当前位置:文档之家› 三角函数关系

三角函数关系

三角函数关系
三角函数关系

三角函数关系

正弦函数 sinθ=y/r

余弦函数 cosθ=x/r

正切函数 tanθ=y/x

余切函数 cotθ=x/y

正割函数 secθ=r/x

余割函数 cscθ=r/y

(斜边为r,对边为y,邻边为x。)

以及两个不常用,已趋于被淘汰的函数:

正矢函数 versinθ =1-cosθ

余矢函数 coversθ =1-sinθ

同角三角函数间的基本关系式:

[编辑本段]·平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

·积的关系:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

·倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

直角三角形ABC中,

角A的正弦值就等于角A的对边比斜边,

余弦等于角A的邻边比斜边

正切等于对边比邻边,

·三角函数恒等变形公式

·两角和与差的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ

+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·辅助角公式:

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

·万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……

+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……

+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

三角函数的角度换算

[编辑本段]公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

正余弦定理

[编辑本段]正弦定理是指在一个三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .

余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA

部分高等内容

[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):

sinx=[e^(ix)-e^(-ix)]/(2i)

cosx=[e^(ix)+e^(-ix)]/2

tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+

z^4/4!+…+z^n/n!+…

此时三角函数定义域已推广至整个复数集。

·三角函数作为微分方程的解:

对于微分方程组 y=-y'';y=y'''',有通解Q,可证明

Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。

补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。

特殊三角函数值

[编辑本段] a 0` 30` 45` 60` 90`

sina 0 1/2 √2/2 √3/2 1

cosa 1 √3/2 √2/2 1/2 0

tana 0 √3/3 1 √3 None cota None √3 1 √3/3 0

三角函数的计算

[编辑本段]

幂级数

c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)

它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,https://www.doczj.com/doc/6b11500866.html,...及a都是常数, 这种级数称为幂级数.

泰勒展开式(幂级数展开法):

f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...

实用幂级数:

ex = 1+x+x2/2!+x3/3!+...+xn/n!+...

ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|<1)

sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞

arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|<1)

arccos x = π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x| <1)

arctan x = x - x^3/3 + x^5/5 - ... (x≤1)

sinh x = x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+... (-∞

三角函数公式大全关系

三角函数公式大全关系: 倒数 tanα·cotα=1 sinα·cscα=1 cosα·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式 sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式 我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作 a(叫做坡角),那么 i=h/l=tan a. 锐角三角函数公式 正弦: sin α=∠α的对边/∠α的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边 二倍角公式 正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)

三角函数的基本关系

同角三角函数基本关系式 同角三角函数基本关系式 公式的推导? ??? ? 公式的运用?→????(1)根据一个角的某一三角函数值求其它的三角函数值。需注意先用平方关系,后用商数关系,最后用倒数关系,关键注意符号问题。 (2)三角函数式的化简,注意化简的结果做到“五个尽量”,即①项数尽量少,②次数尽量低,③尽量不含分母,④尽量不带根号,⑤尽量化为数值。 (3)三角恒等式的证明,掌握常规的化弦法(即:切割化弦)以及由繁到简法等。 【例1】已知3cos 5 α=-,α是第二象限角,那么tan α的值等于()。A 4 3B 4 3-C 3 4D 3 4 -变式:已知:1sin 5 α=且tan 0α< ,试求cos α,tan α的值。变式:已知8cos 17 α=-,求sin α 和tan α的值。变式 :⑴已知12sin 13 α=,并且α是第二象限角,求cos ,tan ,cot ααα.⑵已知4 cos α=-,求sin ,tan αα. 【例2】已知α) A 2tan α- B 2tan α C tan α D tan α-

