r =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM u u u u r ·AM u u u u r =K(CM u u u u r ·BM u u u u r -d 2),其中O 为坐标原点,K 为参数.

(Ⅰ)求动点M 的轨迹方程,并判断曲线类型;

(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤2

2

,求实数K 的取值范围.

18.过抛物线2

4y x =的焦点作两条弦AB 、CD ,若0AB CD ?=u u u r u u u r ,1()2

OM OA OB =+u u u u r u u u r u u u r

1()2

ON OC OD =+u u u r u u u r u u u r .

(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角;

(3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.

19.(05年江西)如图,M 是抛物线上2

y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且

MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值;

(2)若M 为动点,且90EMF ∠=o

,求△EMF 的重心G 的轨迹.

思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).

解:(1)法一:设2

00(,)M y y ,直线ME 的斜率为k (0k >),

则直线MF 的斜率为k -,方程为2

00()y y k x y -=-.

∴由2

002()y y k x y y x

?-=-??=??,消x 得2

00(1)0ky y y ky -+-=,

解得0

1F ky y k

-=,∴ 202

(1)F ky x k -=, ∴00220000

222

11214(1)(1)2E F EF

E F ky ky y y k k k k ky ky ky x x y k k k -+-

--===

=---+--

(定值).所以直线EF 的斜率为定值. 法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,

由2

002

11

,y x y x ?=??=?? 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.

∵ MA MB =,∴ ME MF k k =-,即

0102

11

y y y y =-++,∴ 1202y y y +=-.

所以,121222

1212120

11

2EF y y y y k x x y y y y y --=

===---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可

得出一组平行弦.

(2)90,45,1,EMF MAB k ∠=∠==o o 当时所以直线ME 的方程为2

00()y y k x y -=-

由2

002y y x y y x ?-=-??=??得200((1),1)E y y --同理可得200((1),(1)).F y y +-+

设重心G (x , y ),则有2222

00000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ?+-+++++===???

+--+++?===-??

消去参数0y 得2122()9273

y x x =

->.

20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使

得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+u u u u r u u u r u u u r

(1)建立适当的直角坐标系,求点M 的轨迹方程;

(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =u u u r u u u r

过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=u u u r u u u r

,求实数λ的取值范围.

2018年高考理科数学试题及答案-全国卷2

2018年普通高等学校招生全国统一考试(全国卷2) 理科数学 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。1. 12i 12i + = - A. 43 i 55 --B. 43 i 55 -+C. 34 i 55 --D. 34 i 55 -+ 2.已知集合() {} 223 A x y x y x y =+∈∈ Z Z ,≤,,,则A中元素的个数为 A.9 B.8 C.5 D.4 3.函数()2 e e x x f x x - - =的图像大致为 4.已知向量a,b满足||1 = a,1 ?=- a b,则(2) ?-= a a b A.4 B.3 C.2 D.0 5.双曲线 22 22 1(0,0) x y a b a b -=>>3 A.2 y x =B.3 y x =C. 2 y=D. 3 y= 6.在ABC △中, 5 cos 2 C 1 BC=,5 AC=,则AB= A.2B30C29 D.25 7.为计算 11111 1 23499100 S=-+-++- …,设计了右侧的程序框图,则在空白 框中应填入 A.1 i i=+ B.2 i i=+ C.3 i i=+ D.4 i i=+ 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723 =+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 开始 0,0 N T == S N T =- S 输出 1 i= 100 i< 1 N N i =+ 1 1 T T i =+ + 结束 是否

全国高考数学直线与圆的方程试题汇编

全国高考数学直线与圆的方程试题汇编 一、选择题: 1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为 ( D ) A .1 B .3 C .2 D .5 2.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的 ( C ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90?,再向右平移1个单位,所得到的直线 为 ( A ) A .1133 y x =- + B .1 13 y x =- + C .33y x =- D .1 13 y x = + 解析:本题有新意,审题是关键.旋转90?则与原直线垂直,故旋转后斜率为13 -.再右移1得 1 (1)3 y x =--. 选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换. 4.(全国I 卷理科10)若直线 1x y a b +=通过点(cos sin )M αα,,则 ( B ) A .2 2 1a b +≤ B .22 1a b +≥ C .22111a b +≤ D . 2 211 1a b +≥ 5.(重庆理科7)若过两点P 1(-1,2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP 所成的 比λ的值为 ( A ) A .- 13 B .- 15 C . 15 D . 13 (重庆文科4)若点P 分有向线段AB 所成的比为- 1 3,则点B 分有向线段PA 所成的比是( A ) A .- 32 B .- 12 C .12 D .3 6.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线2 2 (2)1x y -+=有公共点,则直线l 的斜率 的取值范畴为 ( C ) A .[ B .( C .[ D .( 7.(辽宁文、理科3)圆2 2 1x y +=与直线2y kx =+没有.. 公共点的充要条件是 ( C )

