当前位置:文档之家› 数学期望及其应用

数学期望及其应用

数学期望及其应用
数学期望及其应用

数学期望及其应用 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

本科生毕业论文

题目: 数学期望的计算方法与实际应用

专业代码: 070101

原创性声明

本人郑重声明: 所提交的学位论文是本人在导师指导下, 独立进行研究取得的成果. 除文中已经注明引用的内容外, 论文中不含其他人已经发表或撰写过的研究成果, 也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料. 对本文的研究做出重要贡献的个人和集体, 均已在文中以明确方式标明. 本人承担本声明的相应责任.

学位论文作者签名: 日期

指导教师签名: 日期

目录

摘要

数学期望简称期望,又称均值,是概率论中一项重要的数字特征,它代表了随机变量总体取值的平均水平。数学期望的涉及面非常之大,广泛应用于实际生活中的各个领域。在实际生活中,有许多问题都可以直接或间接的利用数学期望来解决。其意义是运用对实践中抽象出来的数学模型进行分析的方法,从而达到认识客观世界规律的目的,为进一步的决策分析等提供准确的理论依据。

本文从数学期望的内涵出发,介绍了数学期望的定义、性质,介绍了数学期望的几种计算方法并举以实例,通过数学期望在医学疾病普查、体育比赛和经济问题中的应用的探讨。特别是在经济问题方面,本文又详细分为免费抽奖问题、保险公司获利问题、决定生产批量问题、机器故障问题、最佳进货量问题和求职决策问题,试图初步说明数学期望在实际生活中的重要作用,几个例子将数学期望与实际问题结合,用具体实例说明利用数学期望方法解决实际问题的可行性,体现了数学期望在生活中的应用。

关键词:概率论与数理统计;数学期望;性质;计算方法;应用

Abstract

Mathematical expectation or expectations, also known as average, is very important digital features in the theory of probability, and it represents the overall average value random variables. Mathematical expectation is very big, widely applied in all fields in actual life. In real life, there are a lot of problems can be directly or indirectly solved by using the mathematical expectation. Its meaning is to use mathematical model to carry on the analysis of practice of abstracting

method, so as to achieve the purpose of understanding the objective world rule, in order to provide accurate theoretical basis such as decision analysis.

Based on the connotation of mathematical expectation, this paper introduces the definition and properties of mathematical expectation,and introduces several calculation methods of mathematical expectation and with examples, through the mathematical expectation in the medical disease census, sports, and discussed the application of economic problems. Especially in terms of economy, this paper is divided into free sweepstakes problem, insurance company profits, decided to production batch problems, machine failure problem, best carried out and cover decision problem, and attempts to preliminarily illustrate the important role of mathematical expectation in the actual life,and a few examples combine mathematical expectation and actual problem, with specific example is given to illustrate the feasibility of solving practical problems with mathematical expectation method,and embodies the application of mathematical expectation in life.

Keywords:Probability and mathematical statistics; Mathematical expectation; Properties; Calculation method; application

数学期望的计算方法与实际应用

1.引言

知识来源于人类的实践活动,又反过来运用到改造世界的实践活动中去,其价值也就在于此.面对当今信息时代的要求,我们应当思维活跃,富于创新,既要学习数学知识,更应该重视对所学知识的应用.

在现实生活中,我们常常需要研究各种各样的随机变量.对于一个随机变量,如果掌握了它的概率分布,当然就可以对它进行全面的分析,但是在实际问题中要求出一个随机变量的概率分布往往不是一件容易事.有时甚至是不可能,而有些实际问题我们也不一定非要掌握一个随机变量的概率分布,而只要知道它的某些数字特征就够了,因此并不需要求出它的分布函数.这些特征就是随机变量的数字特征,是随机变量的分布所决定的常数,刻画了随机变量某一方面的性质。例如比较不同班级的某次统考的成绩,通常就是比较各班的平均分;考察某种大批量生产的元件的寿命往往只需知道元件的平均寿命;评定某地区粮食产量的水平时,经常考虑平均亩产量;对一射手进行技术评定时,经常考察射击命中环数的平均值;检查一批棉花的质量时,关心的是棉花纤维的平均长度等.这个重要的数字特征就是数学期望,它是现实生活中“平均值”概念的推广,在现实生活中有重要的作用.

盛骤等人在文献[1]中给我们系统地介绍了数学期望的定义、基本性质等,文献[2——5]中介绍了用特征函数、逐项微分、特殊积分等求解数学期望的方法,解法各具特色,张艳娥等在文献[6]中讨论了数学期望理论在疾病普查中的应用,杨先伟在文献[7]中对数学期望在体育比赛中的应用作了研究,文献[8——12]通过几个例子研究了数学期望在某些经济问题中的应用,内容包括免费抽奖问题、保险公司获利问题、决定生产批量问题、机器故障问题等.

本文介绍了数学期望的定义、性质及其计算方法与技巧,并从数学期望的内涵出发,通过几个例子将数学期望与实际问题结合,用具体实例说明利用数学期望方法解决实际问题的可行性,体现了数学期望在生活中的广泛应用.

2. 数学期望的定义及其性质

数学期望的定义

掷一枚质地均匀的骰子N 次,观察每次出现点数.它是一个随机变量ξ,如果用1N 、2N 、3N 、4N 、5N 、6N 表示出现1、2、3、4、5、6点的次数,那么每次投掷骰子出现点数的平均值为

N

N i 表示事件投掷骰子出现i 点的频率,由于频率具有波动性,因此该平均值也具有波动性,并不能代表每次投掷骰子出现点数的平均值,当N 很大时,N

N i 应稳定于6

1,故该平均值也应该稳定于 那么,这使得平均值是真正的每次投掷骰子出现点数的平均值,他是随机变量ξ的可能取值i x 与所对应的概率i p 乘积的总和,这是一个常数,可以用来描述随机变量ξ的数学特征,称之为ξ的数学期望,记作ξE .

定义1 若离散型随机变量ξ可能取值为()??=,3,2,1i a i ,其分布列为

i p ()??=,3,2,1i ,则当i i i p a ∑∞

=1<∞时,则称ξ存在数学期望,并且数学期望为

∑∞==1i i i p a E ξ,如果∞=∑∞=i i i p a 1

,则数学期望不存在.

定义2 设连续型随机变量ξ的概率密度函数为()x P , 若积分?+∞

-dx x xP )(是一

个有限值,则称积分?+∞∞-dx x xP )(为ξ的数学期望,记作ξE ,即=

ξE ?+∞∞-dx x xP )(.

数学期望的基本性质

设C 、a 、b 为常数,ξ为随机变量,则有如下性质:

性质1 常数C 的数学期望等于本身:C EC =.

证明:以离散随机变量为例来证明,对于连续随机变量可类似地证明.下同, 把常数C 视为概率1取本身值的离散随机变量,即得 C EC =.

性质2 ()C E C E +=+ξξ

证明:设随机变量ξ的概率分布为)(i x P =ξ=)(i x P ,(i =1,2,…)则

()C E x P C x P x x P C x C E i

i i i i i i i +=+=+=+∑∑∑ξξ)()()()(.

性质3 ξξCE C E =)(.

证明:∑∑===i i i

i i i CE x P x C x P Cx C E ξξ)()()(.

性质4 ξξbE a b a E +=+)(.

证明:利用前三个性质得ξξξbE a Eb Ea b a E +=+=+)(.