变式: =___________;66441sin cos 1sin cos x x x x --=--___________。变式:已知α -。【例3】已知2tan =α,求sin 4cos 5sin 2cos αααα -+及2sin 2sin cos ααα+的值。变式:已知tan 2α=,求 sin cos 2sin 3cos αααα+-的值()A 2B 3C 1D 3-变式:已知tan 2α=,求下列各式的值: (1)4sin cos 3sin 5cos αααα -+;(2)2222sin 2sin cos cos 4cos 3sin αααααα-?--;(3)223 1sin cos 42 αα+;(4)sin cos αα?。变式:已知sin 2sin αβ=,tan 3tan αβ=,则2cos α=_________。 【例4】已知1sin cos 5 αα-=,求下列各式的值.⑴sin cos αα; ⑵33sin cos αα-; ⑶44sin cos αα-. 【例5】 已知1sin cos 2 αα-+=,且0απ<<,则tan α的值为()。 A B C D 变式: 已知方程221)0x x m -+=的两根分别是sin ,cos θθ,求sin cos 11tan 1θθθθ+--的值。

1.2.2同角的三角函数的基本关系 教案

1. 2.2同角的三角函数的基本关系 一、教学目标: ⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义; 2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性; 3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力. 二、教学重、难点 重点:公式1cos sin 2 2=+αα及 αα α tan cos sin =的推导及运用: (1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式. 难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式. 三、学法与教学用具 利用三角函数线的定义, 推导同角三角函数的基本关系式: 1cos sin 2 2 =+αα及 αα α tan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等. 教学用具:圆规、三角板、投影 四、教学过程 【创设情境】 与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化. 【探究新知】 探究:三角函数是以单位圆上点的坐标来定义的,你能从 圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗? 如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由2 2 1MP OM +=, 因此2 2 1x y +=,即22 sin cos 1αα+=. 根据三角函数的定义,当()2a k k Z π π≠+ ∈时,有 sin tan cos α αα =. 这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切. 【例题讲评】 例1化简: 440sin 12- 解:原式 80cos 80cos 80sin 1)80360(sin 122 2 ==-=+-= 例2 已知α α αααsin 1sin 1sin 1sin 1+---+是第三象限角,化简

(精心整理)同角三角函数基本关系式练习题

任意角的三角函数 1.已知sin α=45 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)4 3 (D)4 3- 2.若θ是第三象限角,且02 cos <θ,则2 θ是 ( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限 3.设是第二象限角,则sin cos αα ( ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ=3 1,π<θ<32 π,则sin θ·cos θ的值为 ( ) (A)±3 10 (B) 3 10 5 若α 是三角形的一个内角,且sin α+cos α=3 2 ,则三角形为 ( ) (A) 钝角三角形 (B)锐角三角形 (C)直角三角形 (D)等腰三角形 6.已知α的终边经过P (ππ6 5cos ,6 5sin ),则α可能是 ( ) A .π6 5 B . 6 π C .3 π- D .3 π 7.如果).cos(|cos |π+-=x x 则x 的取值范围是 ( ) A .)(] 22 ,22 [Z k k k ∈++-ππππ B .)() 22 3,22 (Z k k k ∈++ππππ C .)(] 22 3,22 [Z k k k ∈++ππππ D .)()2,2(Z k k k ∈++-ππππ 8.1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( ) A .5 B .-5 C .6 D .-6 9. 扇形的周期是16,圆心角是2弧度,则扇形面积是______________

数学讲义:三角函数的基本关系

三角函数的基本关系 在上一节我们利用三角形两边长的比例关系,定义了六个锐角的三角函数: 设△ABC 为一直角三角形,其中?=∠90C , AB 为△ABC 的斜边,AC 为∠A 的邻边, BC 为∠A 的对边,则 ◆AB BC A A == =∠斜邊對邊的正弦sin ?AB AC A A ===∠斜邊鄰邊的餘弦cos ?AC BC A A == =∠鄰邊對邊的正切tan ?BC AC A A ===∠對邊鄰邊的餘切cot ?AC AB A A ===∠鄰邊斜邊的正割sec BC AB A A ===∠對邊斜邊的餘割csc 此外,我们也可藉由定义推得六个三角函数间的关系,叙述如下: (1)倒数关系: 1csc sin csc 1sin =??= θθθθ 1sec cos sec 1cos =??= θθθθ ●1cot tan cot 1tan =??=θθθ θ 例题 1 ◆试求=??????40csc 40sec 40cot 40tan 40cos 40sin ?设θ为锐角﹐求 1111sin 1cos 1sec θθθ++++++11csc θ += 练习 1 求22212tan 5312cot 53??+++= 1 (2)余角关系:θ为锐角 ()θθ-?=90cos sin ()θθ-?=90sin cos ●()θθ-?=90cot tan ?()θθ-?=90tan cot ?()θθ-?=90csc sec ?()θθ-?=90sec csc Q :求出下列锐角θ的値 ◆θsin 56cos =?,=θ ?θcot 43tan =?,=θ ?θsec 77csc =?,=θ

