当前位置:文档之家› 影响螺栓疲劳强度的因素

影响螺栓疲劳强度的因素

影响螺栓疲劳强度的因素
影响螺栓疲劳强度的因素

影响螺栓疲劳性能的主要因素有以下几点:

1、螺纹牙谷形状和半径尺寸的影响。

螺栓受力时,螺纹牙谷处就会产生应力集中,其值在很大程度上取决于牙谷的形状。改变牙谷的形状,如螺纹的牙谷槽越平滑,应力集中就越小,疲劳强度则越高。一般而言,平底牙谷的螺纹疲劳强度最低。如以圆形牙谷代替平底牙谷,螺栓的疲劳强度便可得到提高。如平底螺纹牙谷的弹性应力集中系数为2.54,而改进的圆弧牙谷为1.52,即后者的牙谷应力集中系数较前者降低40%,从而可以使疲劳强度至少提高20%;如经调质处理的40CrNiMo钢制螺栓,螺纹为M6-1.0的平底牙谷时疲劳强度为95MPa,而采用最大半径为0.1mm的圆弧形牙谷时,其疲劳强度可以提高到120MPa,即提高26%。日本新日铁公司新开发的CD(critical design for fracture)螺栓的疲劳强度提高的幅度更大,高达100%,CD螺栓的主要特点是螺母内螺纹的牙峰高度逐渐降低,以使其受力更均匀。

2、螺纹表面粗糙度的影响。

螺纹的表面粗糙度对螺栓的疲劳寿命影响很大。如螺纹为M6-1.0的40CrNiMo钢制螺栓,其粗糙度由0.08~0.16降低到0.63~1.35时,疲劳强度下降33%;螺纹为M12-1.5的螺栓,其表面粗糙度由0.08~0.16降低到0.16~0.32时,疲劳强度下降21%。

3、螺纹滚丝工序的影响。

滚压螺纹会产生形变强化层和较高的残余压应力,对阻止疲劳裂纹的萌生和早起扩展起到很大的作用;同时,也会降低牙谷的表面粗糙度,因而有利于螺栓疲劳强度的提高。但是,如果滚压螺纹后再进行热处理,就会使上述有利因素消失。所以从改善螺栓疲劳性能的角度考虑,应在热处理后滚压螺纹。但此时存在另一个问题,即螺栓特别是高强度螺栓经过热处理后其硬度通常较高,致使滚丝模具寿命降低。此外,如果滚丝的质量不够好,在螺纹的表面或根部产生微裂纹或类似接触疲劳的剥落现象,则改善螺栓疲劳性能的效果不明显,甚至会降低疲劳性能。

4、钢材冶金缺陷的影响。

原材料表面脱碳,通常是在轧制加热过程中对坯料表面没有有效的保护所

致。如果脱碳层较浅而成品又要经过充分的切削加工,会使脱碳层去掉,从而消除这种脱碳的影响。然而,有些螺栓是在冷镦或冷拔后不再进行切削加工,于是原材料的表面缺陷也就一直保留在成品零件的表面上。

螺栓表面的严重脱碳层是其上的一个薄弱区域,在冷镦后的滚丝过程中,由于钢材表面的变形量大,会把脱碳层大部分挤压到螺纹的顶部区域中。这种脱碳层的强度、硬度均很低,故极易发生磨损和脱扣(丝扣被剪坏)失效,并且极易成为疲劳裂纹源,造成早期疲劳失效。

钢中的夹杂物特别是粗大的硬脆夹杂物破坏了基体材料的连续性,在内外应力的作用下易在夹杂物与基体的界面处产生很高的应力集中,导致疲劳裂纹的早期萌生,显著降低高强度螺栓的抗疲劳性能。

螺栓在各种机构中起着连接、紧固、定位、密封等作用。除了作简单定位的螺栓之外,螺栓在安装时都需要预先拧紧,因此都承受经拉伸载荷。预紧力越大,连接强度和紧固、密封性便越高。通常正确的设计是以足够高的预紧力克服被连接件的相对位移,避免螺栓承受弯曲、剪切载荷。一些螺栓,如连杆螺栓、缸盖螺栓等,除受到轴向预紧拉伸载荷的作用外,通常还会在工作过程中受到附加的轴向拉伸(交变)载荷、横向剪切(交变)载荷或由此复合而成的弯曲载荷的作用,有时还受到冲击载荷的作用。通常情况下,附加的横向交变载荷会引起螺栓的松动,轴向交变载荷会引起螺栓的疲劳断裂,而在环境介质的作用下轴向拉伸载荷则会引起螺栓的延迟断裂。对此,在应用高强度螺栓时,对材料成分、冶金质量、螺栓结构、制造工艺、安装及使用提出了更高的技术要求。

一般来讲,高强度螺栓及其钢通常应满足以下要求:

1、高的抗拉强度,以便抵抗拉长、拉断、滑扣和磨损。

2、较高的塑性和韧性,以减少对偏斜、缺口应力集中和表面质量的敏感性。

3、对于在海边、河边、油田等潮湿大气或腐蚀气氛环境下工作的螺栓,要求螺栓材料具有足够低的延迟断裂敏感性,以保证螺栓工作时安全可靠。

4、对于承受交变载荷和冲击载荷的螺栓,要求具有较高的疲劳抗力和多次冲击拉伸力,以抵抗疲劳、多冲断裂。

5、对于在严寒地区或低温下工作的螺栓,还要求具有低的韧—脆转化温度。

6、中小直径螺栓往往多采用冷镦成形螺栓头和搓(滚)丝生产工艺,这就要求材料具有良好的冷镦等冷加工工艺性能。

高强度螺栓疲劳校核

16、轮盘连接高强度螺栓疲劳强度校核 说明: 轮盘在设备的设计使用寿命期限内,始终处于受压状态,其三根弦杆承受压力作用,轮盘的整体弯矩由内、外弦杆的压力调幅来平衡,弦杆法兰连接的高强度螺栓承受的、由单独弦杆的弯矩引起的交变力很小。 由于法兰结合面的载荷全部为压力载荷,故螺栓的工作应力都小于其预紧力,故螺栓的拉力载荷总在预紧力一下某一范围波动。对螺栓而言,保证法兰结合面不松开,其压力载荷越大,螺栓残余预紧力就越小,螺栓的拉力就越小。本文的计算模型转变为较小圆角过度的阶梯轴拉伸(如图一),校核过渡截面的疲劳应力。 观览车的运行速度很慢,每周循环的时间为20分钟,考虑50年的使用寿命期,每年300天,每天工作8小时,共运行300000次循环,选小于结构钢S-N曲线的转折点的循环次数,且本文的计算载荷为正常满载+15m/s风载的载荷情况,故计算结果有一定的保守性。 疲劳设计方法是一门以试验为基础的设计方法,本计算选取的疲劳性能数据选自国内公开的《机械设计手册》数据。 图一:计算模型

附:螺栓无限寿命校核说明书 一、螺栓参数和预紧力: 螺栓直径:M30x160 性能等级:10.9级 过渡圆角:r=0.5mm 螺栓材料的破断强度:1000MPa 螺栓副连接的相对刚度:m b b C C C +=0.25 选用的单个螺栓预紧力矩:Nm T 1600= 则预紧力:kN N d T Q p 2671067.2030 .02.016002.05=?=?== 二、螺栓组载荷: 主管法兰圆周应力分布及载荷谱: 530*30螺栓组主管件轴力, 六点方位N=-4729kN ,七点半N=-4487kN ,九点N=-3785kN ,十点半N=-3181kN ,十一点N=-2961kN ,十二点N=-2300kN ,一点N=-2960kN ,一点半N=-3253kN ,三点N=-3891kN ,四点半N=-4552kN 。 最大压力:kN F a 4729-= 换算到单个螺栓的最大压力载荷:kN F F a 39412/472912/-=-== 螺栓最小拉力:kN F F C C C Q Q m b b p 1680.25267min =+=++ = 最小压力:kN F a 2300-=

金属材料屈服强度的影响因素

材料屈服强度及其影响因素 1. 屈服标准 工程上常用的屈服标准有三种: (1)比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。 (2)弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel表示。应力超过σel时即认为材料开始屈服。 (3)屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 2. 影响屈服强度的因素 影响屈服强度的内在因素有: 结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化; (2)形变强化; (3)沉淀强化和弥散强化; (4)晶界和亚晶强化。 沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有: 温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。 3.屈服强度的工程意义 传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。 材料开始屈服以后,继续变形将产生加工硬化。 4.加工硬化指数n的实际意义 加工硬化指数n反应了材料开始屈服以后,继续变形时材料的应变硬化情况,它决定了材料开始发生颈缩时的最大应力。n还决定了材料能够产生的最大均匀应变量,这一数值在冷加工成型工艺中是很重要的。 对于工作中的零件,也要求材料有一定的加工硬化能力,否则,在偶然过载的情况下,会产生过量的塑性变形,甚至有局部的不均匀变形或断裂,因此材料的加工硬化能力是零件安全使用的可靠保证。 形变硬化是提高材料强度的重要手段。不锈钢有很大的加工硬化指数n=0.5,因而也有很高的均匀变形量。不锈钢的屈服强度不高,但如用冷变形可以成倍地提高。高碳钢丝经过

螺栓疲劳强度计算分析

螺栓疲劳强度计算分析 摘要:在应力理论、疲劳强度、螺栓设计计算的理论基础之上,以疲劳强度计算所采取的三种方法为依据,以汽缸盖紧螺栓连接为研究对象,进行本课题的研究。假设汽缸的工作压力为0~1N/mm2=之间变化,气缸直径D2=400mm,螺栓材料为5.6级的35钢,螺栓个数为14,在F〞=1.5F,工作温度低于15℃这一具体实例进行计算分析。利用ProE建立螺栓连接的三维模型及螺杆、螺帽、汽缸上端盖、下端盖的模型。先以理论知识进行计算、分析,然后在分析过程中借助于ANSYS有限元分析软件对此螺栓连接进行受力分析,以此验证设计的合理性、可靠性。经过近几十年的发展,有限元方法的理论更加完善,应用也更广泛,已经成为设计,分析必不可少的有力工具。然后在其分析计算基础上,对于螺栓连接这一类型的连接的疲劳强度设计所采取的一般公式进行分类,进一步在此之上总结。 关键词:螺栓疲劳强度,计算分析,强度理论,ANSYS 有限元分析。

Bolt fatigue strength analysis Abstract: In stress fatigue strength theory,bolt,design calculation theory foundation to fatigue strength calculation for the three methods adopted according to the cylinder lid,fasten bolt connection as the object of research,this topic research. Assuming the cylinder pressure of work is 0 ~ 1N/mm2 changes,cylinder diameters between = = 400mm,bolting materials D2 for ms5.6 35 steel,bolt number for 14,in F "= 1.5 F below 15 ℃,the temperature calculation and analysis of concrete examples. Using ProE establish bolt connection three-dimensional models and screw,nut,cylinder under cover,cover model. Starts with theoretical knowledge calculate,analysis,and then during analysis,ANSYS finite element analysis software by this paper analyzes forces bolt connection,to verify the rationality of the design of and reliability. After nearly decades of development,the theory of finite element method is more perfect,more extensive application,has become an indispensable design,analysis the emollient tool. Then in its analysis and calculation for bolt connection,based on the type of connection to the fatigue strength design of the general formula classification,further on top of this summary. Keywords: bolt fatigue strength,calculation and analysis,strength theory,ANSYS finite elements analysis.

