当前位置:文档之家› 抽样信号的拉氏变换

抽样信号的拉氏变换

抽样信号的拉氏变换

拉氏变换及其计算机公式

时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种。 一、拉氏变换的定义 已知时域函数,如果满足相应的收敛条件,可以定义其拉氏变换为 (2-45) 式中,称为原函数,称为象函数,变量为复变量,表示为 (2-46) 因为是复自变量的函数,所以是复变函数。 有时,拉氏变换还经常写为 (2-47) 拉氏变换有其逆运算,称为拉氏反变换,表示为 (2-48)

上式为复变函数积分,积分围线为由到的闭曲线。 二、常用信号的拉氏变换 系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。现复习一些基本时域信号拉氏变换的求取。 (1)单位脉冲信号 理想单位脉冲信号的数学表达式为 (2-49) 且 (2-50) 所以 (2-51) 说明: 单位脉冲函数可以通过极限方法得到。设单个方波脉冲如图2-13所示,脉冲的宽度为,脉冲的高度为,面积为1。当保持面积不变,方波脉冲的宽度趋

于无穷小时,高度趋于无穷大,单个方波脉冲演变成理想的单位脉冲函数。在坐标图上经常将单位脉冲函数 表示成单位高度的带有箭头的线段。 由单位脉冲函数的定义可知,其面积积分的上下限是从到的。因此在求它的拉氏变换时,拉氏变换的积分下限也必须是。由此,特别指明拉氏变换定义式中的积分下限是,是有实际意义的。所以,关于拉氏变换的积分下限根据应用的实际情况有,,三种情况。为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。 (2)单位阶跃信号 单位阶跃信号的数学表示为 (2-52) 又经常写为 (2-53)

由拉氏变换的定义式,求得拉氏变换为 (2-54) 因为 阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉氏变换,其积分下限规定为。 (3)单位斜坡信号 单位斜坡信号的数学表示为 (2-55) 图2-15单位斜坡信号

抽样定理

实验一抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性 2、掌握自然抽样及平顶抽样的实现方法 3、理解低通采样定理的原理 4、理解实际的抽样系统 5、理解低通滤波器的幅频特性对抽样信号恢复的影响 6、理解低通滤波器的相频特性对抽样信号恢复的影响 7、理解平顶抽样产生孔径失真的原理 8、理解带通采样定理的原理 二、实验内容 1、验证低通采样定理原理 2、验证低通滤波器幅频特性对抽样信号恢复的影响 3、验证低通滤波器相频特性对抽样信号恢复的影响 4、验证带通抽样定理原理 5、验证孔径失真的原理

三、实验原理 抽样定理原理:一个频带限制在(0,H f)内的时间连续信号() m t,如 果以T≤H f21 秒的间隔对它进行等间隔抽样,则() m t将被所得到的抽样值完 全确定。(具体可参考《信号与系统》) 我们这样开展抽样定理实验:信号源产生的被抽样信号和抽样脉冲经抽样/保持电路输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。抽样定理实验的原理框图如下: 被抽样信号 抽样脉冲 抽样恢复信号 图1抽样定理实验原理框图 被抽样信号抽样恢复信号 图2实际抽样系统 为了让学生能全面观察并理解抽样定理的实质,我们应该对被抽样信号进行精心的安排和考虑。在传统的抽样定理的实验中,我们用正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种方案放弃了。 另一种方案是采用较复杂的信号,但这种信号不便于观察,如错误!未找到引用源。所示:

被抽样信号抽样恢复后的信号 图3复杂信号抽样恢复前后对比 你能分辨错误!未找到引用源。中抽样恢复后信号的失真吗因此,我们选择了一种不是很复杂,但又包含多种频谱分量的信号:“3KHz正弦波”+“1KHz正弦波”,波形及频谱如所示: 图1被抽样信号波形及频谱示意图 对抽样脉冲信号的考虑 大家都知道,理想的抽样脉冲是一个无线窄的冲激信号,这样的信号在现实系统中是不存在的,实际的抽样脉冲信号总是有一定宽度的,很显

