当前位置:文档之家› 传热传质

传热传质

传热传质
传热传质

姓名:付杰

学号:14206040667

专业:建筑与土木工程

多孔介质传热传质分形理论初析

[摘要]

对分形理论在多孔介质传热传质过程中的应用进行了初步的分析,求出了基于分形理论的多孔介质固有渗透率和有效导热系数,建立了多孔介质渗流与导热的分形模型。

引言

多孔介质是由固体骨架和流体组成的一类复合介质,它构成了地球生物圈的物质基础。多孔介质传热传质在自然界和人类生产、生活中广泛存在.它对国民经济的发展、科学技术的进步以及人民生活水平的提高具有重要的影响.土壤中水、肥、污染物的吸收、保持和迁移过程的人工控制,节水农业工程的实施,地下岩层中石油、天然气和地下水资源的开采,地热能的开发利用等,都涉及到多孔介质中能量和物质的传输问题;动植物中的生命过程也是在多孔介质中发生的传热传质和生化反应的复杂热物理过程;与人民生活密切相关的农副产品、食品、建材和纺织品的干燥、建筑物的隔热保温也是典型的多孔介质传热传质过程;现代铸造技术、燃烧技术、冷冻技术、催化反应技术和各类轻工技术的发展,都与多孔介质传热传质过程密切相联。因此,研究多孔介质传热传质过程对于改造自然、造福人类都具有重

大的经济和社会意义。

从学科发展的角度看,多孔介质传热传质学已经渗透到许多学科和新技术领域,包括能源、材料、环境科学、化学工程、仿生学、生物技术、医学和农业工程,是形成新的交叉和边缘学科的一个潜在生长点。因此,多孔介质传热传质研究,是一项具有重大学术价值、对学科发展和技术创新具有深远影响的研究课题,已成为国内外工程热物理、地球和环境科学中最活跃的前沿研究领域之一。

以期以来,人们对多孔介质中的传热传质过程进行了大量的理论和实验研究,在理论模型和热质迁移机理方面已经发展了能量理论、液体扩散理论、毛细流动理论和蒸发冷凝理论等描述多孔介质中热质迁移过程的单一理论模型之后,Philip,DeVries, Luikov又发展了多孔介质热质迁移的热力学理论和综合理论以及相应的数学描述,对多孔介质传热传质的研究起到了重要的推动作用。

但是,由于多孔介质内部结构十分复杂,一般是由大小颗粒、碎片或小组织聚集而成的结构,没有特征尺度且极不规则,其内部发生的热质传递过程与传统的均匀介质中发生的过程有很大的差异,各类迁移参数随着实际多孔介质内部的几何结构的不规律性而出现容积范围内的不均匀性和不确定性.上述各种现有的多孔介质传热传质理论和模型,都是直接或间接地把新研究的多孔介质看作是一种在大尺度上均匀分布的虚拟连续介质,在研究中采用“容积平均”的基本方法,即采用平均物性和空隙的平均几何分布来进行过程的研究.显然,这种“容积平均”的假设与实际多孔介质内部状态存在着很大的差异,

因此现有的理论只能近似地在大尺度范围内描述多孔介质中的传递过程而无法揭示局部和整体之间的本质联系,所得结果与实际测量有较大的偏差.受此限制,多孔介质传热传质研究始终未能有突破性的发展。为此,迫切需要寻找一种描述多孔介质内部结构和迁移参数的新方法,为多孔介质传热传质研究开辟一条新路。

多孔介质剖面的分形描述

分形是1975年由美国学者M andelbrot首先提出的。由于分形能反应自然界存在的大量非线性现象和几何形状的客观规律,因此立刻引起了各国科学家的重视,开始了大量的研究,逐步形成了分形几何理论体系.分形几何学是一门以非规则几何形状为研究对象的几何学,它与传统的欧氏几何最大的差别在于空间维数的值域.欧氏几何认为空间的维数是整数,其描述的图形的边界都是规则的且可以用一定的解析式表示,例如直线、平面、球或立方体等等.但是,自然界中大量物体的形状和结构,如土壤、海岸线、多孔物料等,它们在图形上是完全不规则的,使它们的整体与局部都不能用传统的几何语言来描述,其内部发生的过程则不能用简单的线性近似方法来认识和描述.分形是直接从非线性复杂系统本身入手,从未经简化和抽象的研究对象本身去认识其内在的规律性,这是分形理论和线性处理方法的本质区别.分形几何突破了传统几何的局限,认为分形物体的空间维数可以不是整数.如果用数学表达式表示,则有:

N(W)~ (1)

式中N是分形物体的空间占有积(线、面或体积),W是度量尺度,d是分形维数.它可以是整数也可以是非整数.两物体只要满足分形维数相等,那么这两个物体是自相似的。

分形可分为两类.一类称为有规分形,它是按一定的数学法则生成的,具有严格的自相似性;另一类是无规分形,其自相似性并不严格,只是在大范围内统计意义下的自相似性.例如多孔介质,其自相似性只有在一定尺度范围内才能成立,且属于统计意义下的自相似性,我们称它为局域分形.分形理论为描述物体内部复杂结构和空间分布提供了一种新的行之有效的手段,从而为精确研究复杂结构内部发生的各种物理化学过程开辟了一条新路.下面将给出多孔介质剖面的简单分形描述.

图1给出了两种典型的多孔介质(土壤)剖面图.由图可见,对于每个局部区域来说,多孔介质内部通道呈现出不轨则性,但是从较大范围来看,其剖面骨架面积分布或孔隙分布又具有相似特征.为了证明这一点,下面采用分形理论来计算上述多孔介质剖面的面积分形维数.在剖面图中,取一微元剖面面积S为最小的度量尺度,同时取剖面图中能够反映该多孔介质宏观传递特征的一最小面积元为分形计算的最大度量尺度A.对于在S→A面积范围内的不同度量尺度X,如所测得的剖面固体相或孔隙的面积平均值S满足:

S(X)~ (2) 则该多孔介质剖面结构具有统计意义上的自相似性,即剖面面积分布具有分形特征.式(2)中即为土壤剖面面积分形维数.对应于图1的两

种多孔介质剖面结构计算出的面积分形维数给出在图2上,由图可见,结构疏松,孔隙度较大的多孔介质,其剖面孔隙面积分形维数较大.

图1 俩种典型的多孔介质(土壤)的剖面图

图2 多孔介质剖面孔隙面积分布分形计算值图上面给出的是以剖面面积定义的分形维数.描述多孔介质内部构造和通透性还可以采用其它方法定义的分形维数,例如按照组成多孔介质的颗粒粒度和孔隙分布定义的分形维数,它在描述多孔聚集体形成规律上有特殊的用途.