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

影响零件疲劳强度的主要因素有

影响零件疲劳强度的主要 因素有 This model paper was revised by the Standardization Office on December 10, 2020

1.影响零件疲劳强度的主要因素有:应力集中、尺寸大小、表面加工质量。 2.静连接与动连接的强度计算区别:压溃(工作面上挤压应力强度校核)、过度磨损(工作面上压力强度校核) 3.标准蜗杆传动中,蜗杆直径系数q与刚度的关系: d=mq(模数*系数) 4.螺纹连接防松:一旦松动,轻者影响机器的正常运转,重者造成严重事故。常用防松措施:摩擦防松、机械防松、破坏螺旋副运动关系。5.紧螺栓连接中,螺栓刚度对 应力辐的影响:降低螺栓刚度 或增加被连接件刚度可减小应 力辐。 6.双键连接时,切向键两者夹 角120-130度,平键180 度。 7不完全液体润滑径向滑动轴 承,要进行验算轴承的平均压 力p、轴承的pv值、滑动速度 v条件性计算。液体润滑径向 滑动轴承。 8蜗杆传动中,蜗杆头数与传 动效率及自锁性关系:头数越 多,传动效率越高,自锁性越 不好。 9.带传动中其他参数不变,只 有小轮有两种速度,当传递功 率不变时应按低速设计该带传 动。按低速的,当功率不变 时,速度低的受力大,按力大 的选择带传动,保证带的强 度。 10.链传动中,为什么链条磨 损后更容易从大链轮上脱落: 磨损后节距变长,滚子沿大链 轮外移,大链轮容易发生掉链 爬高现象。设计时减少大链轮 齿数,减少滚子沿大链轮的外 移量。 11.一双齿轮传动中,1.5倍。 12.在机械设计和使用机器时 应遵从力求缩短磨合期、延长 稳定磨损期、推迟剧烈磨损的 到来。 13.一对啮合的标准圆柱齿轮 传动,若齿轮齿数分别为z1 小于z2,这对齿轮的弯曲应力 1大于2. 14.普通紧螺栓连接受横向载 荷作用,螺栓中受拉伸应力作 用。 15.带传动有效拉力与预紧 力、包角、摩擦系数的关系: 正比关系。最小初拉力直接决 定临界摩擦力的大小,增加摩 擦系数和带轮的包角有利于增 大临界摩擦力,相应地降低最 小初拉力。 16单向规律性不稳定变应力的 疲劳强度计算依据:疲劳损伤 累积假说。 17.为什么小链轮齿数不能选 得过少、大链轮齿数不得过 多:齿数过少增加运动的不均 匀性和动载荷,链条在进入和 退出啮合时链接之间的相对转 角增大,链传动的圆周力增 大,从整体上加速铰链和链轮 的磨损。过大增大了传动的整 体尺寸、还容易发生跳链和脱 链的现象,从而影响链条使用 寿命。 18.带传动发生打滑的原因: 如果工作载荷增大,超过带传 动的有效拉力达到最大(临 界)值,则带与带轮间就将发 生显着的相对滑动。由于带在 大轮上的包角总是大于在小轮 上包角,所以打滑总是首先在 小带轮上发生。 1.影响零件疲劳强度的主要因素有:应力集中、尺寸大小、表面加工质量。 2.静连接与动连接的强度计算区别:压溃(工作面上挤压应力强度校核)、过度磨损(工作面上压力强度校核) 3.标准蜗杆传动中,蜗杆直径系数q与刚度的关系:d=mq(模数*系数) 4.螺纹连接防松:一旦松动,轻者影响机器的正常运转,重者造成严重事故。常用防松措施:摩擦防松、机械防松、破坏螺旋副运动关系。 5.紧螺栓连接中,螺栓刚度对应力辐的影响:降低螺栓刚度或增加被连接件刚度可减小应力辐。 6.双键连接时,切向键两者夹角120-130度,平键180度。 7不完全液体润滑径向滑动轴承,要进行验算轴承的平均压力p、轴承的pv值、滑动速度v条件性计算。液体润滑径向滑动轴承。 8蜗杆传动中,蜗杆头数与传动效率及自锁性关系:头数越多,传动效率越高,自锁性越不好。 9.带传动中其他参数不变,只有小轮有两种速度,当传递功率不变时应按低速设计该带传动。按低速的,当功率不变时,速度低的受力大,按力大的选择带传动,保证带的强度。 10.链传动中,为什么链条磨损后更容易从大链轮上脱落:磨损后节距变长,滚子沿大链轮外移,大链轮容易发生掉链爬高现象。设计时减少大链轮齿数,减少滚子沿大链轮的外移量。 11.一双齿轮传动中,1.5倍。 12.在机械设计和使用机器时应遵从力求缩短磨合期、延长稳定磨损期、推迟剧烈磨损的到来。 13.一对啮合的标准圆柱齿轮传动,若齿轮齿数分别为z1小于z2,这对齿轮的弯曲应力1大于2. 14.普通紧螺栓连接受横向载荷作用,螺栓中受拉伸应力作用。 15.带传动有效拉力与预紧力、包角、摩擦系数的关系:正比关系。最小初拉力直接决定临界摩擦力的大小,增加摩擦系数和带轮的包角有利于增大临界摩擦力,相应地降低最小初拉力。 16单向规律性不稳定变应力的疲劳强度计算依据:疲劳损伤累积假说。 17.为什么小链轮齿数不能选得过少、大链轮齿数不得过多:齿数过少增加运动的不均匀性和动载荷,链条在进入和退出啮合时链接之间的相对转角增大,链传动的圆周力增大,从整体上加速铰链和链轮的磨损。过大增大了传动的整体尺寸、还容易发生跳链和脱链的现象,从而影响链条使用寿命。 18.带传动发生打滑的原因:如果工作载荷增大,超过带传动的有效拉力达到最大(临界)值,则带与带轮间就将发生显着的相对滑动。由于带在大轮上的包角总是大于在小轮上包角,所以打滑总是首先在小带轮上发生。 1.影响零件疲劳强度的主要因素有:应力集中、尺寸大小、表面加工质量。 2.静连接与动连接的强度计算区别:压溃(工作面上挤压应力强度校核)、过度磨损(工作面上压力强度校核) 3.标准蜗杆传动中,蜗杆直径系数q与刚度的关系:d=mq(模数*系数) 4.螺纹连接防松:一旦松动,轻者影响机器的正常运转,重者造成严重事故。常用防松措施:摩擦防松、机械防松、破坏螺旋副运动关系。 5.紧螺栓连接中,螺栓刚度对应力辐的影响:降低螺栓刚度或增加被连接件刚度可减小应力辐。 6.双键连接时,切向键两者夹角120-130度,平键180度。 7不完全液体润滑径向滑动轴承,要进行验算轴承的平均压力p、轴承的pv值、滑动速度v条件性计算。液体润滑径向滑动轴承。 8蜗杆传动中,蜗杆头数与传动效率及自锁性关系:头数越多,传动效率越高,自锁性越不好。 9.带传动中其他参数不变,只有小轮有两种速度,当传递功率不变时应按低速设计该带传动。按低速的,当功率不变时,速度低的受力大,按力大的选择带传动,保证带的强度。 10.链传动中,为什么链条磨损后更容易从大链轮上脱落:磨损后节距变长,滚子沿大链轮外移,大链轮容易发生掉链爬高现象。设计时减少大链轮齿数,减少滚子沿大链轮的外移量。 11.一双齿轮传动中,1.5倍。 12.在机械设计和使用机器时应遵从力求缩短磨合期、延长稳定磨损期、推迟剧烈磨损的到来。 13.一对啮合的标准圆柱齿轮传动,若齿轮齿数分别为z1小于z2,这对齿轮的弯曲应力1大于2. 14.普通紧螺栓连接受横向载荷作用,螺栓中受拉伸应力作用。 15.带传动有效拉力与预紧力、包角、摩擦系数的关系:正比关系。最小初拉力直接决定临界摩擦力的大小,增加摩擦系数和带轮的包角有利于增大临界摩擦力,相应地降低最小初拉力。 16单向规律性不稳定变应力的疲劳强度计算依据:疲劳损伤累积假说。 17.为什么小链轮齿数不能选得过少、大链轮齿数不得过多:齿数过少增加运动的不均匀性和动载荷,链条在进入和退出啮合时链接之间的相对转角增大,链传动的圆周力增大,从整体上加速铰链和链轮的磨损。过大增大了传动的整体尺寸、还容易发生跳链和脱链的现象,从而影响链条使用寿命。 18.带传动发生打滑的原因:如果工作载荷增大,超过带传动的有效拉力达到最大(临界)值,则带与带轮间就将发生显着的相对滑动。由于带在大轮上的包角总是大于在小轮上包角,所以打滑总是首先在小带轮上发生。