三角函数的定义、诱导公式、同角三角函数的关系练习题-

三角函数的定义、诱导公式、同角三角函数的关系练习题学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.已知角α的终边经过点P(4,-3),则的值为() A. B. C. D. 2.已知角α的始边与x轴非负半轴重合,终边在射线4x-3y=0(x≤0)上,则cos α-sin α的值为( ) A. B. C. D. 3.已知角α的终边与单位圆的交点P,则sinα·tanα=( ) A.- B.± C.- D.± 4.若tanα<0,且sinα>cosα,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5.若,且,则角是() A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角 6.若,且为第二象限角,() A. B. C. D.

7.已知,则等于 A . B . C . D . 8.若,且为第二象限角,则( ) A . B . C . D . 二、填空题 9.已知 ,则___________ 三、解答题 10.已知,且是第四象限的角。. (1)求; (2). 11.(1)已知 ,求 的值; (2)已知, ,求的值. 12.已知tan α2,= (1)求值: sin cos sin cos αα αα +- (2)求值: ()()()() π5πsin cos cos π22cos 7πsin 2πsin παααααα???? +--+ ? ?????+-+ 13.已知角α终边上的一点()7,3P m m - ()0m ≠.

(1)求()cos sin 2119cos sin 22παπαππαα?? +-- ???????-+ ? ????? 的值; (2)求22sin cos cos ααα+-的值. 14.已知0θπ<<,且1 sin cos 5 θθ+=,求 (1)sin cos θθ-的值; (2)tan θ的值. 15.已知tan 2α=. (1)求 3sin 2cos sin cos αα αα +-的值; (2)求()()()() 3cos cos sin 22sin 3sin cos πππαααπααππα??? ?-+- ? ? ????+-+的值; 16.已知 ,计算: (1); (2). 17.已知: 1 sin cos ,0<<,5 θθθπ+= 且 (Ⅰ)求sin cos tan θθθ-和的值; (Ⅱ)求22 sin cos 2sin cos θ θθθ -的值. 18.已知求的值.

中职数学同角三角函数的基本关系式

三角函数(2) 姓名: 班级: 一、选择题(每题7分,共84分) 1、若角α的终边经过点()1,2-,则cos α的值为 ( ) A . B. C. - D. 12 2、若cos 0,sin 0αα<<,那么角α在( ) A . 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3、已知1cos 2 α=-,且α 是第三象限的角,则tan α的值为 ( ) A . B. C. D. 4、253 π在( ) A . 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 5、4cos 5 α=,则sin α的值为( ) A . 45- B. 45 C. 35 D. 35 ± 6、若角α的终边经过点()()0a a -≠,则sin α的值为( ) A . 2± B. 2 C. 2 - D. 7、若sin cos 0αα?>,那么角α( ) A . 第一、二象限 B. 第二、三象限 C. 第三、四 象限 D. 第一 、四象限 8、若角α的终边经过点()1,2-,则sin α的值为( ) A . 2 B. C. 25- D. 2-