数学期望的计算方法

方法一:利用数学期望的定义,即定义法

此法是计算数学期望最常用的一种方法.它是先通过数学手段将∑∞

=1k k k p x 转化

成组合数公式、二项式定理或特殊级数的形式,然后求和获解.该方法思路明确,但有时计算比较麻烦.

例1 设X~ U ( a, b) , 求E ( X).

解 X 的概率分布为

X 的数学期望为

方法二: 公式法

对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松分布,超几何分布等),则我们就可以直接利用典型分布的数学期望公式来求此随机变量的期望.

(1) 二点分布:()0

11~p p X -,则()p X E =

(2) 二项分布:),(~p n B X ,01p <<,则np X E =)(

(3) 几何分布:)(~p G X ,则有p

X E 1)(= (4) 泊松分布:)(~λP X ,有λ=)(X E

(5) 超几何分布:),,(~M N n h X ,有N

M n

X E =)( 方法三: 性质法 当一个随机变量的分布较为复杂时,若直接求它的数学期望会很困难,我们可以通过将它转化成比较常见的简单的随机变量之和来解决. 主要是利用数学

期望的性质()∑∑===??? ??n

i i n i i X E X E 1

1来使问题简单化.

例2 将n 个球随机地放入M 个盒子中去,设每个球放入各个盒子是等可能的,求有球盒子数X 的期望.

解 记???=个盒子有球,第个盒子无球,第i 1i 0i X ,i=1,2,3,…,M,则∑==M X X 1

i i 。 ()()n

n n i 1-110??? ??=-==M M M X P ,所以

因而

所以

方法四: 利用逐项微分法

这种方法是对于概率分布中含有参数的随机变量而言的,我们可以通过逐项求微分的方法求解出随机变量的数学期望,关键步骤是对分布列的性质1

1=∑∞

=i i p 两边关于参数进行求导,从而解出数学期望.

例3 设随机变量X 服从几何分布()p k g ,,求()X E .

解 ()()

()n k p p p X P k n ,...,2,1,0,101k =<<-==-

两边对p 求导数得

方法五: 利用条件数学期望公式法

条件分布的数学期望称为条件数学期望,它主要应用于二维随机变量()Y X ,.在()Y X ,为二维离散随机变量场合下,其计算公式为:

或()()()∑=====j j j x X y Y P y x X Y E Y E

在连续型随机变量场合下,条件数学期望同样适用,其计算公式为

例4 设质量()kg m 与加速度()2/m N a 是两个相互独立的随机变量,其概率密

度分别为()()???

????≤≤=???≤≤=10,92,010,2,0X a a y x m m x 其他,其他,试求外力F=ma 的均值. 解 ()()()()a E m E ma E F E ==

例5 设ξ~[]1,0U ,当x =ξ时,η~[]x U ,0,求()ηE .

解 由题意{}10,2

/<<==x x x E ξη, 于是(){}()412/10====??+∞∞-dx x dx x x E E ?ξξηη

方法六: 特殊积分法

连续型随机变量X 的数学期望为()()dx x p x X E ?+∞

∞-=,在计算连续型随机变量X 的数学期望时,常常会用到一些特殊的求积分的性质和方法,如奇函数在对称区间的积分值为0,还有第一换元积分等,都会给我们的计算带来简便.

例6 设随机变量()2,~σμN X ,证明()μ=X E .

证 在()X E 的积分表达式中做变换()dx dz x z σ

σμ1=-=,,即dz dx ?=σ 上式右端第一个积分的被积函数为奇函数,故其积分为0,第二个积分恰为π2.

方法七: 利用特征函数

特征函数的定义:设X 是一个随机变量,称()()

itX e E t =? , t -∞<<+∞,为X 的特征函数,设连续随机变量X 有密度函数()x p ,则X 的特征函数为

根据上式,我们可以求出随机变量分布的特征函数,然后利用特征函数的性质:()()()k k k i X

E 0?=

求出数学期望,即 ()()

i X E 0?'=.

例7设随机变量()2,~σμN X ,求()X E .

解 因为随机变量()2,~σμN X ,则X 的特征函数为

()?

?????-=2exp 22t t i t σμ?, 其一阶导数为

则()μ?i =0',由特征函数的性质得

3 数学期望在实际生活中的应用

在医学疾病普查中的应用

医疗系统的检验人员在实际工作中经常遇到大量人群中普查某种疾病.如甲肝的普查就需要对某地区大量人进行血检.假设需要检查N 个人的血,如果逐人验血,则共需要检验N 次,平均每人一次.若把这N 个人大致分为

N k 组,每组k 个人,把这k 个人的血样混合,首先检验混合血样,平均每人

1k 次,如果结果呈阳性,则在逐个检验,即共需k +1次,平均每人需

1k k +次,当被普查人数众多时,应用分组检验的方法能大大减少检验的次数.

例 某地区的群众患有肝炎的概率为左右,假若要对该地区5000人进行肝炎感染的普查,问用分组检验方法是否比逐人检验减少检查次数.

解 将这5000人分成5000k

组,每组k 个人,每人所需检验的次数为随机变量X ,则X 的概率分布为:

每人的平均所需检验次数的期望为:

E (X )=1k (10.004)k -+1k k

+1(10.004)k ??--?? =1k 0.996k +1-1k 0.996k +1k

-0.996k =1+1k

-0.996k

易见,当k =1,2,3,4,…时,()X E ,即每人平均所需次数小于1,这比逐人检查的次数要少.并且由数学分析的知识可知当k 取16时,最小.即将5000人大致分为每组16人检验即可.

数学期望在体育比赛中应用

随着姚明和易建联在NBA 中取得成功,现在NBA 比赛越来越多地受到中国人的青睐.而由于体育比赛结果的偶然性,使得大家对比赛结果的预测越来越感兴趣.

以2008年爵士队和火箭队在NBA 季后赛的第一轮相遇为例.根据NBA 规

则,比赛是七场四胜制.现在我们就可以提出这样一个问题,假设火箭队爵士每场比赛的获胜率都为50%,那么第一轮比赛结束时两队所需要比赛的场数是多少.

很容易想到,两个队比赛结束的前提就是其中一个对已经获得了4场比赛的胜利.所以上述问题可能的结果又4、5、6、7场四种结果.我们下面应用数学期望的知识进行预测.

首先,计算四种结果所对应的概率.由于每场比赛双方获胜概率一样,所以只需计算其中一对最后乘以二即可.

以两队比赛结束时共赛5场为例,假设火箭最终胜利.即火箭第五场胜利,且前四场恰好胜3场,又火箭每场胜率为50%,应用二项式定律可知,前面四场

火箭恰好胜三场的概率为:()()25.05.015.01

334=-C ;应用概率论中的乘法公式,可知赛五场而火箭获胜的概率为:5.025.0?;所以,第一轮比赛恰好赛五场结束的概率为:25.02125.0=?.

类似的方法,我们可以将另外三个结果对应的概率算出.结束时赛四场的概

率为4(0.5)=;赛六场的概率为:()()[]3125.025.05.015.02

335=??-C ;赛七场的概率为:()()[]

3125.025.05.015.03336=??-C . 设随机变量X 为比赛场数,则可建立X 的分布律:

应用数学期望公式,计算X 的数学期望:

所以,火箭和爵士季后赛第一轮比赛结束估计要赛六场.