304不锈钢抗拉强度试验影响因素分析

龙源期刊网 https://www.doczj.com/doc/6b6263385.html, 304不锈钢抗拉强度试验影响因素分析 作者:林剑峰 来源:《科学与财富》2016年第25期 摘要:文章通过试验,对比分析了不同试验速率与温度对奥氏体304不锈钢拉伸性能测试结果的影响规律,总体上的试验结果表明,试验速率对测定结果的影响较小,环境的温度变化才是测定结果波动的主要影响因素,以期本试验研究分析可指导生产检测与产品验收。 关键词:奥氏体304不锈钢;拉伸试验;马氏体;环境温度;试验速率 拉伸试验是力学性能试验中最基础、最常用的试验,拉伸试验中给出的性能指标也是在工业上应用最广泛的材料性能指标。304不锈钢是一种通用型奥氏体不锈钢,它的金属制品耐高温,韧性高,加工性能好,广泛使用于工业和家具装饰行业和食品医疗行业。拉伸性能是其力学性能测试中最基本、最通用的检验指标,也是304不锈钢产品的最基本交货依据。由于304不锈钢属于非稳态奥氏体不锈钢,在拉伸试验变形过程中会发生应变诱发相变产生马氏体,但金属材料本身材质的不均匀性以及在应变强化过程中温度、速率、应变量等均可影响应变诱发马氏体的转变量、转变速率等方面的情况,使得抗拉强度测定结果存在差异,不利于测试的进行。因此,有必要对拉伸试验检测结果波动的影响因素进行分析,掌握不同测试条件下拉伸性能测试结果的变化规律,从而对所检验的材料做出科学的评价。 1试验材料与试验方法 1.1试验材料 试验材料选用厚度为20mm、共3个炉号的热轧固溶态304不锈钢板,不同炉号钢板的化学成分略有不同。 1.2 试验方法 采用不同试验温度(在GB/T228.1-2010规定的温度范围内10~35℃)和不同拉伸试验速率(上、下限分别略大于和略小于GB/T228.1-2010规定的拉伸速率范围0.005~0.008s-1)对 上述304不锈钢板进行拉伸试验。拉伸试验用试样为螺纹头棒状试样,试样形状及尺寸如图1所示。拉伸试验前后分别测试试样均匀变形段的马氏体含量。拉伸试验采用德国产Z300高低温电子拉伸试验机完成,马氏体含量测定用瑞士产FeritscopeFMP30铁素体含量测定仪完成。 2 试验结果与讨论 2.1 304不锈钢加工硬化分析

影响金属材料疲劳强度大小的因素.