此外,在研究作随机行走的粒子统计性质及多孔介质内部的输运

规律时,需要引入另一个分形维数——谱维数.谱维数与多孔介质中孔隙的通透性或连通性有着密切的关系.谱维数ds的定义为:如果在随机行走中粒子经过的时间间隔t以后(或行走步数n),能够访问的不同孔隙节点或通过的格子数P能够满足:

P∝ (3)

则ds就定义为谱维数.所谓随机行走是指每经过一个离散的时间t,粒子就在多孔介质划好的网格上行走一步.因此,研究谱维数时的分形结构是由格子组成的分形结构,在空间和时间上是离散的.

图3给出了一个简化的粒子在多孔介质剖面孔隙中随机行走的模型.粒子可随机地向周围任一方向移动,每行走一步,运动步数n加1,同时判断粒子是否是第一次到达该节点(格—8—子).若是第一次到达,则访问节点数p加1;若非第一次到达,则不加.重复多次行走可得到多组p,n的值.取对数后若能进行直线拟合,则认为该多孔通道

存在着谱维数.由拟合后的直线斜率就可从式(3)求出谱维数ds。

结束语

本文对分形理论在多孔介质传热传质过程中的应用进行了初步的分析,求出了基于分形理论的多孔介质固有渗透率和有效导热系数.在此基础上,建立了多孔介质渗流与导热的分形模型.虽然本文的模型还是一种建立在分形参数上的当量传热模型,但本文的工作为进一步深入研究复杂的传热传质过程开辟了一条新路。

[参考文献]

[1]林瑞泰.多孔介质传热传质引论[M ].北京:科学出版社, 1995

[2]施明恒.多孔介质传热传质的进展和展望[M ].中国科学基金,

1995

[3]张济中.分形[M ].北京:清华大学出版社

[4]TaylorD W.Fundamentals of SoilM echanics[M ]. JohnW iley&

sons, Inc, 1948

[5]黑龙江省土壤普查办公室.黑龙江土壤[M ].北京:农业出版社,

1992

[6]江苏省土壤普查办公室.江苏土壤[M ].北京:农业出版社, 1995

[7]陈永平,施明恒.基于分形理论的多孔介质导热系数的研究[J].工

程热物理学报, 1999, 20(5): 605~612

[8]陈永平,施明恒.基于分形理论的多孔介质渗透率的研究[A ].中

国工程热物理学会传热传质学术会议论文集[C ].苏州: 1999

交大传热传质学期末试卷-A卷答案

一、 简答(30分) 1、 答:导热(热传导)、对流(热对流)、辐射(热辐射) (2分) 导热:dt q dx λ=- (1分) 热流:q h t =? (1分) 热辐射:4q T σ=或41T εσ= (1分) 2、 答:(1)p t c ρτ ??是非稳态项,代表单位体积物体的热力学能增量 (1分) t t t x x y y z z λλλ???????????? ++ ? ? ??????????? ??是扩散项,代表单位体积的物体通过导热方式获 得的净热流量; (1分) Φ是源项,代表单位体积内热源的生成热 (1分) (2)220d t dx = (1分) 方程中未出现导热系数,但不能说物理内温度分布与导热系数无关 (1分) 原因:导热微分方程是导热过程的通用方程,其具体的解还要依赖边界条件,如果两侧都是第一类边条,则的确无关,如果是第三类边条,则有关。 (1分) 3、 答:(a )质量守恒定律、傅里叶定律和能量守恒定律 (2分) (b )导入与导出的净热流量 + 对流传入的净热流量=单位时间热力学能的增量 (2分) 4、 传热学中引入相似原理的意义是什么?(4分) 答:可以解决对流传热的实验中遇到的三个问题:(1分) (1)测量那些数据; (1分) (2)如何整理实验数据; (1分) (3)指导模化实验 (1分) 5、 (6分) 答:膜状凝结:如果凝结液体能很好地润湿壁面,在壁面上铺展成膜,称之为膜状凝结 (2分) 珠状凝结:当凝结液体不能很好地润湿壁面时,凝结液体在壁面形成一个个小液珠,称之为珠状凝结 (2分) 由于实际工程只能够凝结传热过程的污染等诸多因素,使得珠状凝结无法长时间保持。(1分) 第三问可以根据学生自己的想法判断是否给分, (1分) 6、 表面间辐射传热过程中,经常用到角系数。请给引入角系数的意义、应用条件及其三个性质各是什么?

《传热传质学》主要内容和专业词汇中英文对照

《传热传质学》主要内容和专业词汇中英文对照 Chapter 1 Thermodynamics and Heat Transfer 主要内容 1.Concepts: heat (thermal energy)、heat transfer、thermodynamics、total amount of heat transfer、heat transfer rate、heat flux、conduction、convection、radiation 2.Equations: 1) The first law of thermodynamics (conservation of energy principle) 2) Heat balance equation: a) closed system; b) open system (steady-flow) 3) Fourier’s law of heat conduction 4) Newton’s law of cooling 5) Stefan-Boltzmann law 主要专业词汇 heat transfer 传热、热传递、传热学thermodynamics热力学 caloric 热素specific heat 比热mass flow rate 质量流率 latent heat 潜热sensible heat 显热heat flux热流密度 heat transfer rate热流量total amount of heat transfer总热量 conduction导热convection对流radiation辐射 thermal conductivity 热导率thermal diffusivity 热扩散率 convection/combined heat transfer coefficient 对流/综合换热系数 emissivity 发射率absorptivity 吸收率simultaneous heat transfer 复合换热

传热几传质学答案

第八章 热量传递的基本概念 2.当铸件在砂型中冷却凝固时,由于铸件收缩导致铸件表面与砂型间产生气隙,气隙中的空气是停滞的,试问通过气隙有哪几种基本的热量传递方式? 答:热传导、辐射。 注:无对流换热 3.在你所了解的导热现象中,试列举一维、多维温度场实例。 答:工程上许多的导热现象,可以归结为温度仅沿一个方向变化,而且与时间无关的一维稳态导热现象。 例,大平板、长圆筒和球壁。此外还有半无限大物体,如铸造时砂型的受热升温(砂型外侧未被升温波及) 多维温度场:有限长度的圆柱体、平行六面体等,如钢锭加热,焊接厚平板时热源传热过程。 4.假设在两小时内,通过152mm ×152mm ×13mm (厚度)实验板传导的热量为 837J ,实验板两个平面的温度分别为19℃和26℃,求实验板热导率。 解:由傅里叶定律可知两小时内通过面积为152×152mm 2的平面的热量为 t x T A t dx dT A Q ??-=-=λλ 873=-36002101326191015210152333???-? ????---λ 得 C m W 03/1034.9*?=-λ 第九章 导 热 1. 对正在凝固的铸件来说,其凝固成固体部分的两侧分别为砂型(无气隙)及固液分界面,试列出两侧的边界条件。 解:有砂型的一侧热流密度为 常数,故为第二类边界条件, 即τ>0时),,,(n t z y x q T =??λ 固液界面处的边界温度为常数, 故为第一类边界条件,即 τ>0时Τw =f(τ) 注:实际铸件凝固时有气隙形成,边界条件复杂,常采用第 三类边界条件 3. 用一平底锅烧开水,锅底已有厚度为3mm 的水垢,其热导率λ为1W/(m · ℃)。已知