众所周知,乒乓球是我们得的国球,中国队在这项运动中具有绝对的优势.现就乒乓球比赛的安排提出一个问题:假设韩国队和中国队比赛,赛制有两种,一种是双方各出3人,三场两胜制,一种是双方各出5人,五场三胜制,哪一种赛制对中国队更有利

由于中国队在这项比赛中的优势,我们不妨设中国队每一位队员对韩国队员的胜率都为60%.根据前面的分析,下面我们只需比较两队的数学期望即可.

在五场三胜制中,中国队要取得胜利,获胜的场数有3、4、5三种结果.我们计算三种结果所对应的概率、应用二项式定律可知,恰好获得三场胜利对应的

概率:()()3465.06.016.03

335=-C ;恰好获得四场对应的概率:()()2592.06.016.01445=-C ;五场全胜得概率:()()07776.06.016.00

555=-C . 设随机变量X 为该赛制下中国队在比赛中获胜的场数,则可建立X 的分布

律:

计算随机变量X 的数学期望:

在三场两胜制中,中国队取得胜利,获胜的场数有2、3两种结果.胜两场对

应的概率为()()432.06.016.01223=-C ;三场全胜的概率为()()216.06.016.00333=-C . 设随机变量Y 为该赛制下中国队在比赛中获胜的场数,则可建立Y 的分布律

E (Y )=?+?= 比较两个期望值,E (X )>E (Y ),所以我们可以得出结论,五场三胜制对中国队更有利.

数学期望在经济问题中的应用

免费抽奖问题

袋中装有大小相同的球20个,10个10分,10个5分,从中摸出10个球,摸出的10个球分数之和即为中奖分数,获奖如下:

一等奖:100分,家电一件,价值2500元

二等奖:50分,家电一件,价值1000元

三等奖:95分,洗发精8瓶,价值176元

四等奖:55分,洗发精2瓶,价值88元

五等奖:60分,洗发精2瓶,价值44元

六等奖:65分,牙膏一盒,价值8元

七等奖:70分,洗衣粉一袋,价值5元

八等奖:85分,香皂一块,价值3元

九等奖:90分,毛巾一条,价值2元

十等奖:75分与80分为优惠奖,仅收成本22元,你将得到洗发精一瓶.

在解答该问题时,表面上看整个活动对顾客有利,一等奖到9等奖是白得

的,只有十等奖收费,但也仅收回成本.事实上,我们用概率只是来分析一下:摸出10个球的分值只有11种情况,用X 表示摸奖者获得的奖励金额数,一等奖即得分100分,对应事件(X =2500),该事件的概率服从超几何分布,

()1020

101010102500C C C X P ==,X 取值分别为2500、1000、176、88、44、8、5、3、2、-22,其概率可以类似求出如下表:用X 的平均值就可以看出获利者,求出数学期望即可.

()098.1010

1

-==∑=k i i D x X E ,表明商家在平均一次的抽奖中,获得元钱.而平均

每个抽奖者将花元钱来享受这种免费抽奖,却没有机会获得大奖.

保险公司获利问题

一年中一个家庭万元被盗的概率是,保险公司开办一年期万元以上家庭财产保险,参加者需要缴纳保险费100元,若在一年内,万元以上财产被盗,保险公司赔偿a元(a<100),试问a如何确定,才能使保险公司期望获利解只考虑保险公司对任意一家参保家庭的获利情况,设ξ表示保险公司对任一参保家庭的收益,则ξ的取值为100或100-a,其分布列为:

根据题意,

E(ξ)=?+(100-a)?

=100 - a > 0

解得a < 10000,又a > 100,所以a∈(100,10000)时保险公司才能期望获

利.

决定生产批量问题

决定生产批量问题是风险型经济决策问题.这种经济决策问题是物流企业进行生产决策经常遇到的.选择何种方案,多少产量直接关系到企业成本的控制,收益的高低,这些问题都是关系到企业管理和运营的重大问题,同时也困扰很多管理者.简易可行的解决方法就是利用期望收益最大的原则进行方案选择:即进行备选方案的收益(或损失)比较,选择收益(或损失)最大(最小)的方案.

例某工厂决定今后5年内生产某电子产品的生产批量,以便及早做好生产前的各项准备工作,根据以往销售统计资料及市场调查和预测知:未来市场出现销路好、销路一般、销路差三种状态的概率分别为、和,若按大、中、小三种不同生产批量投产,今后5年不同销售状态下的益损值如下所示:

试做出分析,以确定最佳生产批量.

解 比较期望益损法是常用的决策方法之一,下面算出每一方案的期望益

损:

()2ξE 比()1ξE 和()3ξE 均大,所以认为选择中批量生产方案为优.

机器故障问题

一部机器一天内发生故障的概率是,机器发生故障则全天停工,如果一周5个工作日均无故障,工厂可获利润10万元,发生一次故障可获利5万元,发生三次或三次以上的故障,则要亏损2万元,求这个工厂每周的期望利润.

解 以η表示一周内机器发生故障的天数,则η是n =5时的二项分布 b

(5,),()k k k C k P -==558,02.0η(k =0,1,2,3,4,5),以ξ表示工厂一周内所获得利润,则

ξ的概率分布为:

故工厂一周的期望利润是万元.

最佳进货量问题

设某一超市经销的某种商品,每周的需求量X 在10至30范围内等可能取

值,该商品的进货量也在10至30范围内等可能取值(每周只在周前进一次货)超市每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元;若供不应求,可从外单位调拨,此时一单位商品可获利300元.试测算进货量多少时,超市可获得最佳利润并求出最大利润的期望值.

分析:由于该商品的需求量(销售量)X 是一个随机变量,它在区间[]30,10上均匀分布,而销售该商品的利润值Y 也是随机变量,它是X 的函数,称为随机变量的函数.本问题涉及的最佳利润只能是利润的数学期望即平均利润的最大值.因此,本问题的解算过程是先确定Y 与X 的函数关系,再求出Y 的期望EY .最后利用极值法求出EY 的极大值点及最大值.

先假设每周的进货量为a ,则

利润Y 的数学期望为:

EY 的最大值3.933352503703503705.7max 2

≈+?+??

? ???-=EY 元 由计算结果可知,周最佳进货量为(单位),最大利润的期望值为元.

求职决策问题

有三家公司为大学毕业生甲提供应聘机会,按面试的时间顺序,这三家公司分别记为A 、B 、C ,每家公司都可提供极好、好和一般三种职位.每家公司根据面试情况决定给求职者何种职位或拒绝提供职位.按规定,双方在面试后要立即做出决定提供,接受或拒绝某种职位,且不许毁约.咨询专家在为甲的学业成绩和综合素质进行评估后,认为甲获得极好、好和一般的可能性依次为、和.三家公司的工资承诺如表:

如果甲把工资作为首选条件,那么甲在各公司面试时,对该公司提供的各种职位应作何种选择

分析:由于面试从A 公司开始,甲在选择A 公司三种职位是必须考虑后面

B 、

C 公司提供的工资待遇,同样在B 公司面试后,也必须考虑C 公司的待遇.因此我们先从C 公司开始讨论.由于C 公司工资3X 期望值为:

再考虑B 公司,由于B 公司一般职位工资只有2500,低于C 公司的平均工资,因此甲在面对B 公司时,只接受极好和好两种职位,否则去C 公司.如此决策时加工资2X 的期望值为:

()30155.027003.029502.039002=?+?+?=X E 元

最后考虑A 公司,A 公司只有极好职位工资超过3015,因此甲只接受A 公司的极好职位.否则去B 公司.