傅里叶变换和数据采集

如果一个快速傅里叶变换的采样频率是N f 赫兹,那么这个变换系统所能处理信号的上限频率是2 N f 赫兹。 如果又知道这个变换系统采样N 个数值,那么这个变换系统的频率分辨率就是N f N 赫兹,N 越大,变换系统的分辨率就越高。 对采样序列做FFT 变换之后,得到一个N 个元素的序列{}n X ,假 设是{0X …1N X -},那么0X 代表直流成分,实际直流成分的大小是 0X N 。对于其它元素,以n X 为例,它代表信号的频率是 N n f N ?,信号的实际幅值是2n X N 。这里所得到的序列只有前半部分对实际测试有用,即实际需要{0X …21N X -}。 做FFT 变换后得到的图形,即可以看出原始信号中的周期成分,也可看出原始信号中的非周期成分的频谱。下图是矩形脉冲叠加三个正弦信号的FFT 变换图形。

图片中,通过正弦谱线的高度可以计算正弦成分的幅值;但是非周期成分的谱线高度代表什么? “(1)对于时间有限连续信号进行傅里叶分析,将DFT 变换后的结果乘以系数s T ,即可得到其近似频谱。 (2)由频谱合成波形。如果已知某信号的频谱在正负频率范围内共占据频带s f ,利用IDFT 计算之结果乘以系数s f 即可获得其近似的 时间波形。”Page151《信号与系统》下册 同一信号在时域和频域上计算所得的能量相等,所以这个条件就是验证非周期信号FFT 变换后纵轴坐标的刻度。 数据采集系统的参数选取步骤 ① 首先选择采样频率。信号中的最高频率成分是max f ,那么采集系统 的最低采样频率必须满足max 2s f f >; ② 采样点数的确定。采样点数需要根据系统的频率分辨率指标f ?确定,s f N f =?; ③ 采样的周期就是s N f τ=。

信号与系统MATLAB仿真拉普拉斯变换

信号系统MATLAB 仿真 ——拉普拉斯变换 实验名称:离散系统的S 域分析与MATLAB 实现 实验目的:1掌握用MATLAB 实现信号的拉氏变换以及逆拉氏变换; 2通过用MATLAB 分析系统的仿真,比较拉氏变换及傅里 叶变换,分析信号的频谱特性。 实验内容: 一、 用MATLAB 绘制拉普拉斯变换的曲面图 例1:已知连续时间信号f (t ) =sin(t)()t ε,求出该信号的拉普拉斯变换,并用MATLAB 绘制拉普拉斯变换的曲面图。 解: 该信号的拉普拉斯变换为(注:题中e (t )当作阶跃函数t ε()处理): ()()2()sin()2()2111()21,(,)1st jt jt st s j t s j t F s t t e dt e e t e dt j e e t dt j j s j s j j j s εεε+∞--∞-+∞ --∞---++∞-∞ =()-=()-=()=--+=?>?>-+??? Matlab 仿真: clf a=-0.5:0.08:0.5; b=-1.99:0.08:1.99; [a,b]=meshgrid(a,b); d=ones(size(a)); c=a+i*b; c=c.*c;

c=1./c; c=abs(c); mesh(a,b,c); surf(a,b,c); axis([-0.5,0.5,-2,2,0,15]); title('单边正弦信号拉氏变换曲面图'); colormap(hsv); 二、 由拉普拉斯曲面图观察频域与复频域的关系 例2:试利用MATLAB 绘制信号()()(2)f t t t εε=--的拉普拉斯变换的曲面图,观察曲面图在虚轴剖面上的曲线,并将其与信号傅里叶变换F ( jw )绘制的振幅频谱进行比较。 解: 该信号的拉普拉斯变换: (2)222()22(2)111,(0)st st st s t s s s F s t e dt t e dt t e dt t e e d t e e s s s εεεε+∞-+∞--∞-∞+∞-+∞----∞-∞--=()-(-)=()-(-)--=-=?>???? matlap 仿真: Clf; a=-0:0.1:5; b=-20:0.1:20; [a,b]=meshgrid(a,b); c=a+i*b; c=(1-exp(-2*c))./c;

抽样定理

第一章信源编码技术 实验一抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性。 2、掌握自然抽样及平顶抽样的实现方法。 3、理解低通采样定理的原理。 4、理解实际的抽样系统。 5、理解低通滤波器的幅频特性对抽样信号恢复的影响。 6、理解低通滤波器的相频特性对抽样信号恢复的影响。 7、理解带通采样定理的原理。 二、实验器材 1、主控&信号源、3号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 图1-