高等传热学讲义

第2章边界层方程 第一节Prandtl 边界层方程一.边界层简化的基本依据 外:粘性和换热可忽略 )(t δδ , l l t <<<<δδ或内:粘性和换热存在 )(t δδ特征尺寸 —l

二.普朗特边界层方程 常数性流体纵掠平板,层流的曲壁同样适用)。 δ v l u ∞∞ ∞u l v v l u δδ~~,可见,0=??+??y v x u )()((x x R δ>>曲率半径y x u v ∞ ∞T u ,w T ∞ ∞T u ,δ l

)(122 22 y u x u x p y u v x u u ??+??+??-=??+??νρδ δ ∞ ∞ u u l l u u ∞∞ 2 l u ∞ν2 δ ν ∞ u ) (2 l u ∞ 除以无因次化11 Re 12 ) )(Re 1 (δ l

因边界层那粘性项与惯性项均不能忽略,故 项可忽略,且说明只有Re>>1时,上述简化才适用。)(12 2 22y v x v y p y v v x v u ??+??+??-=??+??νρ1~))(Re 1(2 δ l l δ ;可见22 22 x u y u ??>>??δδ 1 ) (2 ∞u l l u l u /)(∞∞δ 2 /)(l u l ∞δ ν2 /)(δδ ν∞u l : 除以l u 2 ∞ )(Re 1l δ))(Re 1(δ l l δ

可见,各项均比u 方程对应项小得多可简化为 于是u 方程压力梯度项可写为。 )(2 2 22y T x T a y T v x T u ??+??=??+??,0=??y p dx dp ρ1-),(l δ 乘了δθδ w u l )(∞l u w θ∞2 l a w θ除以: l u w θ∞Pe /12 )(/1δ l Pe 12δ θw a 1 ) (∞-=T T w w θPr) Re (?====∞∞贝克列数—导热量对流热量w w p l k u c a l u Pe θθρ

高等传热学知识重点(含答案)2019

高等传热学知识重点 1.什么是粒子的平均自由程,Knusen数的表达式和物理意义。 Knusen数的表达式和物理意义:(Λ即为λ,L为特征长度) 2.固体中的微观热载流子的种类,以及对金属/绝缘体材料中热流的贡献。 3.分子、声子和电子分别满足怎样的统计分布律,分别写出其分布函数的表达式 分子的统计分布:Maxwell-Boltzmann(麦克斯韦-玻尔兹曼)分布: 电子的统计分布:Fermi-Dirac(费米-狄拉克)分布: 声子的统计分布:Bose-Eisentein(波色-爱因斯坦)分布; 高温下,FD,BE均化为MB;

4.什么是光学声子和声学声子,其波矢或频谱分布各有特性? 答:声子:晶格振动能量的量子化描述,是准粒子,有能量,无质量; 光学声子:与光子相互振动,发生散射,故称光学声子; 声学声子:类似机械波传动,故称声学声子; 5.影响声子和电子导热的散射效应有哪些? 答:影响声子(和电子)导热的散射效应有(热阻形成的主要原因): ①界面散射:由于不同材料的声子色散关系不一样,即使是完全结合的界面也是有热阻的; ②缺陷散射:除了晶格缺陷,最典型的是不纯物掺杂颗粒的散热,散射位相函数一般为Rayleigh散 射、Mie散射,这与光子非常相似; ③声子自身散射:声子本质上是晶格振动波,因此在传播过程中会与原子相互作用,会产生散射、 吸收和变频作用。

6.简述声子态密度(Density of State)及其物理意义,德拜模型和爱因斯坦模型的区别。答:声子态密度(DOS)[phonon.s/m3.rad]:声子在单位频率间隔内的状态数(振动模式数)Debye(德拜)模型: Einstein(爱因斯坦)模型: 7.分子动力学理论中,L-J势能函数的表达式及其意义。 答:Lennard-Jones 势能函数(兰纳-琼斯势能函数),只适用于惰性气体、简单分子晶体,是一种合理的近似公式;式中第一项可认为是对应于两体在近距离时以互相排斥为主的作用,第二项对应两体在远距离以互相吸引(例如通过范德瓦耳斯力)为主的作用,而此六次方项也的确可以使用以电子-原子核的电偶极矩摄动展开得到。

传热传质试题题库

传热与传质习题库 目录 一、传热.................................................. 错误!未定义书签。 (一)选择题 .............................................. 错误!未定义书签。 (二)判断题 .............................................. 错误!未定义书签。 二、传质 .......................................................... 错误!未定义书签。 (一)选择题 .............................................. 错误!未定义书签。 (二)判断题 .............................................. 错误!未定义书签。 答案 .......................................................... 错误!未定义书签。

模块二热量传递 (一)选择题 1.导热系数的单位为()。 A、W/(m℃); B、W/(m2℃); C、W/(kg℃); D、W/(S℃)。 2.夏天电风扇之所以能解热是因为()。 A、它降低了环境温度; B、产生强制对流带走了人体表面的热量; C、增强了自然对流; D、产生了导热。 3.有一种30℃流体需加热到80℃,下列三种热流体的热量都能满足要求,应选()有利于节能。A、400℃的蒸汽;B、300℃的蒸汽;C、200℃的蒸汽;D、150℃的热流体。 4.工业生产中,沸腾传热应设法保持在()。 A、自然对流区; B、核状沸腾区; C、膜状沸腾区; D、过渡区。 5.用120℃的饱和蒸汽加热原油,换热后蒸汽冷凝成同温度的冷凝水,此时两流体的平均温度差之间的关系为(t m)并流()(t m)逆流。 A、小于; B、大于; C、等于; D、不定 6.物质导热系数的顺序是()。 A、金属>一般固体>液体>气体; B、金属>液体>一般固体>气体; C、金属>气体>液体>一般固体; D、金属>液体>气体>一般固体。 7.下列四种不同的对流给热过程:空气自然对流α1,空气强制对流α2(流速为3m/s),水强制对流α3(流速为3 m/s),水蒸汽冷凝α4。α值的大小关系为()。 A、α3>α4>α1 >α2; B、α4>α3>α2>α1; C、α4>α2>α1>α3; D、α3>α2>α1>α4 8.换热器中冷物料出口温度升高,可能引起的有原因多个,除了()。 A、冷物料流量下降; B、热物料流量下降; C、热物料进口温度升高; D、冷物料进口温度升高 9.用120℃的饱和水蒸汽加热常温空气。蒸汽的冷凝膜系数约为2000W/(m2K),空气的膜系数约为60W/(m2K),其过程的传热系数K及传热面壁温接近于()。 A、2000W/(m2K),120℃; B、2000W/(m2K),40℃; C、60W/(m2K),120℃; D、60W/(m2K),40℃。 10.双层平壁定态热传导,两层壁厚相同,各层的导热系数分别为λ1和λ2,其对应的温度差为t1和t2,若t1>t2,则λ1和λ2的关系为()。 A、λ1 <λ2; B、λ1>λ2; C、λ1=λ2; D、无法确定。 11.水在无相变时在圆形管内强制湍流,对流传热系数i为1000W/(m2.℃)若将水的流量增加1倍,而其他条件不变,则i为()。 A、2000; B、1741; C、不变; D、500。 12.有一套管换热器,环隙中有℃的蒸气冷凝,管内的空气从20℃被加热到50℃,管壁温度应接近()。 A、20℃; B、50℃; C、℃; D、℃。 13.套管冷凝器的内管走空气,管间走饱和水蒸气,如果蒸汽压力一定,空气进口温度一定,当空气流量增加时传热系数K应()。 A、增大; B、减小; C、基本不变; D、无法判断。 14.套管冷凝器的内管走空气,管间走饱和水蒸气,如果蒸汽压力一定,空气进口温度一定,当空气流量增加时空气出口温度()。 A、增大; B、减小; C、基本不变; D、无法判断。 15.利用水在逆流操作的套管换热器中冷却某物料。要求热流体的温度T1,T2及流量W1不变。今因冷却水进口温度t1增高,为保证完成生产任务,提高冷却水的流量W2,其结果()。