甲的整体决策应该如此:先去A 公司应聘,若A 公司提供极好职位就接受之.否则去B 公司,若B 公司提供极好或好的职位就接受之,否则去C 公司应聘任意一种职位.在这一决策下,甲工资1X 的期望值为:

()31128.030152.035001=?+?=X E 元

4 结论

本文重点讨论了几种简化计算数学期望的方法和技巧,解法各具特色,但不是全部,除了上述一些求期望的方法外,还有“利用重期望公式法”,“利用α函数或β函数法”,“待定系数法”,“利用母函数法”,“利用分布的对称性”等,应该根据具体情况选择相应的方法,应灵活应用.然而,只要对数学期望的基本定义和随机变量分布形式的特点有了透彻的理解,那么,对各种简化计算方法和技巧的应用就会游韧有余了.

本文利用数学期望解决了生活中的一些问题,比如疾病普查问题、抽奖问

题、经济决策问题、生产批量方面的一些问题等,说明了数学期望在生活中的重要作用,它作为一个数学工具被我们广泛的运用着.当然这只是数学期望应用中的一部分而已,还有更多的应用等待我们去发现.

参考文献

[1]盛骤等,概率论与数理统计[M],北京:高等教育出版社,:90~100.

[2]张唯春,浅谈概率论中数学期望的计算方法[J],辽宁交通高等专科学校

报,2008,10(2):41~42.

[3]唐秋晶,蒋传凤,数学期望的几种求法[J],洛阳师范学院学报,2000,19

(5):13~14.

[4]高显彩,张丽慧,数学期望的计算方法[J],枣庄学院学报,2012,29(2):33~36.

[5]肖文华,数学期望的计算方法与技巧[J],湖南工业大学学报,2008,22

(3):98~100.

[6]张艳娥等,数学期望在疾病普查中的应用[J],数理医药学杂志,2003,16

(1):83~84.

[7]杨先伟,数学期望在体育比赛中的应用[J],无锡职业技术学院学报,2009,8

(5):42~43.

[8]廖飞,李楠,数学期望的应用[J],牡丹江师范学院学报(自然科学

版),2007,60(4):63~64.

[9]赵艳侠,数学期望在经济问题中的应用[J],吉林师范大学学报(自然科学

版),2005(5):92~93.

[10]林侗芸,利用数学期望求解经济决策问题[J],龙岩学院学报,2006,24

(6):7~8.

[11]刘小红,例谈数学期望在生活中的应用[J],教育创新学刊,2010:72~73.

[12]段丽凌,浅析数学期望在经济生活中的应用[J],商业现代化,2008.

致谢

本文在老师的督导下得以完成,首先感谢老师,他们不仅教会了我怎样写论文,更让我明白了如何才能成为一名好老师、优秀的科研工作者,他们严谨教学、认真仔细的态度真的是令我十分佩服。

感谢学校学院领导给我们一个好的学习环境来学习,感谢图书馆和网站为我提供资料。感谢这篇论文所涉及到的各位学者。本文引用了数位学者的研究文献,如果没有各位学者的研究成果的帮助和启发,我将很难完成本篇论文的写作。

感谢同学们对我学习生活上各方面的帮助,尤其是我亲爱的舍友,学习上帮助我,生活上关心我,在我写论文的过程中给予我了很多素材,还在论文的撰写和排版过程中提供热情的帮助。

感谢生我养我,含辛茹苦的父母。是你们,为我的学习创造了条件;是你们,一如既往的站在我的身后默默的支持着我。没有你们就不会有我的今天。谢谢你们,我的父亲母亲!

由于我的学术水平有限,所写论文难免有不足之处,恳请各位老师和学友批评和指正!

数学期望在生活中的应用

数学期望在生活中的应用 王小堂保亭中学 摘要:数学期望是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。通过几个例子,阐述了概率论与数理统计中的教学期望在生活中的应用,文章内容包括决策、利润、彩票、医疗等方面的一些实例,阐述了数学期望在经济和实际问题中颇有价值的应用。 关键词:随机变量,数学期望,概率,统计 数学期望(mathematical expectation)简称期望,又称均值,是概率论中一项重要的数字特征,在经济管理工作中有着重要的应用。本文通过探讨数学期望在经济和实际问题中的一些简单应用,以期起到让学生了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。 随机变量的数学期望值: 在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。) 单独数据的数学期望值算法: 对于数学期望的定义是这样的。数学期望 E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi).则:E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn) 很容易证明E(X)对于这几个数据来说就是他们的算术平均值。 1 决策方案问题 决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案Ai(i=1,2,…m)在每个影响因素Sj(j=1,2,…,n)发生的情况下,实施某种方案所产生

数学期望的计算及应用

数学期望的计算及应用 数学与应用数学111 第四小组 引言: 我们知道,随机变量的概率分布是随机变量的一种最完整的数学描述,而数学期望又是显现概率分布特性的最重要的特征数字之一。因此,掌握数学期望的计算并应用他来分析和解决实际问题显得尤为重要。在学习了概率论以后,我们计算数学期望一般有三种方法:1.从定义入手,即∑∞ == 1 )(k k k p x X E ;2. 应用随机变量函数的期望公式 ∑∞ ==1 )())((k k k p x q x q E 3. 利用期望的有关性质。但是还是会碰到许多麻烦,这里我们将 介绍一些解决这些难题的简单方法。在现实生活中,许多地方都需要用到数学期望。如果我们可以在学会怎么解决数学期望的计算之后,将数学期望应用到现实生活中。就可以解决许多问题,例如农业上,经济上等多个方面难以解决的难题。 下面就让我们来看看,除了最常用的三种计算方法之外还有哪些可以计算较为棘手的数学期望的方法。 1. 变量分解法 ] 1[ 如果可以把不易求得的随机变量X 分解成若干个随机变量之和,应用)(...)()()...(2121n n X E X E X E E E X E ++=++再进行求解得值, 这种方法就叫做变量分解法。这种方法化解了直接用定义求数学期望时的难点问题,因为每一种结果比较好计算,分开来计算便可以比较简单的获得结果。 例题1 : 从甲地到乙地的旅游车上载有20位旅客,自甲地开出,沿途有10个车站,如到达一个车站没有旅客下车,就不停车,以X 表示停车次数,求E(X).(设每位旅客在各个车站下车是等可能的) 分析 : 汽车沿途10站的停车次数X 所以可能取值为0,1,….,10,如果先求出X 的分布列,再由定义计算E(X),则需要分别计算{X=0},{X=1},…,{X=10}等事件的概率,计算相当麻烦。注意到经过每一站时是否停车,只有两种可能,把这两种结果分别与0,1对应起来,映入随机变量i X 每一种结果的概率较易求得。把X 分解成若干个随机变量i X 之和,然后应用公式)(...)()()...(2121n n X E X E X E E E X E ++=++就能最终求出E(X)。