1 抽样定理实验框图 2、实验框图说明 抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关S1切换输出的。 抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。 要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。 四、实验步骤 实验项目一抽样信号观测及抽样定理验证 概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。调节主控模块的W1使A-out输出峰峰值为3V。 3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。 4、实验操作及波形观测。 (1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。

抽样定理

实验一 抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性 2、掌握自然抽样及平顶抽样的实现方法 3、理解低通采样定理的原理 4、理解实际的抽样系统 5、理解低通滤波器的幅频特性对抽样信号恢复的影响 6、理解低通滤波器的相频特性对抽样信号恢复的影响 7、理解平顶抽样产生孔径失真的原理 8、理解带通采样定理的原理 二、实验内容 1、验证低通采样定理原理 2、验证低通滤波器幅频特性对抽样信号恢复的影响 3、验证低通滤波器相频特性对抽样信号恢复的影响 4、验证带通抽样定理原理 5、验证孔径失真的原理 三、实验原理 抽样定理原理:一个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤ H f 21 秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。(具体可参考《信号与系统》) 我们这样开展抽样定理实验:信号源产生的被抽样信号和抽样脉冲经抽样/保持电路

输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。抽样定理实验的原理框图如下: 抽样/ 保持 被抽样信号 抽样脉冲 低通滤波器抽样恢复信号 图1抽样定理实验原理框图 抽样/保持 被抽样信号 抽样脉冲 低通滤波器抽样恢复信号低通滤波器 图2实际抽样系统 为了让学生能全面观察并理解抽样定理的实质,我们应该对被抽样信号进行精心的安排和考虑。在传统的抽样定理的实验中,我们用正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种方案放弃了。 另一种方案是采用较复杂的信号,但这种信号不便于观察,如图所示: 被抽样信号抽样恢复后的信号 图3复杂信号抽样恢复前后对比 你能分辨图中抽样恢复后信号的失真吗? 因此,我们选择了一种不是很复杂,但又包含多种频谱分量的信号:“3KHz正弦波”+“1KHz正弦波”,波形及频谱如所示:

用快速傅里叶变换对信号进行频谱分析

实验二 用快速傅里叶变换对信号进行频谱分析 一、实验目的 1.理解离散傅里叶变换的意义; 2.掌握时域采样率的确定方法; 3.掌握频域采样点数的确定方法; 4.掌握离散频率与模拟频率之间的关系; 5.掌握离散傅里叶变换进行频谱分析时,各参数的影响。 二、实验原理 序列的傅里叶变换结果为序列的频率响应,但是序列的傅里叶变换是频率的连续函数,而且在采用计算机计算时,序列的长度不能无限长,为了便于计算机处理,作如下要求:序列x (n )为有限长,n 从0~N -1,再对频率ω在0~2π范围内等间隔采样,采样点数为N ,采样间隔为2π/N 。第k 个采样点对应的频率值为2πk /N 。可得离散傅里叶变换及其逆变换的定义为 ∑-=-=1 02)()(N n n N k j e n x k X π (1) ∑-==1 02)(1)(N k k N n j e k X N n x π (2) 如果把一个有限长序列看作是周期序列的一个周期,则离散傅里叶变换就是傅里叶级数。离散傅里叶变换也是周期的,周期为N 。 数字频率与模拟频率之间的关系为 s f f /2πω=,即s s T f f πωπω22== (3) 则第k 个频率点对应的模拟频率为 N kf NT k T N k f s s s k ==?=ππ212 (4) 在用快速傅里叶变换进行频谱分析时,要确定两个重要参数:采样率和频域采样点数,采样率可按奈奎斯特采样定理来确定,采样点数可根据序列长度或频率分辨率△f 来确定 f N f s ?≤,则f f N s ?≥ (5) 用快速傅里叶变换分析连续信号的频谱其步骤可总结如下: (1)根据信号的最高频率,按照采样定理的要求确定合适的采样频率f s ; (2)根据频谱分辨率的要求确定频域采样点数N ,如没有明确要求频率分辨率,则根据实际需要确定频率分辨率; (3)进行N 点的快速傅里叶变换,最好将纵坐标根据帕塞瓦尔关系式用功率来表示,