影响金属材料疲劳强度大小的因素 由于疲劳断裂通常是从机件最薄弱的部位或外部缺陷所造成的应力集中处发生, 因此疲劳断裂对许多因素很敏感,例如,循环应力特性、环境介质、温度、机件表面状态、内部组织缺陷等,这些因素导致疲劳裂纹的产生或速裂纹扩展而降低疲劳寿命。 为了提高机件的疲劳抗力, 防止疲劳断裂事故的发生, 在进行机械零件设计和加工时, 应选择合理的结构形状, 防止表面损伤, 避免应力集中。由于金属表面是疲劳裂纹易于产生的地方,而实际零件大部分都承受交变弯曲或交变扭转载荷, 表面处应力最大。因此, 表面强化处理就成为提高疲劳极限的有效途径。 由于工程实际的要求, 对疲劳的研究工作已逐渐从正常条件下的疲劳问题扩展到特殊条件下的疲劳问题,如腐蚀疲劳、接触疲劳、高温疲劳、热疲劳、微动磨损疲劳等。对这些疲劳及其测试技术还在广泛进行研究,并已逐步标准化 镀锌钢板的质量检验标准 优质品级镀锌板的质量要求包括规格尺寸、外观、镀锌量、化学成份、板形、机械性能和包装等几个方面。 1.包装 分为切成定尺长度的镀锌板和带卷镀锌板包装两种。一般铁皮包装, 内衬防潮纸, 外以铁腰子捆扎,捆扎牢靠,以防内装镀锌板相互摩擦 2.规格尺寸 有关产品标准 (以下述及都列明镀锌板推荐的标准厚度、长度和宽度及其允 许偏差。另外, 板的宽度和长度、卷的宽度也可按用户要求确定。 3.外观

表面状态:镀锌板由于涂镀工艺中处理方式不同,表面状态也不同,如普通锌花、细锌花、平整锌花、无锌花以及磷化处理的表面等。切成定尺长度的镀锌板及镀锌卷板不得存在影响使用的缺陷(以下详述 ,但卷板允许有焊接部位等若干不正常部分。 4.镀锌量 镀锌量标准值:镀锌量是表示镀锌板锌层厚度的一个普遍采用的有效方法。有两面镀锌量相同(即等厚镀锌和两面镀锌量不同(即差厚镀锌两种。镀锌量的单位为g/m2。 5.机械性能 (1抗拉试验:一般说来,只有结构用、拉伸用和深拉伸用镀锌板有抗拉性能要求。 (2弯曲试验:是衡量薄板工艺性能的主要项目。但各国标准对各种镀锌板的要求并不一致。一般要求镀锌板弯曲 180o 后, 外侧表面不得有锌层脱离, 板基不得有龟裂及断裂。 6.化学成份 对镀锌基板的化学成份的要求, 各国标准规定不同。如日本就不要求, 美国则要求。一般不作成品检验。 7.板形 衡量板形好坏有两个指标, 即平直度和镰刀弯。板的平直度和镰刀弯的最大允许值标准有一定规定。 下面列出有关镀锌板的国外主要标准,以作参考 [4, 5]: JIS G3302 镀锌钢板 JIS G3313 电镀锌钢板及钢带 ASTM A525 热浸镀锌薄钢板的一般要求

影响疲劳寿命的因素

影响橡胶疲劳寿命的因素 一环境条件 环境影响在疲劳过程中特别是在长寿命的橡胶材料中起着关键作用。橡胶应力-应变关系和疲劳老化性能发展的方式在很大程度上依赖于材料的温度以及橡胶成分周围化学反应物的存在和浓度 A温度 升高的温度对橡胶形核寿命和疲劳裂纹增长速率产生有害的影响,这种有害影响在无定形橡胶中表现的最为明显,对于纯的丁苯橡胶处于可控测试中,随着温度从0°到100°,疲劳寿命化降低10000倍,而对于纯的天然胶而言,在相同条件下,疲劳寿命降低4倍。填料的加入可能降低对温度的依赖性。在疲劳裂纹增长测试中类似的影响可能被观察到。 上述温度的影响与由于老化或进一步教交联所发生的化学变化无关。温度对这些化学过程的速率产生很大的影响这种影响能够在升温或长时间内导致附加分解。温度实际对长期行为地影响程度取决于配方设计;固化剂,抗氧化剂等这些因素以后讨论。 B臭氧 在一个长期的疲劳测试中,有臭氧存在很大程度上会增大裂纹的增长速率和缩短寿命。由于应力集中,弹性体网链在裂纹尖端很容易与臭氧反应,臭氧与主要聚合物分子链的碳-碳双键发生反应引起断链。 当瞬间的能量释放速率超过一个小的起点,就会发生由于臭氧袭击而引起的裂纹增长,这个起点由Gz表示,Gz通常比机械疲劳起点T更小,Gz的值恨得程度上取决于配方设计,特别是抗氧化剂和抗臭氧剂存在。对于没有加入任何这些物质的橡胶来说,Gz = 0.1J/m2,当有抗臭氧剂存在时,Gz会增大10倍或更多,相比较而言,机械疲劳起点大约为T = 50 J/m2,臭氧看起来不影响机械疲劳起点的值,其他化学物质能够以一种类似臭氧的方式侵袭橡胶。Gent和Mrath 研究了在一个很大的范围内温度对臭氧增长速的影响。两个物理量被发现可以控制列为裂纹增长率da/dt,在玻璃化转变温度附近裂纹增长速率是与v温度成比例的,而与臭氧无关。在足够高的温度下(Q-Tg >100°),裂纹增长速率完全依赖于臭氧浓度而与温度无关。总的裂纹增长速率由下列方程式近似的给出

第三章影响疲劳强度的因素.

第三章形响疲劳强度的因素 M料的5?N曲找和報時W限.WffeKMK准)t消试柑W披埒性能- 而实际母件的尺寸、形状利衣Si倘况是各天各样的.勺标准试桦有鞭大雄别. 砂响机械歩件楝劳强哎的WS存la*,只屮七SW猱参丸下衣. £Tr*rF工作温度、工作坏境 ?.待*评应力状态、循环特征、《?效蛊、裁衙交变频率 ?丹■几河彤秋尺寸效应.統口效应 xn-AvruA.袤面光洁度.袤面防AtSb表面强化 材料本■化学成分,金《ffl织,秆《方向.内部缺陷 3J应力集中的影响 在机W琴件中-曲于结构上的《^求-不叩e兔地%花槽河.轴肩.孔.拐你 W口等不连续部分致枝栈面尿默发生灾变,由F零件戒构件几何彤状的不违续而 -JlfeJltXM力大得毛的WffW力的現象称为’?瞰力集> 应力集中对銭芳《腹的影响兀.并H足各种影响W*中 忌上耍作出的W洽?它大大酵低了寧ft的披劳《度。 应力集中降低銭劳僅找的作用町以用载劳缺□集数耒杭征.