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

数学归纳法及其应用举例1

数学归纳法及其应用举例 【本章学习目标】 人们在研究数量的变化时,常常会遇到有确定变化趋势的无限变化过程,这种无限变化过程就是极限的概念与思想,极限是人们研究许多问题的工具。以刘微的“割圆术”为例,圆内接正n 边形的边数无限增加时,正n 边形的周长P n 无限趋近于圆周长2πR 。这里的是个有限多项的数列,人们可以从这个有限多项的数列来探索无穷数列的变化趋势。不论n 取多么大的整数,n P 都是相应的圆周长的近似值,但是我们可以从这些近似值的精确度的无限提高中(限n 无限增大)找出圆周长的精确值2πR 。随着n 的增加,n P 在变化,这可以认为是量变(即只要n 是有限数,n P 都是圆内接正多边形的周长);但是我们可以从这些量变中来发现圆周长。一旦得出2πR ,就是质的变化(即不再是正多边形的周长)。这种从有限中认识无限,从近似中认识精确,从量变中认识质变的思想就是极限的思想。 本章重点内容是: (1)数学归纳法及其应用。 (2)研究性课题:杨辉三角。 (3)数列的极限。 (4)函数的极限。 (5)极限的四则运算。 (6)函数的连续性。 本章难点内容是: (1)数学归纳法的原理及其应用。 (2)极限的概念。 【基础知识导引】 1.了解数学推理中的常用方法——数学归纳法。 2.理解数学归纳法的科学性及用数学归纳法来证明与正整数有关命题的步骤。 3.掌握数学归纳法的一些简单应用。 【教材内容全解】 1.归纳法

前面我们在学习等差数列时,通过等差数列的前几项满足的关系式归纳出等差数列的通项公式。再如根据三角形、四边形、五边形、六边形等的内角和归纳出凸n 边形内角和公式。像这样由一系列有限的特殊事例得出一般结论的推理方法,叫做归纳法。 对于归纳法我们可以从以下两个方面来理解。 (1)归纳法可以帮助我们从具体事列中发现事物的一般规律。 (2)根据考察的对象是全部还是部分,归纳法又分完全归纳法与不完全归纳法。显然等差数列通项公式,凸n 边形内角和公式都是通过不完全归纳法得出的,这些结论是正确的。但并不是所有由不完全归纳法得出的结论都是正确的。这是因为不完全归纳只考察了部分情况,结论不具有普遍性。例如课本62P 数列通项公式22)55(+-=n n a n 就是一个典型。 2.数学归纳法 在生活与生产实践中,像等差数列通项公式这样与正整数有关的命题很多。由于正整数有无限多个,因而不可能对所有正整数一一加以验证。如果只对部分正整数加以验证就得出结论,所得结论又不一定正确,要是找到把所得结论递推下去的根据,就可以把结论推广到所有正整数。这就是数学归纳法的基本思想:即先验证使结论 有意义的最小正整数0n ,如果当0n n =时,命题成立,再假设当 ),(*0N k n k k n ∈≥=时,命题成立(这时命是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于0n 的正整数命题都成立。 由此可知,用数学归纳法证明一个与正整数有关的命题时,要分两个步骤,且两个步骤缺一不可。 第一步递推的基础,缺少第一步,递推就缺乏正确的基础,一方面,第一步再简单,也不能省略。另一方面,第一步只要考察使结论成立的最小正整数就足够了,一般没有必要再多考察几个正整数。 第二步是递推的根据。仅有这一步而没有第一步,就失去了递推的基础。例如,假设n=k 时,等式 成立,就是。那么, 。这就是说,如果n=k 时等式成立, 那么n=k+1时等式也成立。但仅根据这一步不能得出等式对于任何n ∈N*都成立。因为当n=1时,上式左边=2,右边31112=++=,左边≠右边。这说明了缺少第一步这个基础,第二步的递推也就没有意义了。只有把第一步的结论与第二步的结论结合在一起,才能得出普遍性结论。因此,完成一、二两点后,还要做一个小结。 在证明传递性时,应注意: (1)证n=k+1成立时,必须用n=k 成立的假设,否则就不是数学归纳法。应当指出,n=k 成立是假设的,这一步是证明传递性,正确性由第一步可以保证,有了递推这一步,联系第一步的结论(命题对0n n =成立),就可以知道命题对10+n 也成立,进而再由第二步可知1)1(0++=n n ,即20+=n n 也成立。这样递推下去,就可以知道命题对所有不小于0n 的正整数都成立。 (2)证n=k+1时,可先列出n=k+1成立的数学式子,作为证明的目标。可以作为条件加以运用的有n=k 成立的假设,已知的定义、公式、定理等,不能直接将n=k+1代入命题。 3.这一节课本中共安排了五个例题,例1~例3是用数学归纳法证明等式。其步骤是先证明当0n n =(这里10=n )时等式成立。再假设当n=k 时等式成立,利用这一条件及已知的定义、公式、定理证明当n=k+1时等式也成立。注意n=k+1时的等式是待证明的,不能不利用假设。例如:求证:。

条件数学期望及其应用

条件数学期望及其应用 The ways of finding the inverse matrix and it ’s application Abstract :The passage lists the ways of calculating the first type of curvilinear integral,and discusses it ’s application in geometry and in physical. Keywords :Curvilinear integral;Continuous;Integrable; Lateral area. 0前言 在曲线积分中,被积函数可以是标量函数或向量函数.积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和.带有权重是曲线积分与一般区间上的积分的主要不同点.物理学中的许多公式在推广之后都是以曲线积分的形式出现.曲线积分是物理学中重要的工具. 1条件数学期望 1.1条件数学期望的定义 定义1 设X 是一个离散型随机变量,取值为},,{21 x x ,分布列为 },,{21 p p .又事件A 有0)( A P ,这时 ,2,1,) () }({)|(| i A P A x X P A x X P P i i A i 为在事件A 发生条件下X 的条件分布列.如果有 A i i i p x | 则称 A i i i p x A X E |]|[ . 为随机变量X 在条件A 下的条件数学期望(简称条件期望). 定义2 设X 是一个连续型随机变量,事件A 有0)( A P ,且X 在条件A 之

数学期望在生活中的应用原文

一、数学期望的定义及性质 (一)数学期望分为离散型和连续型 1、离散型 离散型随机变量的一切可能的取值Xi与对应的概率Pi(=Xi)之积的和称为该离散型随机变量的数学期望(设级数绝对收敛),记为E(X)。数学期望是最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。如果随机变量只取得有限个值,称之为离散型随机变量的数学期望。它是简单算术平均的一种推广,类似加权平均。E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn)。X1,X2,X3,……,Xn 为这几个数据,P(X1),P(X2),P(X3),……,P(Xn)为这几个数据的概率函数。在随机出现的几个数据中,P(X1),P(X2),P(X3),……,P(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi),则:E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn) = X1*f1(X1) + X2*f2(X2)+ …… + Xn*fn(Xn)。 2、连续型 连续型则是:设连续性随机变量X的概率密度函数为f(X),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。若随机变量X的分布函数F(X)可表示成一个非负可积函数f(X)的积分,则称X为连续随机变量,f(X)称为X的概率密度函数(分布密度函数)。能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为连续型随机变量。 (二)数学期望的常用性质 1.设X是随机变量,C是常数,则E(CX)=CE(X); 2.设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y); 3.设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。 对于第一条性质,假设E(X)你的考试成绩,C为你们全班人数,则你们全班总分的期望等于全班人数乘以个人的期望,这很好理解。 对于第二条性质,E(X)为你的考试成绩,E(Y)是小明的考试成绩,你和他成绩总和的期望当然等于你和他的期望值和。 对于第三条性质,我们一再强调是独立的,也就是相互没有关联,有关联是肯定是不是不等的。