通信原理MATLAB验证低通抽样定理实验报告

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤及原理 1、对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。 2、设连续信号的的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。 四、实验内容 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)

2、对信号进行采样,得到采样序列,画出采样频率分别为10Hz,20 Hz,50 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 五、实验仿真图 (1) x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)的时域波 形及幅频特性曲线。 clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df; subplot(2,1,1) plot(t,x)

拉氏变换

控制原理补充讲义——拉氏变换 拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。 一、拉氏变换与拉氏及变换的定义 1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作: 称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件): 1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。2)当时, ,M,a为实常数。 2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。 —拉氏反变换符号 关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。 二、典型时间函数的拉氏变换 在控制系统分析中,对系统进行分析所需的输入信号常可化简成一个或几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。 注意:六大性质一定要记住 1.单位阶跃函数

2.单位脉冲函数 3.单位斜坡函数 4.指数函数 5.正弦函数sinwt 由欧拉公式: 所以,

6.余弦函数coswt 其它的可见下表:拉氏变换对照表

三、拉氏变换的性质 1、线性性质 若有常数k 1,k 2 ,函数f 1 (t),f 2 (t),且f 1 (t),f 2 (t)的拉氏变换为F 1 (s),F 2 (s), 则有:,此式可由定义证明。 2、位移定理 (1)实数域的位移定理 若f(t)的拉氏变换为F(s),则对任一正实数a有 , 其中,当t<0时,f(t)=0,f(t-a)表示f(t)延迟时间a. 证明:, 令t-a=τ,则有上式= 例:求其拉氏变换

通信原理抽样定理

湖南农业大学课程论文 学院:班级: 姓名:学号: 课程论文题目:基于SystemView的抽样定理验证仿真设计与分析课程名称: 评阅成绩: 评阅意见: 成绩评定教师签名: 日期:年月日

f H f t ) (f H f H f L f L 基于SystemView 的抽样定理验证的仿真设计与分析 学生: () 摘 要:本文阐述了抽样定理的基本原理,并利用SystemView 动态仿真软件进行抽样定理验证的仿真设计。 在SystemView 动态仿真软件上分别建立了低通、带通信号的采样与恢复的仿真系统,通过设置不同的采样频率,分别得到了两种信号在不同频率的情况下信号的恢复波形,通过源信号波形与恢复波形比较,并观察信号的失真程度,从而直观地验证抽样定理。 关键词:抽样定理;低通滤波器;带通滤波器;抽样脉冲 一、引言 SystemView 是ELANIX 公司推出的一个用于现代工程与科学系统设计及仿真的动态系统分析平台。从滤波器设计、信号处理、完整通信系统的设计与仿真,直到一般的系统数学模型建立等各个领域,SystemView 在友好而功能齐全的窗口环境下,为用户提供了几百种功能模块,能满足各种各种功能的实现。 SystemView 的库资源十分丰富,包括含若干图标的基本库(Main Library)及专业库(Optional Library),基本库中包含多种信号源、接收器、加法器、乘法器,各种函数运算器等;专业库有通信(Communication)、逻辑(Logic)、数字信号处理(DSP)、射频/模拟(RF /Analog)等;在系统设计和仿真分析方面,SystemView 还提供了一个真实而灵活的窗口用以检查、分析系统波形。在窗口内、可以通过鼠标方便地控制内部数据的图形放大、缩小、滚动等。另外,分析窗口还带有一个功能强大的“接受计算器”。可以完成对仿真运行结果的各种运算、谱分析、滤波[1]。综上,SystemView 是一个功能强大、用途广泛的软件,特别适合于系统的仿真与设计。本文使用SystemView 构建通、带通信号的采样与恢复的仿真系统,并通过其分析窗口观察比较源信号波形和恢复波形,从而验证了抽样定理。 二、抽样定理概述 抽样定理是模拟信号数字化传输的理论基础,它告诉我们:如果对某一带宽的有限 时间连续信号(模拟信号)进行抽样,且在抽样率达到一定数值时,根据这些抽样值可以在接收端准确地恢复原信号。也就是说,要传输模拟信号不一定传输模拟信号本身,只需传输按抽样定理得到的抽样值就可以了。对于低通型和带通型模拟信号,分别对应不同的抽样定理,抽样定理是模拟信号数字化的理论基础。 对上限频率为的低通型信号,低通抽样定理要求抽样频率应满足[2]: (1) 对下限频率为 f L 、上限频率为 的带通型信号,带通抽样定理要求抽样频率满 足: (2) 其中,公式(1) 为一个频带限制在 内的时间连续信号 的 上限频率。公式(2) 为信号带宽,n 为整数时, 。 当 时,无论带通型信号的和为何值,只需将抽样频率设定在2B ,理论上就不会发生抽样后的频谱重叠,而不像低通抽样定理要求的必须为上限频率的2倍以上。两种信号的抽样与恢复,只要抽样频率分别满足公式(1)和公式(2),抽样后恢复的波形就不会 ]1[2n k B f s +?≥H s f f 2≥),0(f H L H f f B -=1 0<≤k nB f H =