任静败荷低Wh-构件耳》应力《丈的严《卅?町以由-理论刈力集中系 ft- £表示,儿可被宣头为険口根誌的ft%应力与切面上的名义应力之比(或最 大fi 变号名义应变之比)即 <5 乂宾力?叩平坤麻R *宁电W?0mi ■“ C2b*2r) 5 A ?净 W 板 tf 2 ? F/2b d ?应力集中对破劳强度的影*9町以用?境劳》1」系ttKe 仪力t F 光淸试件的披劳强12 F ■缺口试件的疲劳强度 織把5SU 牛半均应力和长/fft <100 hftfjiQfte 为址本的披勞缺口系?? HJlQ 衣 ?股悄况N 缺H 韓救超大于1的. -"底劳蛊度"均指金对称《环卞人试样的疲劳强 (1)理论应力集中系数 w O £ Kj ■ ---- J

螺栓组受力分析与计算..

螺栓组受力分析与计算 螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 H1.螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形, 三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方

向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 | 塾〉不令 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距to不得大于下表所推 荐的数值。 扳手空间尺寸 螺栓间距t o 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4, 6, 8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

简述哪些因素对钢材性能有影响

三、简答题 1.简述哪些因素对钢材性能有影响? 化学成分;冶金缺陷;钢材硬化;温度影响;应力集中;反复荷载作用。2.钢结构用钢材机械性能指标有哪几些?承重结构的钢材至少应保证哪几项指标满足要求? 钢材机械性能指标有:抗拉强度、伸长率、屈服点、冷弯性能、冲击韧性; 承重结构的钢材应保证下列三项指标合格:抗拉强度、伸长率、屈服点。3.钢材两种破坏现象和后果是什么? 钢材有脆性破坏和塑性破坏。塑性破坏前,结构有明显的变形,并有较长的变形持续时间,可便于发现和补救。钢材的脆性破坏,由于变形小并突然破坏,危险性大。 4.选择钢材屈服强度作为静力强度规范值以及将钢材看作是理想弹性一塑性材料的依据是什么? 选择屈服强度f y 作为钢材静力强度的规范值的依据是:①他是钢材弹性及塑性工作的分界点,且钢材屈服后,塑性变开很大(2%~3%),极易为人们察觉,可以及时处理,避免突然破坏;②从屈服开始到断裂,塑性工作区域很大,比弹性工作区域约大200倍,是钢材极大的后备强度,且抗拉强度和屈服强度的比例又较 大(Q235的f u /f y ≈1.6~1.9),这二点一起赋予构件以f y 作为强度极限的可靠安 全储备。 将钢材看作是理想弹性—塑性材料的依据是:①对于没有缺陷和残余应力影响的 试件,比较极限和屈服强度是比较接近(f p =(0.7~0.8)f y ),又因为钢材开始屈服 时应变小(ε y ≈0.15%)因此近似地认为在屈服点以前钢材为完全弹性的,即将屈服点以前的б-ε图简化为一条斜线;②因为钢材流幅相当长(即ε从0.15%到2%~3%),而强化阶段的强度在计算中又不用,从而将屈服点后的б-ε图简化为一条水平线。 5.什么叫做冲击韧性?什么情况下需要保证该项指标? 韧性是钢材抵抗冲击荷载的能力,它用材料在断裂时所吸收的总能量(包括弹性和非弹性能)来度量,韧性是钢材强度和塑性的综合指标。在寒冷地区建造的结构不但要求钢材具有常温(℃ 20)冲击韧性指标,还要求具有负温(℃ 0、℃ 20 -或℃ 40 -)冲击韧性指标。

影响金属材料疲劳强度的八大因素和预防措施

影响金属材料疲劳强度的八大因素和预防措施 材料的疲劳强度对各种外在因素和内在因素都极为敏感,外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分、组织状态、纯净度和残余应力等。 这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 01、应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。 这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt : 在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf: 光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。

疲劳缺口敏感度系数q: 疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算: q的数据范围是0~1,q值越小,表征材料对缺口越不敏感。 试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 02、尺寸因素的影响 由于材料本身组织的不均匀性以及内部缺陷的存在,尺寸增加造成材料破坏概率的增加,从而降低材料的疲劳极限。 尺寸效应的存在,是把试验室小试样测得的疲劳数据运用于大尺寸实际零件中的一个重要问题,由于不可能把实际尺寸的零件上存在的应力集中、应力梯度等完全相似地在小试样上再现出来,从而造成试验室结果与某些具体零件疲劳破坏之间的互相脱节。 03、表面加工状态的影响 机加工的表面总存在着高低不平的加工痕迹,这些痕迹就相

影响材料性能的因素

1.0影响材料性能的因素 2.01.1碳当量对材料性能的影响字串9 决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量()较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着 C、Si的量提高,会使珠光体量减少,铁素体量增加。因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。 1.2合金元素对材料性能的影响 在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo等促进珠光体生成元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。 1.3炉料配比对材料的影响字串4 过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:25~35%,废钢:30~35%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制