9、下列三角函数中为负值的是( ) A . 0sin1150 B. () 0cos 3100- C. 0tan 230 D. 0sin 425 10、已知tan 0,cos 0αα<<,那么角α在( ) A . 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 11、一钟表的分针长10cm,经过35分钟,分针的端点所转过的长为( ) A . 70cm B. 706cm C. 353cm π D. 25(3 cm π- 12、若角α +的值为( ) A . 3 B. 3- C. 1 D. 1- 二、填空题(每题6分,共36分) 1、3sin cos 0sin tan 0sin 22 πππ++-+= 。 2、用><“”或“”填空 7sin 6π 0 23cos 6π 0 16tan 3π??- ??? = 0 16sin 5π 0 7c o s 4π= 0 3tan 4π??- ??? 0 3、若5 =4απ-,则它的正弦值、正切值、余弦值为正数的是 。 4、sin 0,cos 0αα><,则2 α是第 象限的角。 5、tan sin 0,αα?<若,则角α为第 象限的角。 6、适合条件sin sin αα=-的角α在第 象限。 18、若α是第三象限的角,1cos 3α=- ,则sin α= 。 三、解答题(共80分) 19、求值:03cos 0sin 4tan sin 5cos 22 ππππ+--+

各种三角函数关系式

倒数关系: 商的关系:平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α诱导公式 sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=——————

同角三角函数的基本关系教案

同角三角函数的基本关系 东宁县绥阳中学 教学目的: 知识目标:1.能根据三角函数的定义导出同角三角函数的基本关 系式及它们之间的联系; 2.熟练掌握已知一个角的三角函数值求其它三角函 数值的方法。 能力目标: 牢固掌握同角三角函数的两个关系式,并能灵活运用 于解题,提高学生分析、解决三角的思维能力; 教学重点:同角三角函数的基本关系式 教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式应用 教学过程: 一、复习引入: 1.任意角的三角函数定义: 设角α是一个任意角,α终边上任意一点(,)P x y ,它与原点的距离为 (0)r r ==>,那么:sin y r α=,cos x r α=,tan y x α=, 2.当角α分别在不同的象限时,sin α、cos α、tg α的符号分别是怎样的? 3.背景:如果5 3sin =A ,A 为第一象限的角,如何求角A 的其它三角函数值; 4.问题:由于α的三角函数都是由x 、y 、r 表示的,则角α的三个三角函数之间有什么关系? 二、讲解新课: (一)同角三角函数的基本关系式:

(板书课题:同角的三角函数的基本关系) 1. 由三角函数的定义,我们可以得到以下关系: (1)商数关系:α ααcon sin tan = (2)平方关系:1sin 22=+ααcon 说明: ①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等; ②注意这些关系式都是对于使它们有意义的角而言的,如 tan cot 1(,)2 k k Z πααα?=≠∈; ③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、 变形用),如: cos α= 22sin 1cos αα=-, sin cos tan ααα =等。 2.例题分析: 一、求值问题 例1.(1)已知12sin 13α= ,并且α是第二象限角,求cos ,tan ,cot ααα. (2)已知4 cos 5α=-,求sin ,tan αα. 解:(1)∵22sin cos 1αα+=, ∴2222125cos 1sin 1()()1313 αα=-=-= 又∵α是第二象限角, ∴cos 0α<,即有5cos 13 α=- ,从而 sin 12tan cos 5ααα==-, 15cot tan 12αα==- (2)∵22sin cos 1αα+=, ∴222243sin 1cos 1()()55αα=-=--=, 又∵4cos 05α=-<, ∴α在第二或三象限角。 当α在第二象限时,即有sin 0α>,从而3sin 5 α=,sin 3tan cos 4 ααα==-; 当α在第四象限时,即有sin 0α<,从而3sin 5α=-,sin 3tan cos 4ααα==. 总结: 1. 已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。在求值中,确定角的终边位置是关键和必要的。有时,由于角的终边位置的不确定,因此解的情况不止一种。 2. 解题时产生遗漏的主要原因是:①没有确定好或不去确定角的终边位置;②利用平方关系开平方时,漏掉了负的平方根。 例2.已知tan α为非零实数,用tan α表示sin ,cos αα.