高中数学《数学归纳法及其应用举例》教学设计附反思

课题:数学归纳法及其应用举例 【教学目标】 知识与技能: 1. 了解由有限多个特殊事例得出的一般结论不一定正确,使学生深入认识归纳法, 理解数学归纳法的原理与实质; 2. 掌握数学归纳法证题的两个步骤;初步会用“数学归纳法”证明简单的与自然数有关的命题(如恒等式等). 3. 培养学生观察、分析、论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历数学归纳法原理的构建过程, 体会类比的数学思想.过程与方法: 1.努力创设和谐融洽的课堂情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率.让学生体验知识的构建过程, 体会源于生活的数学思想; 2. 通过对数学归纳法的学习、应用,逐步体验观察、归纳、猜想、论证的过程,培养学生由特殊到一般的思维方式和严格规范的论证意识,并初步掌握论证方法; 3. 让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生创新能力. 情感、态度、价值观: 1. 通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神; 2. 让学生通过对数学归纳法原理和本质的理解,感受数学内在美的震撼力,从而使学生喜欢数学,激发学生的学习热情,使学生初步形成做数学的意识和科学精神; 3. 学生通过置疑与探究,培养学生独立的人格与敢于创新的精神; 4. 持续增进师生互信,生生互助,共创教学相长的教与学的氛围和习惯. 【教学重点】 归纳法意义的认识和数学归纳法产生过程的分析,初步理解数学归纳法的原理并能简单应用. 【教学难点】 数学归纳法中递推思想的理解,初步明确用数学归纳法证明命题的两个步骤. 【教学方法】师生互动讨论、共同探究的方法 【教学手段】多媒体辅助课堂教学 【教学过程】 一、创设情境,启动思维 情境一、财主儿子学写字的笑话、“小明弟兄三个,大哥叫大毛……”的脑筋急转弯等; 教师总结:财主的儿子很傻很天真,但他懂一样思想方法,是什么?以上都是由特殊情况归纳出一般情况的方法---归纳法,这就是今天的课题. 人们通常

高中数学《数学归纳法及应用举例》说课稿

《数学归纳法及应用举例》第一课说课方案 一、说教材 (一)教材分析 本课是数学归纳法的第一节课。前面学生已经通过数列一章内容和其它相关内容的学习,初步掌握了 由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法。不完全归纳法它是研究数学问题,猜想或发现数学规律的重要手段。但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为 一种论证方法。因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法─数学归纳法。 数学归纳法安排在数列之后极限之前,是促进学生从有限思维发展到无限思维的一个重要环节。并且,本 节内容是培养学生严密的推理能力、训练学生的抽象思维能力、体验数学内在美的好素材。 (二)教学目标 学生通过数列等相关知识的学习。已基本掌握了不完全归纳法,已经有一定的观察、归纳、猜想能力。通过近几年教学方法的改革和素质教育的实施,学生已基本习惯于对已给问题的主动探究,但主动提出问 题和置疑的习惯还未形成。能主动提出问题和敢于置疑是学生具有独立人格和创新能力的重要标志。如何 让学生主动置疑和提出问题?本课也想在这方面作一些尝试。 根据教学内容特点和教学大纲、根据学生以上实际、根据学生终身发展需要而制订以下教学目标。 1.知识目标 (1)了解由有限多个特殊事例得出的一般结论不一定正确。 (2)初步理解数学归纳法原理。 (3)理解和记住用数学归纳法证明数学命题的两个步骤。 (4)初步会用数学归纳法证明一些简单的与正整数有关的恒等式。 2.能力目标 (1)通过对数学归纳法的学习、应用,培养学生观察、归纳、猜想、分析能力和严密的逻辑推理能力。 (2)让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生的创新能力。 3.情感目标 (1)通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神。 (2)让学生通过对数学归纳法原理的理解,感受数学内在美的振憾力,从而使学生喜欢数学。 (3)学生通过置疑与探究,培养学生独立的人格与敢于创新精神。 (三)教学重难点 根据教学大纲要求、本节课内容特点和学生现有知识水平,确定如下教学重难点: 1.重点 (1)初步理解数学归纳法的原理。 (2)明确用数学归纳法证明命题的两个步骤。 (3)初步会用数学归纳法证明简单的与正整数数学恒等式。 2.难点 (1)对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性。 (2)假设的利用,即如何利用假设证明当n=k+1时结论正确。 二、说教法 本课采用交往式的教学方法。交往教学法的特点是:在教师的组织启发下,师生之间、学生之间共同 探讨,平等交流;既强调独立思考,又提倡团结合作;既重视教师的组织引导,又强调学生的主体性、主动 性、平等性、开放性、合作性。这种教学方法的优点是学生心态开放,主体性和主动性凸现,独立的个性 得到张扬,因而创造性得到解放。 三、说学法 本课以问题为中心,以解决问题为主线展开,学生主要采用“探究式学习法”进行学习。本课学生的 学习主要采用下面的模式进行: 观察情景提出问题分析问题猜想与置疑(结论或解决问题的途径) 论证应用。 探究学习法的好处是学生主动参与知识的发生、发展过程。学生在探究问题过程中学习,在探究问题 的过程中激发学生的好奇心和创新精神;在探究过程中学习科学研究的方法;在探究过程中形成坚韧不拔

数学期望的计算方法及其应用

数学期望的计算方法及其应用

数学期望的计算方法及其应用 摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。 关键词:离散型随机变量连续型随机变量数学期望计算方法 ABSTRACT:

第一节离散型随机变量数学期望的计算方法及应用1.1利用数学期望的定义,即定义法[1] 定义:设离散型随机变量X分布列为 则随机变量X的数学期望E(X)=)( 1i n i i x p x ∑=

注意:这里要求级数)( 1i n i i x p x ∑ = 绝对收敛,若级数 []2 例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。试问推销人在用船运送货物时,每箱期望得到多少? 解设X表示该推销人用船运送货物时每箱可得钱数,则按题意,X的分布为 按数学期望定义,该推销人每箱期望可得= ) (X E10×0.6+8×0.2+5×0.1-6×0.1=7.5元1.2公式法 对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松

条件数学期望及其应用

实用文档 文案大全条件数学期望及其应用 The ways of finding the inverse matrix and it's application Abstract:The passage lists the ways of calculating the first type of curvilinear integral,and discusses it's application in geometry and in physical. Keywords:Curvilinear integral;Continuous;Integrable; Lateral area. 0前言 在曲线积分中,被积函数可以是标量函数或向量函数.积分的值是路径各 点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和.带有权重是曲线积 分与一般区间上的积分的主要不同点.物理学中的许多公式在推广之后都 是以曲线积分的形式出现.曲线积分是物理学中重要的工具. 1条件数学期望 1.1条件数学期望的定义 定义1设X是一个离散型随机变量,取值为},,{21?xx,分布列 为},,{21?pp.又事件A有0)(?AP,这时 ,2,1,)()}({)|(|??????iAPAxXPAxXPP iiAi