《传热学与传质学》教学大纲

《传热学与传质学》教学大纲 一、课程基本信息 1、课程英文名称:Engineering Thermodynamics and Heat Transfer 2、课程类别:专业基础课程 3、课程学时:总学时48,实验学时4 4、学分:3 5、先修课程:高等数学;普通物理;普通化学;工程流体力学 6、适用专业:石油工程 7、大纲执笔:油气储运教研室李永杰 8、大纲审批:石油工程学院学术委员会 9、制定(修订)时间:2006.11 二、课程的目的与任务: 本课程是研究热能传递与能量转换规律的学科,是一门必修的技术基础课程。通过本课程的学习,应使学生掌握热能与机械能的转化规律,热能的合理利用。热能的传递原理与规律、换热设备的热工计算等基本知识,培养学生独立思考、分析推导问题简化问题的能力,为专业课程的学习提供必要的理论基础。 三、课程的基本要求: 1.了解工程热力学与传热学的宏观研究方法及特点,掌握工程热力学 与传热学的基本概念: 2.掌握工程热力学的两个基本定律,能正确分析能量转换与守恒关 系,对热能的可用性有基本的认识,了解合理用能的原则 3.能依据热能过程的特征,分析计算过程的功量与热量。掌握理想气 体的基本热力性质与计算方法。 4.掌握热量传递的三种基本方式的原理与工程常见条件下的简化、计 算。 5.理解传热过程及传热系数,能计算传热量,并能指出增大或减小传 热量的基本方法。 6.了解常用换热器类型,并能进行换热器的一般热力计算。 四、教学内容、要求及学时分配: 2.(一)理论教学:

1.基本概念及定义(2学时) 掌握基本概念:热力学系统;热力学的状态及基本状态参数;平衡状态:状态方程;热力过程的准静态过程;准静态过程的功;热量;热量和功的类比;热力循环。 重点:建立工程热力学的基本概念及定义 难点:准静态过程的功;热量:热量和功的类比。 2.热力学的第一定律(6学时) 掌握热力学第一定律;闭口系统能量方程式;稳定状态稳定流动能量方程;焓;轴功;稳定流动能量方程式应用举例。 重点:能量守恒方程式与应用 难点:焓参数的应用。 3.理想气体内能、焓、熵和比热(2学时) 掌握理想气体内能和从理想气体的比热;理想气体的熵:了解理想气体混合物。 重点:理想气体状态参数变化量的计算。 难点:理想气体的熵变计算。 4.理想气体的热力过程(4学时) 掌握热力过程分析概述:定容过程;定压过程:定温过程;定熵过程;多变过程。 重点:各热力过程中功量与热量、状态参数的计算。 难点:多变过程的计算分析,图示。 5.热力学第二定律(4学时) 掌握热机循环与制冷循环:热力学第二定律,可逆过程与不可逆过程,卡诺循环。卡诺定理;了解热能的可用性。 重点:理解热力学第二定律是判断过程方向性的定律 难点:热能的可用性分析 6.熵(4学时) 掌握状态参数熵的计算,了解不可逆过程熵的产生;理解孤立系统熵增原理;系统的作功能力与不可逆损失。 重点:掌握熵增原理,判断过程方向 难点:熵变计算与系统作功能力损失计算

浙大高等传热学复习题部分答案

高等传热学复习题 1.简述求解导热问题的各种方法和傅立叶定律的适用条件。 不论如何,求解导热微分方程主要依靠三大方法: 理论法、试验法、综合理论和试验法 理论法:借助数学、逻辑等手段,根据物理规律,找出答案。它又分: 分析法;以数学分析为基础,通过符号和数值运算,得到结果。方法有:分离变量法,积分变换法(Laplace变换,Fourier变换),热源函数法,Green函数法,变分法,积分方程法等等,数理方程中有介绍。 近似分析法:积分方程法,相似分析法,变分法等。 分析法的优点是理论严谨,结论可靠,省钱省力,结论通用性好,便于分析和应用。缺点是可求解的对象不多,大部分要求几何形状规则,边界条件简单,线性问题。有的解结构复杂,应用有难度,对人员专业水平要求高。 数值法:是当前发展的主流,发展了大量的商业软件。方法有:有限差分法,有限元法,边界元法,直接模拟法,离散化法,蒙特卡罗法,格子气法等,大大扩展了导热微分方程的实用范围,不受形状等限制,省钱省力,在依靠计算机条件下,计算速度和计算质量、范围不断提高,有无穷的发展潜力,能求解部分非线性问题。缺点是结果可靠性差,对使用人员要求高,有的结果不直观,所求结果通用性差。 比拟法:有热电模拟,光模拟等 试验法:在许多情况下,理论并不能解决问题,或不能完全解决问题,或不能完美解决问题,必须通过试验。试验的可靠性高,结果直观,问题的针对性强,可以发掘理论没有涉及的新规律。可以起到检验理论分析和数值计算结果的作用。理论越是高度发展,试验法的作用就越强。理论永远代替不了试验。但试验耗时费力,绝大多数要求较高的财力和投入,在理论可以解决问题的地方,应尽量用理论方法。试验法也有各种类型:如探索性试验,验证性试验,比拟性试验等等。 综合法:用理论指导试验,以试验促进理论,是科学研究常用的方法。如浙大提出计算机辅助试验法(CA T)就是其中之一。 傅里叶定律向量形式说明,热流密度方向与温度梯度方向相反。它可适用于稳态、非稳态,变导热系数,各向同性,多维空间,连续光滑介质,气、液、固三相的导热问题。 2.定性地分析固体导热系数和温度变化的关系 3.什么是直肋的最佳形状与已知形状后的最佳尺寸? Schmidt假定:如要得到在给定传热量下要求具有最小体积或最小质量的肋的形状和尺寸,肋片任一导热截面的热流密度都应相等。 1928年,Schmidt等提出了一维肋片换热优化理论:设导热系数为常数,沿肋高的温度分布应为一条直线。Duffin应用变分法证明了Schmidt假定。Wikins[3]指出只有在导热系数和换热系数为常数时,肋片的温度分布才是线性的。Liu和Wikins[4]等人还得到了有内热源及辐射换热时优化解。长期以来肋片的优化问题受到理论和应用两方面的重视。 对称直肋最优型线和尺寸的无量纲表达式分析: 假定一维肋片,导热系数和换热系数为常数,我们有对称直肋微分方程(忽略曲 线弧度): yd2θ/dx2+(dy/dx)dθ/dx-θh/λ=0 由Schmidt假定,对任意截面x: dθ/dx=-q/λ=const