影响螺栓疲劳强度的因素

影响螺栓疲劳性能的主要因素有以下几点: 1、螺纹牙谷形状和半径尺寸的影响。 螺栓受力时,螺纹牙谷处就会产生应力集中,其值在很大程度上取决于牙谷的形状。改变牙谷的形状,如螺纹的牙谷槽越平滑,应力集中就越小,疲劳强度则越高。一般而言,平底牙谷的螺纹疲劳强度最低。如以圆形牙谷代替平底牙谷,螺栓的疲劳强度便可得到提高。如平底螺纹牙谷的弹性应力集中系数为2.54,而改进的圆弧牙谷为1.52,即后者的牙谷应力集中系数较前者降低40%,从而可以使疲劳强度至少提高20%;如经调质处理的40CrNiMo钢制螺栓,螺纹为M6-1.0的平底牙谷时疲劳强度为95MPa,而采用最大半径为0.1mm的圆弧形牙谷时,其疲劳强度可以提高到120MPa,即提高26%。日本新日铁公司新开发的CD(critical design for fracture)螺栓的疲劳强度提高的幅度更大,高达100%,CD螺栓的主要特点是螺母内螺纹的牙峰高度逐渐降低,以使其受力更均匀。 2、螺纹表面粗糙度的影响。 螺纹的表面粗糙度对螺栓的疲劳寿命影响很大。如螺纹为M6-1.0的40CrNiMo钢制螺栓,其粗糙度由0.08~0.16降低到0.63~1.35时,疲劳强度下降33%;螺纹为M12-1.5的螺栓,其表面粗糙度由0.08~0.16降低到0.16~0.32时,疲劳强度下降21%。 3、螺纹滚丝工序的影响。 滚压螺纹会产生形变强化层和较高的残余压应力,对阻止疲劳裂纹的萌生和早起扩展起到很大的作用;同时,也会降低牙谷的表面粗糙度,因而有利于螺栓疲劳强度的提高。但是,如果滚压螺纹后再进行热处理,就会使上述有利因素消失。所以从改善螺栓疲劳性能的角度考虑,应在热处理后滚压螺纹。但此时存在另一个问题,即螺栓特别是高强度螺栓经过热处理后其硬度通常较高,致使滚丝模具寿命降低。此外,如果滚丝的质量不够好,在螺纹的表面或根部产生微裂纹或类似接触疲劳的剥落现象,则改善螺栓疲劳性能的效果不明显,甚至会降低疲劳性能。 4、钢材冶金缺陷的影响。 原材料表面脱碳,通常是在轧制加热过程中对坯料表面没有有效的保护所

影响弹簧疲劳强度的六个因素

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/6b6263385.html,)影响弹簧疲劳强度的六个因素 弹簧是一种利用弹性来工作的机械零件。用弹性材料制成的零件在外力作用下发生形变,除去外力后又恢复原状。亦作“弹簧”。一般用弹簧钢制成。弹簧的种类复杂多样,按形状分,主要有螺旋弹簧、涡卷弹簧、板弹簧、异型弹簧等。 1、屈服强度材料的屈服强度和疲劳极限之间有一定的关系,一般来说,材料的屈 服强度越高,疲劳强度也越高,因此,为了提高弹簧的疲劳强度应设法提高弹簧材料的屈服强度,或采用屈服强度和抗拉强度比值高的材料。对同一材料来说,细晶粒组织比粗细晶粒组织具有更高的屈服强度。 2、表面状态最大应力多发生在弹簧材料的表层,所以弹簧的表面质量对疲劳强度 的影响很大。弹簧材料在轧制、拉拔和卷制过程中造成的裂纹、疵点和伤痕等缺陷往往是造成弹簧疲劳断裂的原因。 材料表面粗糙度愈小,应力集中愈小,疲劳强度也愈高。材料表面粗糙度对疲劳极限的影响。随着表面粗糙度的增加,疲劳极限下降。在同一粗糙度的情况下,不同的钢种及不同的卷制方法其疲劳极限降低程度也不同,如冷卷弹簧降低程度就比热卷弹簧小。因为钢制热卷弹簧及其热处理加热时,由于氧化使弹簧材料表面变粗糙和产生脱碳现象,这样就降低了弹簧的疲劳强度。 对材料表面进行磨削、强压、抛丸和滚压等。都可以提高弹簧的疲劳强度。 3、尺寸效应材料的尺寸愈大,由于各种冷加工和热加工工艺所造成的缺陷可能性 愈高,产生表面缺陷的可能性也越大,这些原因都会导致疲劳性能下降。因此在计算弹簧的疲劳强度时要考虑尺寸效应的影响。

4、冶金缺陷冶金缺陷是指材料中的非金属夹杂物、气泡、元素的偏析,等等。存在于表面的夹杂物是应力集中源,会导致夹杂物与基体界面之间过早地产生疲劳裂纹。采用真空冶炼、真空浇注等措施,可以大大提高钢材的质量。 5、腐蚀介质弹簧在腐蚀介质中工作时,由于表面产生点蚀或表面晶界被腐蚀而成为疲劳源,在变应力作用下就会逐步扩展而导致断裂。例如在淡水中工作的弹簧钢,疲劳极限仅为空气中的10%~25%。腐蚀对弹簧疲劳强度的影响,不仅与弹簧受变载荷的作用次数有关,而且与工作寿命有关。所以设计计算受腐蚀影响的弹簧时,应将工作寿命考虑进去。 在腐蚀条件下工作的弹簧,为了保证其疲劳强度,可采用抗腐蚀性能高的材料,如不锈钢、非铁金属,或者表面加保护层,如镀层、氧化、喷塑、涂漆等。实践表明镀镉可以大大提高弹簧的疲劳极限。 6、温度碳钢的疲劳强度,从室温到120℃时下降,从120℃到350℃又上升,温度高于350℃以后又下降,在高温时没有疲劳极限。在高温条件下工作的弹簧,要考虑采用耐热钢。在低于室温的条件下,钢的疲劳极限有所增加。 本文摘自变宝网-废金属_废塑料_废纸_废品回收_再生资源B2B交易平台网站; 变宝网官网:https://www.doczj.com/doc/6b6263385.html,/?qx 买卖废品废料,再生料就上变宝网,什么废料都有!