为在事件A发生条件下X的条件分布列.如果有 ???Aiii px| 则称 ??. Aiii pxAXE|]|[ 为随机变量X在条件A下的条件数学期望(简称条件期望). 定义2设X是一个连续型随机变量,事件A有0)(?AP,且X在条件A 之 实用文档 ??????dxAXxf)|(称为随机变量文案大全下的条件分布密度函数为)|(Axf.若 X在条件A下的条件数学期望. 定义3设),(YX是离散型二维随机变量,其取值全体为 },2,1,),,{(??jiyx ii, 联合分布列为 ?,2,1,),,(????jiyYxXPp iiij, 在i yY?的条件下X的条件分布列为?,2,1),|(|????iyYxXPp iiji若 ???jiii px|, 则 ??? jiiii pxyYXE|]|[ 为随机变量X在i yY?条件下的条件数学期望. 定义4 设),(YX是连续型二维随机变量,随机变量X在yY?的条件下的条件密度函数为)|(|yxp YX,若 ??????dxyxpx YX)|(|, 则称

数学期望的计算方法及其应用概要

数学期望的计算方法及其应用 摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。 关键词:离散型随机变量 连续型随机变量 数学期望 计算方法 ABSTRACT : 第一节 离散型随机变量数学期望的计算方法及应用 1.1 利用数学期望的定义,即定义法[1] 则随机变量X的数学期望E(X)= )(1 i n i i x p x ∑=

学期望不存在 [] 2 例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。试问推销人在用船运送货物时,每箱期望得到多少? 按数学期望定义,该推销人每箱期望可得 =)(X E 10×0.6+8×0.2+5×0.1-6×0.1=7.5元 1.2 公式法 对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松分布,超几何分布等),则我们就可以直接利用典型分布的数学期望公式来求此随机变量的期望。 (1) 二点分布:X ~??? ? ??-p p 101 ,则()p X E = (2) 二项分布:),(~p n B X ,10 p ,则np X E =)( (3) 几何分布:)(~p G X ,则有p X E 1 )(= (4) 泊松分布:) (~λP X ,有λ=)(X E (5) 超几何分布: ),,(~M N n h X ,有N M n X E =)( 例2 一个实验竞赛考试方式为:参赛者从6道题中一次性随机抽取3道题,按要求独立完成题目.竞赛规定:至少正确完成其中2题者方可通过,已知6道备选题中参赛者甲有4题能正确分别求出甲、乙两参赛者正确完成题数的数学期望. 解 设参赛者甲正确完成的题数为X ,则X 服从超几何分布,其中 6,4,3N M n ===, 设参赛者乙正确完成的题数为Y ,则 )32,3(~B Y ,23 2 3)(=?==np Y E 1.3 性质法

数学期望在经济生活中的应用

数学期望在经济生活中的应用 【摘要】数学期望是随机变量的重要数字特征之一。本文通过探讨数学期望在决策、利润、委托代理关系、彩票等方面的一些实例,阐述了数学期望在经济和实际问题中的应用。 【关键词】随机变量数学期望经济应用 数学期望(mathematical expectation)简称期望.又称均值,是概率论中一项重要的数字特征.在经济管理工作中有着重要的应用。本文通过探讨数学期望在经济和实际问题中的一些简单应用,以期起到让学生了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。 一.决策方案问题 决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案A(i=1,2,?,m)在每个影响因素S(j=1.2,?,n)发生的情况下,实施某种方案所产生的盈利值及各影响因素发生的概率,则可以比较各个方案的期望盈利,从而选择其中期望盈利最高的为最佳方案。 1.风险方案 假设某公司预计市场的需求将会增长。目前公司的员工都满负荷地工作着.为满足市场需求,公司考虑是否让员工超时工作或以添置设备的办法提高产量。假设公司预测市场需求量增加的概率为P,同时还有1-p的可能市 是合算的。然而现实是不知道哪种情况会出现,因此要比较几种方案获利的 期望大小。用期望值判断,有:E(A 1)=30(1-p)+34p,E(A 2 )=29(1-p)+42p, E(A 3)=25(1-p)+44p。事实上.若p=0.8,则E(A 1 )-33.2(万), E(A 2)=39.4(万),E(A 3 )=40.2(万),于是公司可以决定更新设备,扩大生产。 若p=O.5,则E(A 1)=32(万),E(A 2 )=35.5(万),E(A 3 )=34.5(万),此时公司 可决定采取员工超时工作的应急措施。由此可见,只要市场需求增长可能性在50%以上.公司就应采取一定的措施,以期利润的增长。 2.投资方案 假设某人用10万元进行为期一年的投资.有两种投资方案:一是购买股票:二是存入银行获取利息。买股票的收益取决于经济绝势,若经济形势

数学期望性质与应用举例

5.数学期望的基本性质 利用数学期望的定义可以证明,数学期望具有如下基本性质: 设ξ, η为随机变量,且E(ξ),E(η)都存在,a,b,c为常数,则 性质1.E(c)=c; 性质2.E(aξ)=aE(ξ); 性质3.E(a+ξ)=E(ξ)+a; 性质4.E(aξ+b)=aE(ξ)+b; 性质5. E(ξ+η)=E(ξ)+E(η). 例3.5.7设随机变量X的概率分布为: P(X =k)=0.2 k =1,2,3,4,5. 求E(X),E(3X+2). 解. ∵P(X=k)=0.2 k=1,2,3,4,5 ∴由离散型随机变量的数学期望的定义可知 E(X)=1×0.2+2×0.2+3×0.2+4×0.2+5×0.2=3, E(3X+2)=3E(X)+2=11. 例3.5.8. 设随机变量X的密度函数为: 求E(X),E(2X-1). 解.由连续型随机变量的数学期望的定义可知 =-1/6+1/6=0. ∴E(2X-1)=2E(X)-1=-1. 我们已经学习了离散型随机变量和连续型随机变量的数学期望,在随机变量的数字特征中,除数学期望外,另一重要的数字特征就是方差.

4.1.2 数学期望的性质 (1)设是常数,则有。 证把常数看作一个随机变量,它只能取得唯一的值,取得这个值的概率显然等于1。所以,。 (2)设是随机变量,是常数,则有 。 证若是连续型随机变量,且其密度函数为。 。 当是离散型随机变量的情形时,将上述证明中的积分号改为求和号即得。 (3)设都是随机变量,则有 。 此性质的证明可以直接利用定理4.1.2,我们留作课后练习。这一性质可以推广到有限个随机变量之和的情况,即 。 (4)设是相互独立的随机变量,则 。 证仅就与都是连续型随机变量的情形来证明。设的概率密度分别为 和,的联合概率密度为,则因为与相互独立,所以有 。 由此得

高中数学选修2-2《数学归纳法及其应用举例》教案

课题:数学归纳法及其应用举例 教材:人民教育出版社A版 一、教学目标 【知识目标】 (1)了解由有限多个特殊事例得出的一般结论不一定正确。 (2)初步理解数学归纳法原理。 (3)理解和记住用数学归纳法证明数学命题的两个步骤。 (4)初步会用数学归纳法证明一些简单的与正整数有关的恒等式。 【能力目标】 (1)通过对数学归纳法的学习、应用,培养学生观察、归纳、猜想、分析能力和严密的逻辑推理能力。 (2)让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生的创新能力。 【情感目标】 (1)通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神。 (2)让学生通过对数学归纳法原理的理解,感受数学内在美的振憾力,从而使学生喜欢数学。 (3)学生通过置疑与探究,培养学生独立的人格与敢于创新精神。 二.教学重点、难点 【重点】(1)初步理解数学归纳法的原理。 (2)明确用数学归纳法证明命题的两个步骤。 (3)初步会用数学归纳法证明简单的与正整数数学恒等式。 【难点】(1)对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性。

板书设计 1.数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确,教学重点应该是方法的应用.但是我们认为不能把教学过程当作方法的灌输,技能的操练.对方法作简单的灌输,学生必然疑虑重重.为什么必须是二步呢?于是教师反复举例,说明二步缺一不可.你怎么知道n=k时命题成立呢?教师又不得不作出解释,可学生仍未完全接受.学完了数学归纳法的学生又往往有应该用时但想不起来的问题,等等.为此,我们设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机. 数学归纳法产生的过程分二个阶段,第一阶段从对归纳法的认识开始,到对不完全归纳法的认识,再到不完全归纳法可靠性的认识,直到怎么办结束.第二阶段是对策酝酿,从介绍递推思想开始,到认识递推思想,运用递推思想,直到归纳出二个步骤结束. 把递推思想的介绍、理解、运用放在主要位置,必然对理解数学归纳法的实质带来指导意义,也是在教学过程中努力挖掘、渗透隐含于教学内容中的数学思想的一种尝试.