传热部分习题答案

传热部分习题答案 1-7 热电偶常用来测量气流温度。如附图所示,用热电偶来测量管道中高温气流的温度T f ,壁管温度f w T T <。试分析热电偶结点的换热方式。 解:具有管道内流体对节点的对流换热,沿偶丝到节点的导热和管道内壁到节点的热辐 射 1-21 有一台气体冷却器,气侧表面传热系数1h =95W/2 ,壁面厚δ=2.5mm , )./(5.46K m W =λ水侧表面传热系数58002=h W/2。设传热壁可以看成平壁,试计算各 个环节单位面积的热阻及从气到水的总传热系数。你能否指出,为了强化这一传热过程,应首先从哪一环节着手 解: ;010526.0111== h R ;10376.55.460025.052-?===λδR ; 10724.1580011423-?===h R 则 λδ+ += 21111 h h K =)./(2K m W ,应强化气体侧表面传热。 1-22 在上题中,如果气侧结了一层厚为2mm 的灰,)./(116.0K m W =λ;水侧结了一层 厚为1mm 的水垢)./(15.1K m W =λ。其他条件不变。试问此时的总传热系数为多少 解:由题意得 5800115.1001.05.460025.0116.0002.09511 111 2 3322111++++= ++++= h h K λδλδλδ =)./(2 K m W 1-32 一玻璃窗,尺寸为60cm cm 30?,厚为4mm 。冬天,室内及室外温度分别为20℃ 及-20℃,内表面的自然对流换热表面系数为W ,外表面强制对流换热表面系数为50)./(K m W 。玻璃的导热系数)./(78.0K m W =λ。试确定通过玻璃的热损失。 解: λδA Ah A h T + +?= Φ2111 = -2 一冷藏室的墙由钢皮矿渣棉及石棉板三层叠合构成,各层的厚度依次为0.794mm.,152mm 及9.5mm ,导热系数分别为45)./(K m W ,0. 07)./(K m W 及)./(K m W 。冷藏室的有效换热面积为2 m ,室内外气温分别为-2℃及30℃,室内外壁面的表面传热系数 可分别按)./(2K m W 及 )./(2 K m W 计算。为维持冷藏室温度恒定,试确定冷藏室内的冷却排管每小时需带走的热量。 解:由题意得 3 3 2211212 111λδλδλδ++++-? =Φh h t t A =

传热学试题(答案)

①Nu准则数的表达式为(A ) ② ③根据流体流动的起因不同,把对流换热分为( A) ④A.强制对流换热和自然对流换热B.沸腾换热和凝结换热 ⑤C.紊流换热和层流换热D.核态沸腾换热和膜态沸腾换热 ⑥雷诺准则反映了( A) ⑦A.流体运动时所受惯性力和粘性力的相对大小 ⑧B.流体的速度分布与温度分布这两者之间的内在联系 ⑨C.对流换热强度的准则 ⑩D.浮升力与粘滞力的相对大小 ?彼此相似的物理现象,它们的( D)必定相等。 ?A.温度B.速度 ?C.惯性力D.同名准则数 ?高温换热器采用下述哪种布置方式更安全( D) ?A.逆流B.顺流和逆流均可 ?C.无法确定D.顺流

?顺流式换热器的热流体进出口温度分别为100℃和70℃,冷流体进出口温度分别为20℃和40℃,则其对数平均温差等于() A.60.98℃B.50.98℃ C.44.98℃D.40.98℃ ?7.为了达到降低壁温的目的,肋片应装在( D) ?A.热流体一侧B.换热系数较大一侧 ?C.冷流体一侧D.换热系数较小一侧 21黑体表面的有效辐射( D)对应温度下黑体的辐射力。 22A.大于B.小于 C.无法比较D.等于 23通过单位长度圆筒壁的热流密度的单位为( D) 24A.W B.W/m2 C.W/m D.W/m3 25格拉晓夫准则数的表达式为(D ) 26 27.由炉膛火焰向水冷壁传热的主要方式是( A ) 28 A.热辐射 B.热对流 C.导 热 D.都不是 29准则方程式Nu=f(Gr,Pr)反映了( C )的变化规律。 30A.强制对流换热 B.凝结对流换热

31 C.自然对流换热 D.核态沸腾换热 32下列各种方法中,属于削弱传热的方法是( D ) 33A.增加流体流度 B.设置肋片 34 C.管内加插入物增加流体扰动 D.采用导热系数较小的材 料使导热热阻增加 35冷热流体的温度给定,换热器热流体侧结垢会使传热壁面的温度( A ) 36 A.增加 B.减小 C.不变 D.有时增 加,有时减小 37将保温瓶的双层玻璃中间抽成真空,其目的是( D ) 38A.减少导热 B.减小对流换热 39 C.减少对流与辐射换热 D.减少导热与对流换热 40下列参数中属于物性参数的是( B ) 41A.传热系数 B.导热系数 42 C.换热系数 D.角系数 43已知一顺流布置换热器的热流体进出口温度分别为300°C和150°C,冷流体进出口温度分别为50°C和100°C,则其对数平均温差约为( )

传热传质学考试重点

考试形式 闭卷,时间120分钟,包括简答、分析和计算。带计算器、作图工具。 简答和分析主要涉及基本概念、表达式、简单问题的推导原理等。 计算题请重视课程中布置的习题、PPT中的例题等。 考试重点 第一章 1、三种传热方式的概念、基本表达式 2、能量守恒的原理,并会利用能量守恒进行简单计算 3、物理量单位及换算 第二章 1、温度场(等温面、等温线)的概念、温度梯度、热流线 2、热导率的定性大小关系(固体、液体、气体) 3、热扩散系数 4、重点掌握三维直角坐标、圆柱坐标、球坐标下的导热微分方程推导过程与原理,及简化条件 5、三种边界条件的物理意义与表达形式 第三章 1、重点掌握三种坐标下导热、对流、辐射热阻的意义与表达式,会利用热阻分析法计算复合壁导热问题 2、接触热阻的定义与消除接触热阻的方法 3、熟悉有内热源情况下的一维稳态平壁导热问题并做简单分析 第四章不做考试要求 第五章 1、重点掌握集总热容法原理和使用条件,会利用集总热容法对瞬态导热问题进行计算 2、掌握无量纲数Bi、Fo(中英文名、物理意义和表达式) 第六章 1、边界层(速度、温度、浓度)的含义、流体流态的转变 2、影响对流换热系数的相关物理因素、对流换热系数的相对大小关系(自然/