三角函数关系

cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2 ta n(2α)=2tanα/(1-tan^2α) 它有六种基本函数(初等基本表示): (斜边为r,对边为y,邻边为x。) 在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有 正弦函数sinθ=y/r正弦(sin):角α的对边比上斜边 余弦函数cosθ=x/r余弦(cos):角α的邻边比上斜边 正切函数tanθ=y/x正切(tan):角α的对边比上邻边 余切函数cotθ=x/y余切(cot):角α的邻边比上对边 正割函数secθ=r/x正割(sec):角α的斜边比上邻边 余割函数cscθ=r/y余割(csc):角α的斜边比上对边 以及两个不常用,已趋于被淘汰的函数: 正矢函数versinθ =1-cosθ 余矢函数coversθ =1-sinθ [编辑本段] 基本公式 同角三角函数关系式 ·平方关系: sin^2(α)+cos^2(α)=1 cos^2(a)=(1+cos2a)/2

tan^2(α)+1=sec^2(α) sin^2(a)=(1-cos2a)/2 cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα×cosα cosα=cotα×sinα tanα=sinα×secα cotα=cosα×cscα secα=tanα×cscα cscα=secα×cotα ·倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 ·商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·对称性 180度-α的终边和α的终边关于y轴对称。-α的终边和α的终边关于x轴对称。 180度+α的终边和α的终边关于原点对称。180度-α的终边关于y=x对称。 ·诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(π/2-a)=cos(a) cos(π/2-a)=sin(a) sin(π/2+a)=cos(a) cos(π/2+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) tgA=tanA=sinA/cosA

同角三角函数的基本关系式_练习题

同角三角函数的基本关系式 练习题 1.若sin α=4 5,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±43 2.化简1-sin 2160°的结果是( ) A .cos160° B .-cos160° C .±cos160° D .±|cos160°| 3.若tan α=2,则2sin α-cos α sin α+2cos α的值为( ) A .0 B.34 C .1 D.5 4 4.若cos α=-8 17 ,则sin α=________,tan α=________. 5.若α是第四象限的角,tan α=-5 12 ,则sin α等于( ) A.15 B .-15 C.315 D .-513 6.若α为第三象限角,则cos α1-sin 2α+2sin α 1-cos 2α 的值为( ) A .3 B .-3 C .1 D .-1 7、已知A 是三角形的一个内角,sin A +cos A = 2 3 ,则这个三角形是 ( ) A .锐角三角形 B .钝角三角形 C .不等腰直角三角形 D .等腰直角三角形 8、已知sin αcos α = 1 8 ,则cos α-sin α的值等于 ( ) A .±3 4 B .±23 C .23 D .-2 3 9、已知θ是第三象限角,且9 5 cos sin 4 4 = +θθ,则=θθcos sin ( ) A . 32 B . 32- C . 3 1 D . 31- 10、如果角θ满足2cos sin =+θθ,那么θθcot tan +的值是 ( ) A .1- B .2- C .1 D .2 11、若 2cos sin 2cos sin =-+α αα α,则=αtan ( ) A .1 B .- 1 C .43 D .3 4- 12.A 为三角形ABC 的一个内角,若sin A +cos A =12 25 ,则这个三角形的形状为( ) A .锐角三角形 B .钝角三角形 C .等腰直角三角形 D .等腰三角形 13.已知tan θ=2,则sin 2 θ+sin θcos θ-2cos 2θ等于( ) A .-43 B.54 C.-34 D.45 14.(tan x +cot x )cos 2x =( )