数学期望和方差的应用

2QQ2±:箜!塑工 -学术-理论现代衾案一 数学期望和方差的应用 陈奕宏张鑫 (武警广州指挥学院广东广州510440) 摘要:本文主要讨论随机变量的数学期望和方差的性质,利用随机变量的对称性可简化求数学期望和方差的计算过程: 关键词:对称性数学期望方差 在教学过程中,由于很多同学对概牢论巾的定义和性质认识不深刻,冈此对概率论巾的问题存在许多认识误区,进一步影响了计算、证明能力。 性质l对随机变量x和y,则有E(nn簟Ⅸ+Ey①性质2设随机变量x和y相互独立,贝咿育层陇n=Ex?Ey②定义l设X是一个随机变量,若EI肛删Iz存在,则称其为X的方差,记为Dx。即 Dx=坦Ix—Ex】2③显然可得:们,-ElX一以】2 =E瞄2—2xEX+(踊2] =麟z一(删):④性质3设随机变量x和y相互独立,则有层孵y:净E孵?Ey2⑤证明:设随机变量X和y的联合分布密度为m砂),|jl《为x和y相互独立,有 “r,y)=^(掌)。,r(y) .’.E(x2y2)=J一。J一。工2y2“r,j,)d膏咖 =eex2y2以(r)厂r(y)如咖 =Cx2^(工)如Cy2加)咖 :Ex2E】,2⑥性质4设随机变量x和l,,n和西为常数,则有E(口X2+6y2)=n露x2+6曰y2(D证明:设随机变量x和l,的联合分布密度为厂(x,j,),则有 E似x2+6y2)=J+。J一。(口工2+6j,2)“r,j,)d_咖 =e仁nx2flx,,Mxdy+e仁b矿fIx,yⅪxdy ,+∞,+∞r十o,+∞ =n\一。\一亭2fIx,如dxd,+b1.。1一。旷fIx,,Ⅺxdy =口f)2【e№j,)dy】dr拍ej,2【C“础)dx协 =口仁量2【e,(Ⅵ)dyJdx柏ej,2【C,(础)dx坳 =n尽2以(r)dy拍D2加)dy =口EX2+西Ey2 掣狮,=∥茗引m,=驴㈣’翟引 求E伍2+y2)。 解:E(x2+y2)=Ex2+Eyz(南公式⑦) =I:一4r3出+炒.12y2(1+y)咖《 性质5设随机变量x和y卡H互独立,则有 D(x的=Dx?Dy+(E幻2?Dl,+(层y)2?Dx⑧ 证明:ODⅨy)=层(xy)2一IE(xy)J2 =E(X2y2)一(EX)2(E】,)2 南公式⑤,所以 D(Xn=EX2Ey2一(EX)2(E”2 =曰x2El,2一(E的2EP+(E的2(El,)2一(E抑2僻y)2 =【层x2一(EX)2】EP+(Ex)2【(E】,)2一(日y)2】 矗剪陋妒+(雕净汗钮曙(联)辚苦帮 =n碰Iy+(EY)2Dy+(Ey)2蹦 显然,若随机变量x和y独立,则可得D(xn>Dx?Dy⑨例设随机变量x和l,相互独立,均服从Ⅳ(O,1)分布,f=x—y,叩=xy,试求1)D叩;2)p£。。 解:1)方法一 OX和y相互独立 .‘.D即=D(xy)=E(xl,)2一【层(x聊】2 =E(r—l,)2一(以E的2 =E舻EP(由公式⑤) =【脚“(E的2】【Dy;(E玢2】=1 方法二 0X和y相互独立 .?.Dq=D(x】,)=似Dy+(E柳2Dy+(目】,)2Dx=l(由公式⑧)2)op。:』业 q厩丽 又OcoV(f,'7)=层【(f—Ef)('7一露77)j =层(x2y)一E(xP)(把f=x—y,’7=xy代人) 曲(南x与r鹃对称性)综上所述,本文主要讨论连续型随机变量的数字特征的性质,结合对随机变量的对称性可解决存概率论巾一些常见的求数[字特征的问题。 参考文献: …盛骤等编概率论与数理统计高等教育出版社2001.12口 现代企业教育MODERNENTERPRISEEDUCATION117 万方数据

数学归纳法的七种变式及其应用..

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4 是证明一个命题对于所有的自然数都是成立 的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为: 设()p n 是一个含有正整数n 的命题(n a ≥,*a N ∈), 如果 1)当n =a 时,()p a 成立;

数学期望在生活中的运用

数学期望的性质及其在实际生活中的应用 ●数学期望的概念: 在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。是最基本的数学特征之一,它反映随机变量平均取值的大小。 ●数学期望的定义 E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi). 则: E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn) E(X)对于这几个数据来说就是他们的算术平均值。 ●数学期望的应用: 例一、某一彩票中心发行彩票10万张,每张2元。设头等奖1个,奖金1万元,二等奖2个,奖金各5千元;三等奖10个,奖金各1千元;四等奖100个,奖金各100元; 五等奖1000个,奖金各10元。每张彩票的成本费为0.3元,请计算彩票发行单位的创收利润。 E(X)=10000×+5000×+ 0 =0.5(元) 每张彩票平均可赚 2-0.5-0.3=1.2(元), 因此彩票发行单位发行10万张彩票的创收利润为 100000×1.2=120000(元) 小结:通过计算期望,我们可以得到单张彩票的平均利润,从而得出总共的创收利润。 例二、某投资者有10万元资金,现有两种投资方案供选择:一是购买股票;二是存人银行。买股票的收益主要取决于经济形势,假设经济形势分为三种状态:形势好、形势中等、形势不好。在股市投资10万元,以一年计算,若形势好可获利40 000元;若形势中等可获利10 000元;若形势不好则会损失20 000元。如果存人银行,假设年利率为8%,即一年可得利息8 000元。又设年经济形势好、中等、不好的概率分别为30%、50%和20%。试问该投资者想获得最高收益期望应选择哪种投资方案? 分析: 购买股票的收益与经济形势有关,存入银行的收益与经济形势无关。购买股票在经济形势好和中等的情况下是合算的,但是如果经济形势不好,则采取存人银行的方案比较好。因此,要辨别哪一种方案更优,就必须计算购买股票的收益期望,然后与存入银行的收益进行比较来判断。 如果购买股票,其收益的期望值E=40000×0.3+10000×0.5+(-20000)×0.2=13000(元);如

相关主题
文本预览
相关文档 最新文档