受迫,相变/非相变)、平均对流换热系数和局部对流换热系数的区别与联系 3、重点掌握各类常用的无量纲数(中英文名、物理意义和表达式,表6.2) 4、会利用相似性原理进行简单计算 第七章——第九章 1、重点掌握给定Nu计算公式条件下的简单对流换热计算(外掠平板、通过圆管的内部流动、平板附近的自然对流) 2、等温平板和等热流密度平板边界条件的区别、对数平均温差的意义 第十章——第十一章不做考试要求 第十二章 1、黑体辐射的三大定律 2、漫发射体(反射体)的概念、灰体的概念 3、吸收率、反射率、透过率的定义,及基尔霍夫定律的表达意义 4、有效辐射密度的概念 第十三章 1、会使用代数方法简单计算表面间的视角系数 2、掌握表面辐射热阻、空间辐射热阻的定义,会画辐射热网络图,并利用辐射 热网络图分析漫射灰表面之间的辐射换热 第十四章 1、扩散传质、对流传质的物理机制与斐克定律 2、传质与传热相关物理量的类比关系。

最新高等传热学部分答案

7-4,常物性流体在两无限大平行平板之间作稳态层流流动,下板静止不动,上板在外力作用下以恒定速度U 运动,试推导连续性方程和动量方程。 解:按照题意 0, 0=??=??=x v y v v 故连续性方程 0=??+??y v x u 可简化为 0=??x u 因流体是常物性,不可压缩的,N-S 方程为 x 方向: )(12222y u x u v y p F y u v x u u x ??+??+??-=??+??ρρ 可简化为 022=??+??-y v x p F x η y 方向 )(12222y v x v v y p F y v v x v u y ??+??+??-=??+??ρρ 可简化为 0=??= y p F y 8-3,试证明,流体外掠平壁层流边界层换热的局部努赛尔特数为 12121 Re Pr x Nu r = 证明:适用于外掠平板的层流边界层的能量方程

22t t t u v a x y y ???+=??? 常壁温边界条件为 0w y t t y ∞ ==→∞时,时,t=t 引入量纲一的温度w w t t t t ∞-Θ= - 则上述能量方程变为22u v a x y y ?Θ?Θ?Θ+=??? 引入相似变量12Re ()y y x x ηδ= == 有 11()(()22x x x ηη ηηη?Θ?Θ?''==Θ-=-Θ??? ()y y η ηη?Θ?Θ?'==???;22()U y x ηυ∞?Θ''= Θ? 将上三式和流函数表示的速度代入边界层能量方程,得到 1 Pr 02 f '''Θ+Θ= 当Pr 1=时,速度边界层厚度远小于温度边界层厚度,可近似认为温度边界层内速度为主流速度,即1,f f η'==,则由上式可得 Pr ()2 d f d η''Θ'=-'Θ,求解可得 11()()Pr 2 Pr (0)()erf η ηπ Θ='Θ= 则1212 0.564Re Pr x x Nu = 8-4,求证,常物性不可压缩流体,对于层流边界层的二维滞止流动,其局部努

传热学试题(答案)

Nu准则数的表达式为(A ) 根据流体流动的起因不同,把对流换热分为( A) A.强制对流换热和自然对流换热B.沸腾换热和凝结换热 C.紊流换热和层流换热D.核态沸腾换热和膜态沸腾换热 雷诺准则反映了( A) A.流体运动时所受惯性力和粘性力的相对大小 B.流体的速度分布与温度分布这两者之间的内在联系 C.对流换热强度的准则 D.浮升力与粘滞力的相对大小 彼此相似的物理现象,它们的( D)必定相等。 A.温度B.速度 C.惯性力D.同名准则数 高温换热器采用下述哪种布置方式更安全?( D) A.逆流B.顺流和逆流均可 C.无法确定D.顺流 顺流式换热器的热流体进出口温度分别为100℃和70℃,冷流体进出口温度分别为20℃和40℃,则其对数平均温差等于() A.60.98℃B.50.98℃ C.44.98℃D.40.98℃ 7.为了达到降低壁温的目的,肋片应装在( D) A.热流体一侧B.换热系数较大一侧 C.冷流体一侧D.换热系数较小一侧 黑体表面的有效辐射( D)对应温度下黑体的辐射力。 A.大于B.小于 C.无法比较D.等于 通过单位长度圆筒壁的热流密度的单位为( D) A.W B.W/m2 C.W/m D.W/m3 格拉晓夫准则数的表达式为(D ) .由炉膛火焰向水冷壁传热的主要方式是( A ) A.热辐射 B.热对流 C.导热 D.都不是 准则方程式Nu=f(Gr,Pr)反映了( C )的变化规律。 A.强制对流换热 B.凝结对流换热 C.自然对流换热 D.核态沸腾换热 下列各种方法中,属于削弱传热的方法是( D ) A.增加流体流度 B.设置肋片 C.管内加插入物增加流体扰动 D.采用导热系数较小的材料使导热热阻增加 冷热流体的温度给定,换热器热流体侧结垢会使传热壁面的温度( A ) A.增加 B.减小 C.不变 D.有时增加,有时减小 将保温瓶的双层玻璃中间抽成真空,其目的是( D )

传热与传质

传热与传质综述 论文 学院:能源与动力工程 班级:集控0901班 姓名:黄玲 2011年4月 《传热与传质》综述 集控0901班 200923060104 黄玲 摘要: 传热学就是研究由温差引起的热量传递规律的科学,混合物的 关于管保护层防都可以写复杂设可能地缩况进行

组分在浓度梯度的作用下由高浓度向低浓度的方向转移的过程叫做传质。而传质与传热学则是研究传热的基本理论以及传质基本过程,热质交换设备,传热传质强化,气体吸收和填料塔,湿法脱硫技术的介绍等等相关的内容。 关键字:传热与传质,换热器,填料塔,湿法脱硫系统 传热与传质学的研究背景 传热学就是研究由温差引起的热量传递规律的科学。在我们生活的大千世界中发生着各种各样的过程,其中热能的传递是与人类的生存关系最密切的物理关系之一:从现代楼宇的的暖通空调到自然界的风霜雪雨的形成,从航天飞机重返大气层时壳体的热防护到电子器件的有效冷却,从一年四季人们的穿着变化到人类器官的冷冻储存,无不与传热过程密切相关。 混合物的组分在浓度梯度的作用下由高浓度向低浓度的方向转移的过程叫做传质。在含有两种或两种以上组分的流体内部,如果有组分的浓度梯度存在,则每一种组分都有向其低浓度方向转移,已减弱这种浓度不均匀的趋势。 而传质与传热学则是研究传热的基本理论以及传质基本过程,热质交换设备,传热传质强化,气体吸收和填料塔,湿法脱硫技术的介绍等等相关的内容。传热与传质在动力、化工、制冷、建筑、环境、机械制造、新能源、微电子、核能、航空航天、微机电系统(MEMS)、新材料、军事科学与技术、材料学,生命科学与生物技术…等方面都有着广泛的运用。传热与传质是一门实践性很强的一