第三章傅立叶变换习题复习过程

第三章傅立叶变换 第一题选择题 1.连续周期信号f (t )的频谱F(w)的特点是 D 。 A 周期连续频谱 B 周期离散频谱 C 非周期连续频谱 D 非周期离散频谱 2.满足抽样定理条件下,抽样信号f s (t)的频谱)(ωj F s 的特点是 (1) (1)周期、连续频谱; (2)周期、离散频谱; (3)连续、非周期频谱; (4)离散、非周期频谱。 3.信号的频谱是周期的连续谱,则该信号在时域中为 D 。 A 连续的周期信号 B 离散的周期信号 C 连续的非周期信号 D 离散的非周期信号 4.信号的频谱是周期的离散谱,则原时间信号为 (2) 。 (1)连续的周期信号 (2)离散的周期信号 (3)连续的非周期信号 (4)离散的非周期信号 5.已知f (t )的频带宽度为Δω,则f (2t -4)的频带宽度为( 1 ) (1)2Δω (2)ω?2 1 (3)2(Δω-4) (4)2(Δω-2) 6.若=)(1ωj F F =)()],([21ωj F t f 则F =-)]24([1t f ( 4 ) (1)ωω41)(21j e j F - (2)ωω41)2 (21j e j F -- (3)ωωj e j F --)(1 (4)ωω21)2 (21j e j F -- 7.信号f (t )=Sa (100t ),其最低取样频率f s 为( 1 ) (1)π100 (2)π 200 (3)100π (4)200 π 8.某周期奇函数,其傅立叶级数中 B 。 A 不含正弦分量 B 不含余弦分量 C 仅有奇次谐波分量 D 仅有偶次谐波分量 9.某周期偶谐函数,其傅立叶级数中 C 。 A 无正弦分量 B 无余弦分量 C 无奇次谐波分量 D 无偶次谐波分量 10.某周期奇谐函数,其傅立叶级数中 C 。 A 无正弦分量 B 无余弦分量 C 仅有基波和奇次谐波分量 D 仅有基波和偶次谐波分量 11.某周期偶函数f(t),其傅立叶级数中 A 。

常用函数傅里叶变换

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。 怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。 线性系统(齐次性,叠加定理) 时不变系统 对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。 例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0) -()= ()(t-)d f t f τδττ∝∝? 的响应为-y()=()(-)t f h t d τττ∝ ∝ ? 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积 总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示 连续时间信号和系统的频域分析 时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。都是把信号分解为大量单一信号的组合。

周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数 n A sin F = T x x τ 其中0=2 nw x τ。 取样函数sin ()=x S a x 。产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。 第二:谱线的间距是0w .。零点是0=2nw x τ,02w =T π是谱的基波频率。如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。 傅里叶变换:非周期函数 正变换:--F jw)= ()iwt f t e dt ∝ ∝?( 反变换:-1()=()2jnwt f t F jw e dw π ∝∝ ? 常用函数的傅里叶变换(典型非周期信号的频谱)

傅里叶变换的基本性质.