同角三角函数的基本关系式

同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式 三角函数的降幂公式

六个三角函数相互关系记忆图

规律(两图同用此规律): ①在第一幅图中,对角线的两个三角函数成倒数关系 例如: sin(α)?csc?(α)=1 或 csc α=1sin?(α) ②边界上的任一三角函数等于其相邻两函数的乘积(乘积关系) 例如: sin?函数的两边分别是tan 和cos , ∴sin α=tan α?cos?(α) 又例如:tan 函数的两边分别是sin 和sec , ∴tan?(α)=sin?(α)?sec?(α) ③在有阴影的三角形里,两个上顶角的平方和都等于下顶角(平方和关系) 例如:sin 和cos 分别处于阴影三角形的两个上顶角 ∴sin 2α+cos 2α=1 又例如:tan?和1分别处于阴影三角形的两个上顶角 ∴tan 2α+1=sec 2(α) 六个三角函数相互关系记忆图 高中适用简化三个三角函数相互关系记忆图 两图的画法 六个三角函数的图: sin Cos tan cot csc sec ①先看左上部,画图的顺序是sin 到cos 再到tan ,呈现一个“7”字型,而下半部分的顺序是csc 到sec 到cot ,呈现倒“7”字型。 ②中心写一个1 ③从sin 到cos 再到cot , csc 再到sec 和tan ,顺次连接成六边形 ④补上对角线,记住对角线一定要过中心的1 ⑤以sin ,cos 和1为第一个有阴影的三角形,每隔一个三角型就有一个阴影三角形,阴影三角形总共有三个。 1 三个三角函数的图: sin Cos tan 1 ①画图的顺序是sin 到cos 再到tan ,呈现一个“7”字型 ②中心写一个1 ③从sin 到cos 再到tan , 再回到sin ,顺次连接成三角形 ④将sin 和1连起来 ⑤以sin ,cos 和1为有阴影的三角形

同角三角函数基本关系及诱导公式练习

同角三角函数基本关系及诱导公式练习 一、选择题 1.,且α是第四象角,则sin α=__________. A.54 B.43 已知53cos =α C.54- D.4 3- 2.已知sin α=2 1,且α为第二象限角,则cos α=________. A.23 B.43 C. 限2 3- D.43- 3.下列各式中正确的是_________. A.απαsin )sin(=+ B.απαcos )2cos(-=+ C.ααπtan )tan( -=+ D.ααπsin )sin(=- 4.若tan α=1,则 α αααcos sin cos 3sin 2++的值是____________. A.21 B.23 C.25 D.2 7 5.已知5cos 5sin 2cos 3sin -=+-α ααα,则tan α=________. A.-2 B.1225 C.1128 D.9 22- 6.下列等式中正确的个数有__________. (1)ααπsin )sin(-=+ (2)ααπcos )2cos(-=+ (3)ααπtan )3tan( -=+ (4)ααπcos )5cos(-=- A.1 B.2 C.3 D.4 7,已知sin α=5 4,α的终边在第一象限,则)sin(απ+和)2cos(απ-的值是_____. A.5354和 B.5354和- C.5354-和 D.5 354--和 二、填空题 1.2 cos 2sin 22αα+=______________. 2.)4sin(π-=____________;6 13sin π=________. 3.45cos π=__________;3 2cos π=_________. 4.)300cos(0-=_________;0495sin =____________.

同角三角函数的基本关系式_基础

同角三角函数基本关系 【要点梳理】 要点一:同角三角函数的基本关系式 (1)平方关系:22 sin cos 1αα+= (2)商数关系: sin tan cos ααα = (3)倒数关系:tan cot 1?=αα,sin csc 1αα?=,cos sec 1αα?= 要点诠释: (1)这里“同角”有两层含义,一是“角相同”,二是对“任意”一个角(使得函数有意义的前提下)关系式都成立; (2)2sin α是2 (sin )α的简写; (3)在应用平方关系时,常用到平方根,算术平方根和绝对值的概念,应注意“±”的选取。 要点二:同角三角函数基本关系式的变形 1.平方关系式的变形: 2222sin 1cos cos 1sin αααα=-=-,,212sin cos (sin cos )αααα±?=± 2.商数关系式的变形 sin sin cos tan cos tan αααααα =?= ,。 【典型例题】 类型一:已知某个三角函数值求其余的三角函数值 例1.若4sin 5 α=-,且α是第三象限角,求cos α,tan α的值。 【总结升华】解答此类题目的关键在于充分借助已知角的三角函数值,缩小角的范围。在解答过程中如果角α所在象限已知,则另两个三角函数值结果唯一;若角α所在象限不确定,则应分类讨论,有两种结果,需特别注意:若已知三角函数值以字母a 给出,应就α所在象限讨论。 举一反三: 【变式1】已知3sin 5 α=- ,求cos α,tan α的值。 类型二:利用同角关系求值