2018年高考数学全国卷III

2018年普通高等学校招生全国统一考试(理科数学全国卷3) 数 学(理科) 一、选择题:本题共12小题。每小题5分. 1.已知集合{}10A x x =-≥,{}2,1,0=B ,则=?B A ( ) .A {}0 .B {}1 .C {}1,2 .D {}0,1,2 2.()()=-+i i 21 ( ) .A i --3 .B i +-3 .C i -3 .D i +3 3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) 4. 若1 sin 3α= ,则cos 2α= ( ) .A 89 .B 79 .C 79- .D 89- 5. 25 2()x x +的展开式中4x 的系数为 ( ) .A 10 .B 20 .C 40 .D 80 6.直线20x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆()2 2 22x y -+=上,则ABP ?面积 的取值范围是 ( ) .A []2,6 .B []4,8 .C .D ?? 7.函数422y x x =-++的图像大致为 ( )

8.某群体中的每位成员使用移动支付的概率都为P ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,4.2=DX ,()()64=<=X P X P ,则=P ( ) .A 0.7 .B 0.6 .C 0.4 .D 0.3 9.ABC ?的内角C B A 、、的对边分别c b a 、、,若ABC ?的面积为222 4 a b c +-,则=C ( ) . A 2π . B 3π . C 4π . D 6 π 10.设D C B A 、、、是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为,则三棱锥ABC D -积的最大值为 ( ) .A .B .C .D 11.设21F F 、是双曲线C : 22 221x y a b -=(0,0>>b a )的左、右焦点,O 是坐标原点,过2F 作C 的一 条渐近线的垂线,垂足为P ,若1PF =,则C 的离心率为 ( ) .A .B 2 .C .D 12.设3.0log 2.0=a ,3.0log 2=b ,则 ( ) .A 0a b ab +<< .B 0a b a b <+< .C 0a b a b +<< .D 0ab a b <<+

最新高中数学参数方程大题(带答案)精选

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: cos= ∴

y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. :(化为普通方程得:+ t=代入到曲线 sin =,),﹣

4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,化为= 把 ∴圆心极坐标为; (t , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值. 由题意椭圆的参数方程为为参数)直线的极坐标方程为

最新高考数学解题技巧-极坐标与参数方程

2018高考数学解题技巧 解答题模板3:极坐标与参数方程 1、 题型与考点(1){极坐标与普通方程的互相转化 极坐标与直角坐标的互相转化 (2) {参数方程与普通方程互化参数方程与直角坐标方程互化 (3) {利用参数方程求值域参数方程的几何意义 2、【知识汇编】 参数方程:直线参数方程:00cos ()sin x x t t y y t θθ=+??=+?为参数 00(,)x y 为直线上的定点, t 为直线上任一点(,)x y 到定 点00(,)x y 的数量; 圆锥曲线参数方程:圆的参数方程:cos ()sin x a r y b r θθθ=+?? =+?为参数(a,b)为圆心,r 为半径; 椭圆22221x y a b +=的参数方程是cos ()sin x a y b θθθ=??=? 为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ=??=? 为参数; 抛物线22y px =的参数方程是2 2()2x pt t y pt ?=?=?为参数 极坐标与直角坐标互化公式: 若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y , 则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan y x θ=。 解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程(),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程?????+=-=--t t t t y x 2 222(t 为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,4)22()22(2222-=+--=---t t t t y x ,即有422=+y x ,又注意到 02>t ,222222=?≥+--t t t t ,即

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

2018年全国各地高考数学(理科试卷及答案)

2018年高考数学理科试卷(江苏卷) 数学Ⅰ 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上.. . 1.已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么=?B A . 2.若复数z 满足i z i 21+=?,其中i 是虚数单位,则z 的实部为 . 3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 . 4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 . 5.函数()1log 2-=x x f 的定义域为 .