傅里叶变换的基本性质(一) 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、线性 傅里叶变换是一种线性运算。若 则 其中a和b均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数。 解因 由式(3-55)得 二、对称性 若则 证明因为 有 将上式中变量换为x,积分结果不变,即

再将t用代之,上述关系依然成立,即 最后再将x用t代替,则得 所以 证毕 若是一个偶函数,即,相应有,则式(3-56) 成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数。式中的表示频谱函数坐标轴必须正负对调。例如: 例3-7若信号的傅里叶变换为 试求。 解将中的换成t,并考虑为的实函数,有 该信号的傅里叶变换由式(3-54)可知为

根据对称性 故 再将中的换成t,则得 为抽样函数,其波形和频谱如图3-20所示。 三、折叠性 若 则 四、尺度变换性 若 则 证明因a>0,由

令,则,代入前式,可得 函数表示沿时间轴压缩(或时间尺度扩展) a倍,而则表示 沿频率轴扩展(或频率尺度压缩) a倍。 该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。 例3-8已知,求频谱函数。 解前面已讨论了的频谱函数,且 根据尺度变换性,信号比的时间尺度扩展一倍,即波形压缩了一半,因此其频谱函数 两种信号的波形及频谱函数如图3-21所示。

典型信号的傅里叶变换

例9.1 试将图9.3中所示的非正弦周期信号(称为方波信号)展成傅里叶级数。 解 根据图上所示信号的波形,可知其既对称于纵轴,又具有半波对称性质,所以它是兼有奇谐波函数性质的偶函数。依照上述定理,此信号的傅里叶级数中必定只含有余弦的奇次谐波项,因此只需按公式 ()2 04cos T km A f t k tdt T ω= ? 计算A km 。 对图上的波形图可以写出 ()04 42 T A t f t T T A t ?

故有 4044444sin 2sin T T km T A A B t k tdt t A k tdt T T T T ωω?? = -- ??? ?? 参照积分公式 211 sin sin cos x axdx ax x ax a a = -? 可算出 22 2281,5,9,83,7,11km A k k B A k k ππ ?=??=??-=??L L 于是所欲求的傅里叶级数 ()2222 8111sin sin 3sin 5sin 7357A f t t t t t ωωωωπ?? = -+-+ ??? L 。 例9.3 已知一如图9.5所示的信号波形,试求其傅里叶级数。 图9.5 例9.3用图 解 此信号对原点对称,是奇函数,且又是半波横轴对称,所以其傅里叶级数仅是正弦奇次谐波分量组成。由于 ()022 T A t f t T A t T ?

信号与系统实验6拉普拉斯变换

实验六 拉普拉斯变换及其逆变换 一、目的 (1)掌握连续系统及信号拉普拉斯变换概念 (2)掌握利用MATLAB 绘制系统零极点图的方法 (3)掌握利用MATLAB 求解拉普拉斯逆变换的方法 二、拉普拉斯变换曲面图的绘制 连续时间信号)(t f 的拉普拉斯变换定义为: ?+∞ -=0)()(dt e t f s F st (6-1) 其中ωσj s +=,若以σ为横坐标(实轴),ωj 为纵坐标(虚轴),复变量s 就构成了一个复平面,称为s 平面。 显然,)(s F 是复变量s 的复函数,为了便于理解和分析)(s F 随s 的变化规律,可以将)(s F 写成: )()()(s j e s F s F ?= (6-2) 其中,)(s F 称为复信号)(s F 的模,而)(s ?则为)(s F 的幅角。 从三维几何空间的角度来看,)(s F 和)(s ?对应着复平面上的两个平面,如果能绘出它们的三维曲面图,就可以直观地分析连续信号的拉普拉斯变换)(s F 随复变量s 的变化规律。 上述过程可以利用MATLAB 的三维绘图功能实现。现在考虑如何利用MATLAB 来绘制s 平面的有限区域上连续信号)(t f 的拉普拉斯变换)(s F 的曲面图,现以简单的阶跃信号)(t u 为例说明实现过程。 我们知道,对于阶跃信号)()(t u t f =,其拉普拉斯变换为s s F 1 )(=。首先,利用两 个向量来确定绘制曲面图的s 平面的横、纵坐标的范围。例如可定义绘制曲面图的横坐标范围向量x1和纵坐标范围向量y1分别为: x1=-0.2:0.03:0.2; y1=-0.2:0.03:0.2; 然后再调用meshgrid()函数产生矩阵s ,并用该矩阵来表示绘制曲面图的复平面区域,对应的MATLAB 命令如下: [x,y]=meshgrid(x1,y1); s=x+i*y; 上述命令产生的矩阵s 包含了复平面2.02.0<<-σ, 2.02.0<<-ωj 范围内以时间间隔0.03取样的所有样点。 最后再计算出信号拉普拉斯变换在复平面的这些样点上的值,即可用函数mesh()绘出其曲面图,对应命令为: fs=abs(1./s); mesh(x,y,fs); surf(x,y,fs); title('单位阶跃信号拉氏变换曲面图'); colormap(hsv); axis([-0.2,0.2,-0.2,0.2,0.2,60]); rotate3d; 执行上述命令后,绘制的单位阶跃信号拉普拉斯变换曲面图如图6-1所示。