例2.已知:tan cot 2,θθ+=求: (1)sin cos ?θθ的值;(2)sin cos θθ+的值; (3)sin cos θθ-的值;(4)sin θ及cos θ的值 【变式1】已知sin cos αα-= (1)tan α+cot α;(2)sin 3α-cos 3α。 例3.已知:1tan 2θ=- ,求: (1)sin cos sin 3cos θθθθ +-; (2)2212sin cos sin cos θθθθ +-; (3)222sin 3sin cos 5cos θθθθ--。 【总结升华】已知tan α的值,求关于sin α、cos α的齐次式的值问题①如(1)、(2)题,∵cos α≠0,所以可用cos n α(n ∈N*)除之,将被求式转化为关于tan α的表示式,可整体代入tan α=m 的值,从而完成被求式的求值;②在(3)题中,求形如a sin 2α+b sin αcos α+c cos 2α的值,注意将分母的1化为1=sin 2α+cos 2α代入,转化为关于tan α的表达式后再求值。 举一反三: 【变式1】已知 tan 1tan 1 A A =--,求下列各式的值. (1)sin 3cos ;sin 9cos A A A A -+ (2)2 sin sin cos 2A A A ++

锐角三角函数之间的关系和特殊角Word版

课题:锐角三角函数之间的关系和特殊角 学习目标: 1、熟练掌握正弦和余弦、正切的关系和互化. 2、了解同一锐角三角函数间的平方关系、商数关系 3、掌握30度、45度、60度的三角函数值,能够用它们进行计算。 自主学习 一.正弦和余弦的关系 1.任意锐角的正弦值都等于它的余角的 值.cos sin =α 2.任意锐角的余弦值都等于它的余角的 值.sin cos =α 二..平方关系:1.推导:=+αα22cos sin 1 2、已知α为锐角,且5 3sin = α,则αcos = . 3、已知α为锐角,且13 12cos =α,则=αsin . 三.商数关系:1.推导:αα αtan cos sin = 2、已知α为锐角,且5 3sin =α,那么=αtan . 3、已知α为锐角,且13 5cos =α,那么=αtan . 4、已知α为锐角,且2tan =α,则ααααcos sin cos sin -+= . 四、特殊角:根据直角三角形边角关系把108页表格填写完整。 合作再探 一、填空(正弦和余弦、正切和余切互化) ①sin48°= . ②cos63°= .sin54°= . ○ 4cos72°= . 2. 已知α为锐角,且sin α= 5 4,那么cos α= . 3. 已知α为锐角,且cos α=13 12,则tan α= . 4. 已知α为锐角,且tan α=3,则ααααcos sin cos sin +-= . 5、 若sinA=cos 245°,则∠A= 。 6、 △ABC 中,有01sin 22 3cos =-+-B A ,那么∠C= 。 7、若∠A=60°,则化简=-2)sin 1(A . 8、Rt ?ABC 中,∠C=?90,∠A ∶∠B=1∶2,则sinA 的值

互余角的三角函数关系

互余角的三角函数关系 sin(90°-α)=cosα,cos(90°-α)=sinα, tan(90°-α)=cotα,cot(90°-α)=tanα。 3.同角三角函数间的关系 商数关系: sinA/cosA=tanA 2平方关系: sin^2(A)+cos^2(A)=1 三角函数值 (1)特殊角三角函数值 (2)0°~90°的任意角的三角函数值,查三角函数表。 (3)锐角三角函数值的变化情况 (i)锐角三角函数值都是正值 (ii)当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大) (iii)当角度在0°≤∠A≤90°间变化时, 0≤sinα≤1, 1≥cosA≥0, 当角度在0°<∠A<90°间变化时, tanA>0, cotA>0. 2对称性 180度-α的终边和α的终边关于y轴对称。 -α的终边和α的终边关于x轴对称。 180度+α的终边和α的终边关于原点对称。 90度-α的终边和α的终边关于y=x对称