6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 . 7.已知函数()??? ??<<-+=22 2sin ππ ?x x y 的图象关于直线3π=x 对称,则?的值 是 . 8.在平面直角坐标系xOy 中,若双曲线()0,0122 22>>=-b a b y a x 的右焦点()0,c F 到一条 渐近线的距离为 c 2 3 ,则其离心率的值是 . 9.函数()x f 满足()()()R x x f x f ∈=+4,且在区间]2,2(-上,()??? ? ???≤<-+≤<=02,2120,2cos x x x x x f π, 则()()15f f 的值为 . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 . 11.若函数()()R a ax x x f ∈+-=122 3 在()+∞,0内有且只有一个零点,则()x f 在[]1,1-上 的最大值与最小值的和为 .

(完整)2020年高考理科数学《坐标系与参数方程》

2020年高考理科数学《坐标系与参数方程》 【题型归纳】 题型一 曲线的极坐标方程 例1 、在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程; (2)若直线C 3的极坐标方程为θ=π4 (ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 【答案】(1)C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0; (2)面积为12 . 【解析】(1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4 代入ρ2-2ρcos θ-4ρsin θ+4=0, 得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2. 由于C 2的半径为1,所以△C 2MN 的面积为12 . 【易错点】互化公式:x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=y x (x ≠0),要注意ρ,θ的取值范围及其影响. 【思维点拨】1.进行极坐标方程与直角坐标方程互化的关键是抓住互化公式:x =ρcos θ,y =ρsin θ,ρ2 =x 2+y 2,tan θ=y x (x ≠0),要注意ρ,θ的取值范围及其影响,灵活运用代入法等技巧. 2.由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解. 题型二 参数方程及其应用 例2、已知曲线C :x 24+y 29=1,直线l :? ????x =2+t ,y =2-2t (t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程; (2)过曲线C 上任一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值. 【答案】(1)2x +y -6=0;(2)最大值为2255,最小值为255. 【解析】(1)曲线C 的参数方程为? ????x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0. (2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

【高考冲刺】2020年高考数学(理数) 坐标系与参数方程 大题(含答案解析)

【高考复习】2020年高考数学(理数) 坐标系与参数方程 大题 1.在平面直角坐标系xOy 中,⊙O 的参数方程为? ?? ?? x =cos θ, y =sin θ(θ为参数),过点(0,-2) 且倾斜角为α的直线l 与⊙O 交于A ,B 两点. (1)求α的取值范围; (2)求AB 中点P 的轨迹的参数方程. 2.平面直角坐标系xOy 中,倾斜角为α的直线l 过点M(-2,-4),以原点O 为极点,x 轴的正 半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρsin 2 θ=2cos θ. (1)写出直线l 的参数方程(α为常数)和曲线C 的直角坐标方程; (2)若直线l 与C 交于A ,B 两点,且|MA|·|MB|=40,求倾斜角α的值.

3.在直角坐标系xOy 中,已知倾斜角为α的直线l 过点A(2,1).以坐标原点为极点,x 轴的正 半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρ=2sin θ,直线l 与曲线C 分别交于P ,Q 两点. (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)若|PQ|2 =|AP|·|AQ|,求直线l 的斜率k. 4.在直角坐标系xOy 中,曲线C 1的参数方程为?? ? x =3cos α, y =3sin α (α为参数),以坐标原点O 为 极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos ? ????θ+π4=3 2. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程; (2)若点M 在曲线C 1上,点N 在曲线C 2上,求|MN|的最小值及此时点M 的直角坐标.

高中数学圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 22)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++= =AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高考数学参数方程所有经典类型

高考数学参数方程所有经典类型(必刷题) 1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为1222 x t y ?=+????=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=. (Ⅰ)求C 的直角坐标方程; (Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB . 2.已知直线l 经过点1 (,1)2P ,倾斜角α=6 π,圆C 的极坐标方程为)4πρθ=-. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.在平面直角坐标系xOy 中,已知曲线1C :cos sin θθ=??=? x y (θ为参数),将1C 上的所有 和2倍后得到曲线2C .以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :sin )4ρθθ+=. (1)试写出曲线1C 的极坐标方程与曲线2C 的参数方程; (2)在曲线2C 上求一点P ,使点P 到直线l 的距离最小,并求此最小值. 4.在直角坐标系xoy 中,直线l 的方程为40x y -+=,曲线C 的参数方程为

x 3cos y sin ααα ?=??=??(为参数). (1)已知在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)2π ,判断点P 与直线l 的位置关系; (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 5.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ? ?- ??? ,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)求直线OM 的极坐标方程. 6.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线 (为参数),(为参数). (1)化 的方程为普通方程; (2)若上的点P 对应的参数为为上的动点,求中点到直线 (为参数)距离的最小值.