傅里叶级数 傅里叶变换 抽样定理 解释

一、周期信号的傅里叶级数分析 已知()[]Someting t f =,那么它就可以表示为如下形式: ()[]∑∞ =++=1110)sin()cos(n n n t nw b t nw a a t f ----------------------------------------- 公式(1.1) 其中:? += T t t dt t f T a 00 )(10、? += T t t n dt t nw t f T a 00 )cos()(2 1、?+= T t t n dt t nw t f T b 00 )sin()(2 1 ------------------------------------------ 公式(1.2) 二、狄利克雷条件(存在傅里叶级数的条件) (1)有限个间断点 (2)有限个极大值、极小值 (3)绝对可积 三、傅里叶级数的另外写法 C 型(这样叫比较形象): ()[]∑∞ =++=110)cos(n n n t nw c c t f ? ----------------------------------------------------公式(3.1) D 型: ()[]∑∞ =++=1 10)sin(n n n t nw d d t f θ ----------------------------------------------------公式(3.2) 观察以上两个公式和公式<公式(1.1)>不难发现: ;000a d c == ;2 2n n n n b a d c +== n n n n n d c a θ?sin cos ?=?=; n n n n n d c b θ?cos sin ?=?-=; n n n n n n a b b a -== ?θtan ,tan 。 四、指数形式的级数 ()[]∑∞ -∞ == n t jnw e nw F t f 1)(1 ----------------------------------------------------公式(4.1) 对比公式(1.1)不难发现其中 只要)(21)(1n n jb a nw F -= 、)(21 )(1n n jb a nw F +=-就可以满足了 所以dt e t f T t f T nw F t jnw T t t T t t 10000)(1=dt jsin(nwt)]-[cos(nwt))(1)(1-++??=----公式(4.2)

拉氏变换、传递函数、数学模型

拉普拉斯变换的数学方法 一、拉氏变换与拉氏及变换的定义 1、拉氏变换:设有时间函数()t F ,其中0t ≥,则f(t)的拉氏变换记作: ?∞ -==0 st dt e )t (f )s (F )]t (f [L 称L —拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。 f(t)—原函数 拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件): 1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。 2)当∞→t 时,at Me )t (f ≤,M ,a 为实常数。 2、拉氏反变换:将象函数F (s )变换成与之相对应的原函数f(t)的过程。 ?+σ-σ-π= =jw jw st 1ds e )s (F j 21)]s (F [L )t (f 1L -—拉氏反变换符号 关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。 二、典型时间函数的拉氏变换 在实际中,对系统进行分析所需的输入信号常可化简成一个成几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。 1.单位阶跃函数 ()[]()s 1e s 1 dt e 0dt e .t 10t 1L 0 st st st =-=???∞=???∞=∞ --- 2.单位脉冲函数 ()?? ?=∞ ≠=δ0 t 0t 0t ()?? ?=10t 10 t 0t ≥?