传热传质外文翻译

传热传质(2011) 47:1077–1087 DOI 10.1007/s00231-011-0772-1 原文 水泥砂浆的导热系数为空气相对湿度的函数 ′斯卡区思俊 收到:2009.11.28 接受:2011.2.16 发表于:2011.3.4施普林格出版社2011 摘要 本文是关于三水泥基砂浆的试验和研究结果。起初,水分 吸附被测量在20 c和六个相对湿度的空气水平上。测试被完成 吸附等温线得到的数学描述。 然后,热导系数k是测量 与固定和不稳定的技术样本 不同程度的水分。一个线性关系之间 系数k和材料水分测定。 组件的结果这两个阶段的研究帮助 确定一个数学依赖的热 电导系数上的相对湿度 测试材料。 符号列表 厘米水泥砂浆 CLM水泥石灰砂浆 MM改性砂浆

米水含量样品(%) p蒸汽压(N /平方米) ps饱和蒸汽压(N /平方米) T温度(摄氏度) t时间(小时) w吸附水分(%) 希腊符号 你的空气相对湿度(%) k的热导系数(W /可) a . Siwin′斯卡·h·Garbalin′ska(&) 部门的道路、桥梁和建筑材料, 西波美拉尼亚的科技大学在什切青市, 艾尔。Piasto′w 50,70 - 311年,波兰什切青市电子邮件:Halina.Garbalinska@https://www.doczj.com/doc/6b13536903.html,.pl 1介绍 一般来说,这里提供的方法对形式的 导热系数之间的依赖在 建筑材料和相对湿度结果 作者提出的不是由其他 研究人员。研究适用于吸附在建筑 材料进行了研究,以及那些关于热 这两个电导率分裂成单独的问题。 一般而言,建筑材料吸附试验 在于确定吸附物质量基于精确 测量样品:前、中、后完成 的测试。通常的方式确定吸附 品质是描述的标准[1]。它的缺陷和 实施一个新的方法(APM Augenblicksprofilmethode 或IPM瞬时剖面法) 缩短了测量时间了Plagge, Funk,格林瓦尔德会战,Ha¨Scheffler推[2 - 5]。在另 一方面,Sparr和Wadso Markova,¨[6、7]显示一个创新技术的所谓微热量计, 促进热力学特性的吸附 过程。 一个通用方程的吸附等温线 能描述令人满意的特性曲线 所有的建筑材料在整个相对湿度范围

传热习题答案

1. 外径为100 mm 的蒸汽管,外面包有一层50 mm 厚的绝缘材料A ,λA = W/(m.℃),其外再包一层25 mm 厚的绝缘材料B ,λB = W/(m.℃)。若绝缘层A 的内表面及绝缘层B 的外表面温度各为170 ℃及38℃,试求:(1)每米管长的热损失量;(2)A 、B 两种材料的界面温度;(3)若将两种材料保持各自厚度,但对调一下位置,比较其保温效果。假设传热推动力保持不变。 解:以下标1表示绝缘层A 的内表面,2表示绝缘层A 与B 的交界面,3表示绝缘层B 的外表面。 (1)每米管长的热损失 2 31231ln 1 ln 1) (2r r r r t t l Q B A λλπ+-= ∴ m W r r r r t t l Q B A /3.495050255050ln 075.01505050ln 05 .01)38170(2ln 1ln 1)(223 1231=+++++-=+-=πλλπ (2)A 、B 界面温度t2 因系定态热传导,故 3.4921===l Q l Q l Q ∴ 3.4950 5050ln 05.01) 170(22=+-t π 解得 t 2= (3)两种材料互换后每米管长的热损失 同理 1.5350 5025 5050ln 05.01505050ln 075.01) 38170(2' =+++++-=πl Q W/m 由上面的计算可看到,一般说,导热系数小的材料包扎在内层能够获得较好的保温效果。 1、欲将一容器中的溶液进行加热,使其从30℃加热至60℃,容器中的液量为6000 ,用

夹套加热,传热面积为,容器内有搅拌器,因此器内液体各处的温度可视为均匀的, 加热蒸气为的饱和水蒸气,传热系数为℃,求将溶液由30℃加热至60℃所需要 的时间 已知溶液比热为 ℃,热损失忽略不计。 解:溶液从30℃被加热到60℃所需的热量: 而夹套的传热效率: 其中,对于 的饱和水蒸气, ℃ ℃ 则 ∴ 所需加热时间为: 2、解:(1)甲苯蒸气冷凝放热量为:h kJ r W Q /726000363200011=?== 冷却水吸收热量:h kJ t t t Cp W Q Q /726000)16(19.45000)(212212=-??=-== C t ο65.502=∴ (3分) (2)传热平均温差为C t T t T t T t T t m ο35.7565.5011016 110ln 16 65.50ln )(2 121=---=-----= ? (2分) 总传热系数: W K m h d h d K /1075.510000150240057112421122??=+?=+=- ∴K 2= W//(m 2·K) (2分)

传热传质学试题之一

广东海洋大学 2005 —— 2006 学年第 2 学期 《 传热传质学》课考试(查)试题(A B ) 一、 请解释下列名词(每小题3分,共15分) 1) 傅立叶定律 2) 灰体 3) 热边界层及其厚度 4) 复合换热 5) 对流传质 班级: 姓名: 学号: 加白纸 2 张 密 封 线

二、填空(每小题2分,共10分) 1)两个物理现象相似的条件是 。 2)测温套管测流体的温度时存在测温误差的原因是 ,热电偶产生测温误差的原因是。 3)Pr的定义式是,它的物理意义是。 4)边界条件是指,边界条件有三类,第一类边界条件是 ,第二类边界条件是 ,第三类边界条件是 5)大容器中的饱和沸腾,随着加热壁面过热度的增加会出现、、和四个区域。

4、什么是膜状凝结?什么是珠状凝结?珠状凝结与膜状凝结相比那个好?为什么? 5、温度为500K的灰体表面,对于来自太阳的辐射,其黑度为0.4,那么,对于来自温度为600K的黑体辐射源,其吸收率为多少?为什么? 6、以下两题中任选一题: 1)简述影响强制对流换热的各因素? 2)如何解释地球表面的温室效应?为什么种植蔬菜的玻璃暖房有“温室效应”?