高一数学 高中数学圆的方程专题(四个课时)

高一数学 高中数学圆的方程专题(四个课时) 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2227)14()2(=-+-a ,或2 221)14()2(=-+-a (无解),故可得1022±=a . ∴所求圆方程为2224)4()1022(=-+--y x ,或2 224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2 221)14()2(=--+-a (无解),故622±=a . ∴所求圆的方程为2224)4()622(=++--y x ,或2 224)4()622(=+++-y x . 例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.

2018年高考数学试题

2018年普通高等学校招生全国统一考试 (全国卷Ⅱ)理科试卷 本试卷共23题,共150分,共5页。考试结束后,将本试卷和答题卡一并交回。 注意事项:1、答题前,考试现将自己的姓名,准考证号填写清楚,将条形 码准确粘贴在条形码区域内 2、选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。 3、请按照题号顺序在答题卡 各题目的答题区域内做答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4、作图可先试用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、 选择题:本题共12小题,每小题5分,共60分。 在每小题给出的四个选项中,只有一项是符合题目要求的。 1、1212i i +=- A 、4355i -- B 、4355i -+ C 、3455i -- D 3455 i -+ 2、已知集合(){}22,|3,,,A x y x y x Z y Z =+≤∈∈则A 中元素的个数为() A 、9 B 、8 C 、5 D4 3、函数 ()2x x e e f x x --=的图象大致是() x x

4、已知向量() ,1,1,2a b a a b a a b =?=--=满足则() A 、4 B 、3 C 、2 D 、0 5、双曲线()222210,0x y a b a b -=>> 则其渐近线方程为() A 、 y = B 、 y = C 、2 y x =± D y x = 6、在△ABC 中,cos 2C = ,BC=1,AC=5,则AB=( ) A 、 B C D 7、为计算11111123499100S =-+-+ +-,设计了右侧的程序框图,则空白框中应填入 A 、i=i+1 B 、i=i+2 C 、i=i+3 D 、i=i+4

高考极坐标与参数方程大题题型汇总(附详细答案)

高考极坐标与参数方程大题题型汇总 1.在直角坐标系xoy 中,圆C 的参数方程1cos (sin x y ? ?? =+??=?为参数) .以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程; (2)直线l 的极坐标方程是 C 的交点为 O 、P ,与直线l 的交点为Q ,求线段PQ 的长. 解:(1)圆C 的普通方程是22(1)1x y -+=,又cos ,sin x y ρθρθ==; 所以圆C 的极坐标方程是2cos ρθ=. ---5分 (2)设11(,)ρθ为点P 的极坐标,则有 设22(,)ρθ为点Q 的极坐标,则有 由于12θθ=,所以,所以线段PQ 的长为2. 2.已知直线l 的参数方程为431x t a y t =-+??=-? (t 为参数),在直角坐标系xOy 中,以O 点为极 点, x 轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M 的方程为 26sin 8 ρρθ-=-. (1)求圆M 的直角坐标方程; (2)若直线l 截圆M a 的值. 解:(1)∵2 222268(36si )n 81x y y x y ρρθ+--=-?=-?+-=, ∴圆M 的直角坐标方程为2 2 (3)1x y +-=;(5分)

(2)把直线l的参数方程 4 31 x t a y t =-+ ? ? =- ? (t为参数)化为普通方程得:34340 x y a +-+=, ∵直线l截圆M所得弦长 为,且圆M的圆心(0,3) M到直线l的距 离 |163|19 522 a d a - ===?=或 37 6 a=,∴ 37 6 a=或 9 2 a=.(10分)3.已知曲线C的参数方程为 ?? ? ? ? + = + = α α sin 5 1 cos 5 2 y x (α为参数),以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系。 (1)求曲线c的极坐标方程 (2)若直线l的极坐标方程为 ρ (sinθ+cosθ)=1,求直线l被曲线c截得的弦长。 解:(1)∵曲线c的参数方程为 ?? ? ? ? + = + = α α sin 5 1 cos 5 2 y x (α为参数) ∴曲线c的普通方程为(x-2)2+(y-1)2=5 将? ? ? = = θ ρ θ ρ sin cos y x 代入并化简得: ρ =4cosθ+2sinθ 即曲线c的极坐标方程为 ρ =4cosθ+2sinθ (2)∵l的直角坐标方程为x+y-1=0 ∴圆心c到直线l的距离为d=2 2 =2∴弦长为22 5-=23 4.已知曲线C: 2 21 9 x y += ,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为 sin() 4 π ρθ-= (1)写出曲线C的参数方程,直线l的直角坐标方程; (2)设P是曲线C上任一点,求P到直线l的距离的最大值.