影响材料力学性能测试的因素

影响材料力学性能测试的因素 1 拉伸实验强度和延性丈量的准确度和偏向取决于能否严厉恪守指定实验办法并受设备和材料要素、试样制备和实验、丈量误差的影响。 2 关于相同材料的复验协商分歧取决于材料的平均性、试样制备的反复性、实验条件和拉伸实验参数的测定。 3 可影响实验结果的设备要素包括:拉伸实验机的刚性、减震才能、固有的频率和运动部件重量;力的指针准确度和实验机不同范围内力的运用;恰当的加力速度、用适宜的力使试样对中、夹具的平行度、夹持力、控制力的大小、引伸计的适用性和标定、热的消散(经过夹具、引伸计或辅助安装)等等。 4 能影响实验结果的材料要素包括:实验材料的代表性和平均性、试样型式、试样制备(外表光亮度,尺寸准确度,标距端部过渡圆弧,标距内锥度,弯曲试样,螺纹质量等等)。 a、有些材料对试样外表光亮度十分敏感(见注8) 必需研磨至理想光亮度,或者抛光至得到正确结果。 b、关于铸造的、轧制的、锻造的或其他非加工外表状态的试样,实验结果可能受外表特性影响(见注14)。 c、取自部件或构件隶属部位的试样,像外延局部或冒口,或者独立消费的铸件(例如, 脊形试块)可能产生不具部件或构件代表性的实验结果。 d、试样尺寸可能影响实验结果。关于圆柱形的或矩形的试样,改动试样尺寸普通对屈从强度和抗拉强度影响很小,但假如呈现改动,则可影响上屈从强度、伸长率和断面收缩率。用下式比拟不同试样测定的伸长率值: L0/(A0)1 / 2 ( 1) 其中: L0 = 试样的原始标距 A0 = 试样的原始横截面积 1 具有较小的L0/(A0)1 / 2 比值的试样普通会得出较大的伸长率和断面收缩率,例如矩形拉伸试样的宽度或厚度增加后,状况即如此。 2 坚持L0/(A0)1 / 2r比值固定最小值,但影响不大。由于增加图8比例试样的尺寸可发现伸长率和面积收缩有所增加或减少,这取决于材料和实验条件。 e、标距内有一个允许的1 %的锥度可招致伸长率值降低。1 %的锥度会使伸长率降低15 % 。

影响钢材力学性能的因素2.

2.3影响钢材力学性能的因素 影响钢材力学性能的因素有: 化学成分冶金和轧制过程时效冷作硬化温度 应力集中和残余应力复杂应力状态 1.化学成分 钢的基本元素为铁(Fe),普通碳素钢中占99%,此外还有碳(C)、硅(Si)、锰(Mn)等杂质元素,及硫(S)、磷(P)、氧(O)、氮(N)等有害元素,这些总含量约1%,但对钢材力学性能却有很大影响。 碳:除铁以外最主要的元素。碳含量增加,使钢材强度提高,塑性、韧性,特别是低温冲击韧性下降,同时耐腐蚀性、疲劳强度和冷弯性能也显著下降,恶化钢材可焊性,增加低温脆断的危险性。一般建筑用钢要求含碳量在0.22%以下,焊接结构中应限制在 0.20%以下。 硅:作为脱氧剂加入普通碳素钢。适量硅可提高钢材的强度,而对塑性、冲击韧性、冷弯性能及可焊性无显著的不良影响。一般镇静钢的含硅量为0.10%~0.30%,含量过高(达1%),会降低钢材塑性、冲击韧性、抗锈性和可焊性。 锰:是一种弱脱氧剂。适量的锰可有效提高钢材强度,消除硫、氧对钢材的热脆影响,改善钢材热加工性能,并改善钢材的冷脆倾向,同时不显著降低钢材的塑性、冲击韧性。 普通碳素钢中锰的含量约为0.3%~0.8%。含量过高(达1.0%~1.5%以上)使钢材变脆变硬,并降低钢材的抗锈性和可焊性。 硫:有害元素。引起钢材热脆,降低钢材的塑性、冲击韧性、疲劳强度和抗锈性等。一般建筑用钢含硫量要求不超过0.055%,在焊接结构中应不超过0.050%。 磷:有害元素。虽可提高强度、抗锈性,但严重降低塑性、冲击韧性、冷弯性能和可焊性,

尤其低温时发生冷脆,含量需严格控制,一般不超过0.050%,焊接结构中不超过 0.045%。 氧:有害元素。引起热脆。一般要求含量小于0.05%。 氮:能使钢材强化,但显著降低钢材塑性、韧性、可焊性和冷弯性能,增加时效倾向和冷脆性。一般要求含量小于0.008%。 为改善钢材力学性能,可适量增加锰、硅含量,还可掺入一定数量的铬、镍、铜、钒、钛、铌等合金元素,炼成合金钢。钢结构常用合金钢中合金元素含量较少,称为普通低合金钢。 2.冶金轧制过程 ?按炉种分: 结构用钢我国主要有三种冶炼方法:碱性平炉炼钢法、顶吹氧气转炉炼钢法、碱性侧吹转炉炼钢法。 平炉钢和顶吹转炉钢的力学性能指标较接近,而碱性侧吹转炉钢的冲击韧性、可焊性、时效性、冷脆性、抗锈性能等都较差,故这种炼钢法已逐步淘汰。 ?按脱氧程度分: 沸腾钢、镇静钢和半镇静钢。 沸腾钢脱氧程度低,氧、氮和一氧化碳气体从钢液中逸出,形成钢液的沸腾。沸腾钢的时效、韧性、可焊性较差,容易发生时效和变脆,但产量较高、成本较低;半镇静钢脱氧程度较高些,上述性能都略好;而镇静钢的脱氧程度最高,性能最好,但产量较低,成本较高。 3.其他因素 时效

相关主题
文本预览
相关文档 最新文档