?∞ -=δ=δ0 st 1dt e )t ()]t ([L 3.单位斜坡函数 4.指数函数at e ??∞ ∞ ----= ==0 t )a s (st at at a s 1e dt e e ]e [L 5.正弦函数sinwt 由欧拉公式:wt sin j wt cos e jwt += wt sin j wt cos e jwt -=- 所以,)e e (j 21wt sin jwt jwt --= 2 2 0t )jw s (t )jw s (0 st jwt jwt w s w )jw s 1jw s 1(j 21dt )e e (j 21dt e )e e (j 21]wt [sin L +=+--=-= -=?? ∞+---∞ -- 6.余弦函数coswt )e e (2 1wt cos jwt jwt -+= 2 2 w s s ]wt [cos L += 其它的可见表2-1:拉氏变换对照表 ()?? ?≥<=0 t t 0t 0t f []2 st st st s 1 dt e te s 1 dt te t L =???? ??--==-∞ ∞--∞ ? ?

周期信号的傅里叶变换

周期信号的傅里叶变换 周期信号虽然不满足绝对可积的条件,但其傅里叶变换是存在的。由于周期信号频谱是离散的,所以它的傅里叶变换必然也是离散的,而且是由一系列冲激信号组成。下面先讨论几种常见的周期信号的傅里叶变换,然后再讨论一般周期信号的傅里叶变换。 复指数信号的傅里叶变换 对于复指数信号 t j e t f 0)(ω±= ∞<<∞-t 因为 )(21ωπδ? 由频移性 ?? ? ??+?-?-)(21)(210000ωωπδωωπδωωt j t j e e (3-76)

复指数信号是表示一个单位长度的相量以固定的角频率ω0随时间旋转,经傅里叶变换 后,其频谱为集中于0ω,强度为π2的冲激。这说明信号时间特性的相移对应于频域中 的频率转移。 二、余弦、正弦信号的傅里叶变换 对于余弦信号 2cos )(0001t j t j e e t t f ωωω-+= = ∞<<∞-t 其频谱函数 [])(2)(22 1 )(001 ωωπδωωπδω++-=j F [] )()(00ωωδωωδπ++-= (3-77) 对于正弦信号 j e e t t f t j t j 2sin )(0002ωωω--= = ∞<<∞-t 有

[])(2)(221 )(002ωωπδωωπδω+--= j j F [] )()(00ωωδωωδπ--+=j (3-78) 它们的波形及其频谱如图3-25所示。 ω 00ω 图 3 - 25 三、单位冲激序列)(t T δ的傅里叶变换 若信号)(t f 为单位冲激序列,即 ∑∞ -∞ =-== =n T nT t t t f )()()(δδ (3-79) 则其傅里叶级数展开式为

拉氏变换及应用

§2-3拉普拉斯变换及其应用 时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种。 一、拉氏变换的定义 已知时域函数,如果满足相应的收敛条件,可以定义其拉氏变换为 (2-45) 式中,称为原函数,称为象函数,变量为复变量,表示为 (2-46) 因为是复自变量的函数,所以是复变函数。 有时,拉氏变换还经常写为 (2-47) 拉氏变换有其逆运算,称为拉氏反变换,表示为 (2-48) 上式为复变函数积分,积分围线为由到的闭曲线。 二、常用信号的拉氏变换 系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。现复习一些基本时域信号拉氏变换的求取。 (1)单位脉冲信号

理想单位脉冲信号的数学表达式为 (2-49) 且 (2-50) 所以 (2-51) 说明: 单位脉冲函数可以通过极限方法得到。设单个方波脉冲如图2-13所示,脉冲的宽度为,脉冲的高度为,面积为1。当保持面积不变,方波脉冲的宽度趋于无穷小时,高度趋于无穷大,单个方波脉冲演变成理想的单位脉冲函数。 在坐标图上经常将单位脉冲函数 表示成单位高度的带有箭头的线段。 由单位脉冲函数的定义可知,其面积积分的上下限是从到的。因此在求它的拉氏变换时,拉氏变换的积分下限也必须是。由此,特别指明拉氏变换定义式中的积分下限是,是有实际意义的。所以,关于拉氏变换的积分下限根据应用的实际情况有,,三种情况。为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。

(2)单位阶跃信号 单位阶跃信号的数学表示为 (2-52) 又经常写为 (2-53) 由拉氏变换的定义式,求得拉氏变换为 (2-54) 因为 阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉氏变换,其积分下限规定为。 (3)单位斜坡信号 单位斜坡信号的数学表示为 (2-55) 图2-15单位斜坡信号 另外,为了表示信号的起始时刻,有时也经常写为 (2-56)

相关主题
文本预览
相关文档 最新文档