还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,将α看做 锐角,那么90°+α是第二象限角,第二象限角的正弦为正,所以 sin(90°+α)=cosα 对称轴与对称中心 y=sinx 对称轴:x=kπ+π/2(k∈z) 对称中心:(kπ,0)(k∈z) y=cosx 对称轴:x=kπ(k∈z) 对称中心:(kπ+π/2,0)(k∈z) y=tanx 对称轴:无对称中心:(kπ,0)(k∈z) 两角和与差的三角函数 cos(α+β)=cosα2cosβ-sinα2sinβ cos(α-β)=cosα2cosβ+sinα2sinβ sin(α±β)=sinα2cosβ±cosα2sinβ tan(α+β)=(tanα+tanβ)/(1-tanα2tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα2tanβ) 和差化积公式 sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 积化和差公式 sinα2cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα2sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα2cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα2sinβ=-(1/2)[cos(α+β)-cos(α-β)] 倍角公式 sin(2α)=2sinα2cosα=2/(tanα+cotα) cos(2α)=cos^2α-sin^2;α=2cos^2;α-1=1-2sin^2;α tan(2α)=2tanα/(1-tan^2;α) cot(2α)=(cot^2;α-1)/(2cotα) sec(2α)=sec^2;α/(1-tan^2;α) csc(2α)=1/2*secα2cscα 三倍角公式 sin(3α) = 3sinα-4sin^3;α = 4sinα2sin(60°+α)sin(60°-α) cos(3α) = 4cos^3;α-3cosα = 4cosα2cos(60°+α)cos(60°-α)

同角三角函数的基本关系式练习题

同角三角函数的基本关系式练习题 4 1. 若Sin O= 4,且α是第二 象限角,则tan α的值等于( ) 5 2. 化简I 1-Sin 2160 °勺结果是( ) A . cos160 ° B . - cos160 ° C . ÷cos160 ° D . ±cos160 | 2sin α— cos α,, Z -、了 3. 若tan α= 2 ,贝U 的值为( ) s ∣n α+ 2cos α 3 5 A . 0 B. C . 1 D 4 4 5.若 α是第四象限的角, tan a= — 5 12 ,则Sin a 等于( ) 1 1 C 3 f 5 B . — 1 C 扁 D .—石 A . 3 B . — 3 C . 1 D . — 1 B.∣ C . ±± ±4 ±3 .若 cos α= 17,贝U Sin (X= ,tan α= ________ 6.若α为第三象限角,则 CoS α V 1 — sin 2 α 2sin α ■ ------- 2的值为( .1 — cos α

sinA+ cosA = | ,则这个三角形是 7、已知A是三角形的一个内角, A .锐角三角形 B .钝角三角形 C .不等腰直角三角形 D .等腰直角三角形

2 2 13.已知tanθ=2,贝U Sin θ+ Sin θos θ— 2cos θ等于( ) 4 A. —3 B.5C—3 C. 4 4 D.4 1 14. (tanx )cosX=( ) tan X A . tanx B.SinX C . cosx 1 D . tan X 8、已知Sin α CoS α 1 贝U COS a —Sin a的值等 于 4 4 9、已知V是第三象限角,且Sin V cos V 5 ,贝y Sin V CoST l - () 9 C. 10、如果角 T 满足Sin^ ? COST -、. 2 ,那么tan^ 1 的值是 tan^ A. -1 C. 1 D. 2 11、若 Sin ^ "COS - 2 Sin -COS: =2 ,贝U tan 二= A. 1 B .-1 C. 3 4 D. 12. A为三角形ABC的一个内角,若 12 SinA + CoSA=云则这个三角形的形状为 A .锐角三角形 B .钝角三角形 C.等腰直角三角形 D .等腰三角形

相关主题
文本预览
相关文档 最新文档