高考数学参数方程大题

高考数学参数方程大题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高三最后一题 1、以平面直角坐标系的原点为极点,x 轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点A 的极坐标为)6 ,2(π ,直线l 过点A 且与极轴成角 为 3π,圆C 的极坐标方程为)4 cos(2πθρ-=. (1)写出直线l 参数方程,并把圆C 的方程化为直角坐标方程; (2)设直线l 与曲线圆C 交于B 、C 两点,求AC AB .的值. 【答案】(1)直线l C 的直角坐标方程为02222=--+y x y x ;(2 2、已知曲线C 的参数方程为31x y α α ?=+??=+??(α为参数),以直角坐标系原点 为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程,并说明其表示什么轨迹. (2)若直线的极坐标方程为1 sin cos θθρ -= ,求直线被曲线C 截得的弦长. 【答案】(1)6cos 2sin ρθθ=+(2 3、在直角坐标系xOy 中,直线l 的参数方程为t t y t x (22522 5??? ??? ?+=+ -=为参数),若以 O 点为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 θρcos 4=。 (1)求曲线C 的直角坐标方程及直线l 的普通方程; (2)将曲线C 上各点的横坐标缩短为原来的 2 1 ,再将所得曲线向左平移1个单位,得到曲线1C ,求曲线1C 上的点到直线l 的距离的最小值 【答案】(1)() 422 2 =+-y x ,052=+-y x (2 )

高考数学必考之圆的方程

高考数学必考之圆的方程 考点一 圆的方程 1.圆心为()3,1,半径为5的圆的标准方程是 【答案】()()2 2 3125x y -+-= 【解析】∵所求圆的圆心为()3,1,半径为5,∴所求圆的标准方程为:()()2 2 3125x y -+-=, 2.已知点()3,6A ,()1,4B ,()1,0C ,则ABC ?外接圆的圆心坐标为 【答案】()5,2 【解析】线段AB 中点坐标为()2,5,线段AB 斜率为 64 131 -=-,所以线段AB 垂直平分线的斜率为1-,故线段AB 的垂直平分线方程为()52y x -=--,即7y x =-+. 线段AC 中点坐标为()2,3,线段AC 斜率为 60331-=-,所以线段AC 垂直平分线的斜率为1 3 -,故线段AC 的垂直平分线方程为()1 323y x -=--,即11133 y x =-+. 由7 5111233y x x y y x =-+?=?? ??? ==-+??? .所以ABC ?外接圆的圆心坐标为()5,2. 3.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的范围是 【答案】-2解得223a -<<. 考点二 点与圆的位置关系

1.点()1,1在圆()2 211x y +-=的( ) A .圆上 B .圆内 C .圆外 D .无法判定 【答案】A 【解析】将点()1,1的坐标代入圆()2 211x y +-=的方程即()2 21111+-=,∴点()1,1在圆()2 211x y +-=上, 2.经过点(1,2)A 可做圆2 2 240x y mx y ++-+=的两条切线,则m 的范围是( ) A .(,(23,)-∞-+∞ B .(5,(23,)--+∞ C .(,)-∞-?+∞ D .(5,(22,)--+∞ 【答案】B 【解析】圆2 2 240x y mx y ++-+=,即为222 ()(1)324 m m x y -+-= -, 2 304 m ∴->?m <-m > 由题意知点A 在圆外,14440m ∴++-+>,解得5m >-. 所以5m -<<-m >故选B 3.若坐标原点在圆2 2 2 22240x y mx my m +-++-=的内部,则实数m 的取值范围是( ) A .()1,1- B .,22?- ?? C .( D .( 【答案】D 【解析】把原点坐标代入圆的方程得:222002020240m m m +-?+?+-< 解得:m <本题正确选项:D

2018年高考数学立体几何试题汇编

2018年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 18.如图,在平行四边形ABCM 中,3AB AC ==,90ACM =?∠,以AC 为折痕将△ACM 折起,使点M 到达点 D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ; (2)Q 为线段AD 上一点,P 为线段BC 上一点,且2 3 BP DQ DA == ,求三棱锥Q ABP -的体积. 全国1卷理科 理科第7小题同文科第9小题 18. 如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点 P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 全国2卷理科: 9.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为

A .1 B . 5 C . 5 D . 2 20.如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M PA C --为30?,求PC 与平面PAM 所成角的正弦值. 全国3卷理科 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 19.(12分) 如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ; (2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值. 2018年江苏理科:

2013届高考数学第一轮专题复习测试卷第二讲 参数方程

第二讲 参数方程 班级________ 姓名________ 考号________ 日期________ 得分________ 一?选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.) 1.判断以下各点,哪一个在曲线2 3 14 32 x t t y t t ?=++??=-+?? (t 为参数)上( ) A.(0,2) B.(-1,6) C.(1,3) D.(3,4) 解析:∵x=1+t 2 +t 4 =2 213124t ? ?++ ?? ?≥∴点(0,2),(-1,6)不在曲线上 对于点(1,3),当x=1时,t=0,y=2. ∴点(1,3)不在曲线上, 验证知(3,4)在曲线上,选D. 答案:D 2.能化为普通方程x 2+y-1=0的参数方程为 ( ) 2 .12.A .2 x sint x tan B y tan y cos t x cos x C D y sin y t θθφ φ==???? =-=???=?=?? ?==??? 。 解析:由x 2+y-1=0,知x∈R,y≤1. 排除A ?C ?D,只有B 符合. 答案:B 3.若直线的参数方程为1223x t y t =+?? =-? (t 为参数),则直线的斜率为( ) 2233 (3) 3 2 2 A B C D -- 解析:由参数方程,消去t,得3x+2y-7=0.

∴直线的斜率k=- . 答案:D 4.过点M(2,1)作曲线C: 4 4 x cos y sin θ θ = ? ? = ? (θ为参数)的弦,使M为弦的中点,则此弦所在直线的方程为 ( ) A.y-1=- (x-2) B.y-1=-2(x-2) C.y-2=- (x-1) D.y-2=-2(x-1) 解析:由于曲线表示的是圆心在原点,半径为r=4的圆,所以过点M的弦与线段OM垂直, ∵k OM = , ∴弦所在直线的斜率是-2, 故所求直线方程为y-1=-2(x-2). 答案:B 5.(2010·安徽)设曲线C的参数方程为 23 13 x cos y sin θ θ=+ ? ? =-+ ? (θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l距离为 10 的点的个数为( ) A.1 B.2 C.3 D.4 解析:曲线C表示以(2,-1)为圆心,以3为半径的圆,则圆心C(2,-1)到直线l的距离d=3 10 =<, 所以直线与圆相交.所以过圆心(2,-1)与l平行的直线与圆的2个交点满足题意,又 10 ,故满足题意的点有2个. 答案:B 6.(2010·上海)直线l的参数方程是 12 2 x t y t =+ ? ? =- ? (t∈R),则l的方向向量d可以是( ) A.(1,2) B.(2,1) C.(-2,1) D.(1,-2)

2021届高考数学(理)考点复习:圆的方程(含解析)

2021届高考数学(理)考点复习 圆的方程 圆的定义与方程 定义 平面内到定点的距离等于定长的点的轨迹叫做圆 方 程 标准 式 (x -a )2+(y -b )2=r 2(r >0) 圆心为(a ,b ) 半径为r 一 般 式 x 2+y 2+Dx +Ey +F =0 充要条件:D 2+E 2-4F >0 圆心坐标:????-D 2,-E 2 半径r =1 2 D 2+ E 2-4F 概念方法微思考 1.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的条件是什么? 提示 ???? ? A =C ≠0, B =0, D 2+ E 2-4A F >0. 2.点与圆的位置关系有几种?如何判断? 提示 点和圆的位置关系有三种. 已知圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0), (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2

, 半径为1的圆经过点(3,4),可得该圆的圆心轨迹为(3,4)为圆心,1为半径的圆, 故当圆心到原点的距离的最小时, 连结OB ,A 在OB 上且1AB =,此时距离最小, 由5OB =,得4OA =, 即圆心到原点的距离的最小值是4, 故选A . 2.(2018?天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. 【答案】22(1)1x y -+=(或2220)x y x +-= 【解析】【方法一】根据题意画出图形如图所示, 结合图形知经过三点(0,0),(1,1),(2,0)的圆, 其圆心为(1,0),半径为1, 则该圆的方程为22(1)1x y -+=. 【方法二】设该圆的方程为220x y Dx Ey F ++++=, 则0 42020F D F D E F =?? ++=??+++=? , 解得2D =-,0E F ==; ∴所求圆的方程为2220x y x +-=. 故答案为:22(1)1x y -+=(或2220)x y x +-=.

相关主题
文本预览
相关文档 最新文档