四、 综合计算题(共51分) 1、为了解空气预热器的换热性能,用尺寸为实物的1/8的模型来预测。模型中用50℃的空气模拟空气预热器中的150℃的空气。空气预热器中的空气流速为6.03m/s 。(12分) 1) 问模型中的空气流速U m 应为多少? 2)若模型中的h m =412 w/(㎡.℃),问锅炉中空气的表面传热系数h p 为多少? (下标m ,p 仅用来区分模型与实物) 已查得:40℃时空气的导热系数0276.0=λm w/(m.℃),运动粘度 1096.166-?=ν m ㎡/s ;133℃时空气的导热系数0344.0=λP w/(m.℃), 运动粘度1098.266-?=νP ㎡/s 。

传热学第五版课后习题答案(1)汇编

传热学习题_建工版V 0-14 一大平板,高3m ,宽2m ,厚0.2m ,导热系数为45W/(m.K), 两侧表面温度分别为w1t 150C =?及w1t 285C =? ,试求热流密度计热流量。 解:根据付立叶定律热流密度为: 2 w2w121t t 285150q gradt=-4530375(w/m )x x 0.2λλ??--??=-=-=- ? ?-???? 负号表示传热方向与x 轴的方向相反。 通过整个导热面的热流量为: q A 30375(32)182250(W)Φ=?=-??= 0-15 空气在一根内经50mm ,长2.5米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的h=73(W/m 2.k),热流密度q=5110w/ m 2, 是确定管壁温度及热流量?。 解:热流量 qA=q(dl)=5110(3.140.05 2.5) =2005.675(W) πΦ=?? 又根据牛顿冷却公式 w f hA t=h A(t t )qA Φ=??-= 管内壁温度为: w f q 5110t t 85155(C)h 73 =+ =+=? 1-1.按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。 解: (1)由附录7可知,在温度为20℃的情况下, λ 铜 =398 W/(m ·K),λ 碳钢 =36W/(m ·K), λ 铝 =237W/(m ·K),λ 黄铜 =109W/(m ·K). 所以,按导热系数大小排列为: λ 铜 >λ 铝 >λ 黄铜 >λ钢 (2) 隔热保温材料定义为导热系数最大不超过0.12 W/(m ·K). (3) 由附录8得知,当材料的平均温度为20℃时的导热系数为: 膨胀珍珠岩散料:λ=0.0424+0.000137t W/(m ·K) =0.0424+0.000137×20=0.04514 W/(m ·K); 矿渣棉: λ=0.0674+0.000215t W/(m ·K) =0.0674+0.000215×20=0.0717 W/(m ·K);

高等传热学考试范围(答案)

1.强迫流动换热如何受热物性影响? 答:强迫对流换热与Re和Pr有关;加热与对流的粘性系数发生变化。 2.强化传热是否意味着增加换热量?工程上强化传热的收益和代价通常是指什么? 答:不一定,强化传热是指在一定条件(如一定的温差、体积、重量或泵功等)下增加所传递的热量。工程上的收益是减小换热器的体积节省材料和重量;提高现有换热器的换热量;减少换热器的阻力,以降低换热器的动力消耗等。代价是耗电,并因增大流速而耗功。 3.传热学和热力学中的热平衡概念有何区别? 答:工程热力学是温度相同时,达到热平衡,而传热学微元体获得的能量等于内热源和进出微元体热量之和,内热源散热是有温差的。 4.表面辐射和气体辐射各有什么特点? 为什么对辐射板供冷房间,无需考虑气体辐射的影响,而发动机缸内传 热气体辐射却成了主角? 答:表面辐射具有方向性和选择性。气体辐射的特点:1.气体的辐射和吸收具有明显的选择性。2. 气体的辐射和吸收在整个气体容器中进行,强度逐渐减弱。空气,氢,氧,氮等分子结构称的双原子分子,并无发射和吸收辐射能的能力,可认为是热辐射的透明体。但是二氧化碳,水蒸气,二氧化硫,氯氟烃和含氯氟烃的三原子、多原子以及不对称的双原子气体(一氧化碳)却具有相当大的辐射本领。房间是自然对流,气体主要是空气。由于燃油,燃煤及然气的燃烧产物中通常包含有一定浓度的二氧化碳和水蒸气,所以发动机缸内要考虑。 5.有人在学完传热学后认为,换热量和热流密度两个概念实质内容并无差别,你的观点是? 答:有差别。热流密度是指通过单位面积的热流量。而换热量跟面积有关。 6.管内层流换热强化和湍流换热强化有何实质性差异?为什么? 答:层流边界层是强化管内中间近90%的部分,层流入口段的热边界层比较薄,局部表面传热系数比充分发展段高,且沿着主流方向逐渐降低。如果边界层出现湍流,则因湍流的扰动与混合作用又会使局部表面传热系数有所提高,再逐渐向于一个定值。而湍流是因为其推动力与梯度变化和温差有关,减薄粘性底层,所以强化壁面。 7.以强迫对流换热和自然对流换热为例,试谈谈你对传热、流动形态、结构三者之间的关联 答:对流换热按流体流动原因分为强制对流换热和自然对流换热。一般地说,强制对流的流速较自然对流高,因而对流换热系数也高。例如空气自然对流换热系数约为5~25 W/(m2?℃),强制对流换热的结构影响了流体的流态、流速分布和温度分布,从而影响了对流换热的效果。流体在管内强制流动与管外强制流动,由于换热表面不同,流体流动产生的边界层也不同,其换热规律和对流换热系数也不相同。在自然对流中,流体的流动与换热表面之间的相对位置,对对流换热的影响较大,平板表面加热空气自然对流时,热面朝上气流扰动比较激烈,换热强度大;热面朝下时流动比较平静,换热强度较小。 8.我们经常用Q=hA·Δt.计算强迫对流换热、自然对流换热、沸腾和凝结换热,试问在各种情况下换热系数与 温差的关联? 答:强迫对流的换热系数与Re,Pr有关但与温差无关,自然对流与Gr的0.25次方有关联,即与温差有关,凝结换热换热系数是温差的-0.25次方。 9.试简述基尔霍夫定理的基本思想 答:一、基尔霍夫第一定律:汇于节点的各支路电流的代数和等于零,用公式表示为: ∑I=0 又被称作基尔霍夫电流定律(KCL)。 二、基尔霍夫第二定律:沿任意回路环绕一周回到出发点,电动势的代数和等于回路各支路电阻(包括电 源的内阻在内)和支路电流的乘积(即电压的代数和)。用公式表示为: ∑E=∑RI 又被称作基尔霍夫电压定律(KVL)。 10.简述沸腾换热与汽泡动力学、汽化核心、过热度这些概念的关联 答:沸腾是指在液体内部以产生气泡的形式进行的气化过程,就流体运动的动力而言,沸腾过程又有大容器沸

相关主题
文本预览
相关文档 最新文档