当前位置:文档之家› 二阶微分方程解法

二阶微分方程解法

二阶微分方程解法
二阶微分方程解法

第六节 二阶常系数齐次线性微分方程

教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐

次线性微分方程的解法

教学重点:二阶常系数齐次线性微分方程的解法 教学过程:

一、二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程: 方程 y ''+py '+qy =0

称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.

如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.

我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程

y ''+py '+qy =0 得

(r 2+pr +q )e rx =0.

由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解.

特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式

2

422,1q

p p r -±+-= 求出.

特征方程的根与通解的关系:

(1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解. 这是因为,

函数x r e y 11=、x r e y 22=是方程的解, 又x

r r x

r x r e e e y y )(212121-==不是常数. 因此方程的通解为

x r x r e C e C y 2121+=.

(2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分

方程的两个线性无关的解.

这是因为, x r e y 11=是方程的解, 又

x r x r x

r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111=++++=q pr r xe p r e x r x r ,

所以x

r xe y 12=也是方程的解, 且

x e xe y y x

r x

r ==1112不是常数. 因此方程的通解为 x r x r xe C e C y 1121+=.

(3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解. 函数y 1=e (α+i β)x 和y 2=e (α-i β)x 都是方程的解, 而由欧拉公式, 得 y 1=e (α+i β)x =e αx (cos βx +i sin βx ), y 2=e (α-i β)x =e αx (cos βx -i sin βx ),

y 1+y 2=2e αx cos βx , )(2

1cos 21y y x e x +=βα,

y 1-y 2=2ie αx sin βx , )(21sin 21y y i

x e x -=βα.

故e αx cos βx 、y 2=e αx sin βx 也是方程解.

可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解. 因此方程的通解为

y =e αx (C 1cos βx +C 2sin βx ).

求二阶常系数齐次线性微分方程y ''+py '+qy =0的通解的步骤为: 第一步 写出微分方程的特征方程 r 2+pr +q =0

第二步 求出特征方程的两个根r 1、r 2.

第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解. 例1 求微分方程y ''-2y '-3y =0的通解. 解 所给微分方程的特征方程为 r 2-2r -3=0, 即(r +1)(r -3)=0.

其根r 1=-1, r 2=3是两个不相等的实根, 因此所求通解为 y =C 1e -x +C 2e 3x .

例2 求方程y ''+2y '+y =0满足初始条件y |x =0=4、y '| x =0=-2的特解.

解所给方程的特征方程为

r2+2r+1=0,即(r+1)2=0.

其根r1=r2=-1是两个相等的实根,因此所给微分方程的通解为

y=(C1+C2x)e-x.

将条件y|x=0=4代入通解,得C1=4,从而

y=(4+C2x)e-x.

将上式对x求导,得

y'=(C2-4-C2x)e-x.

再把条件y'|x=0=-2代入上式,得C2=2.于是所求特解为

x=(4+2x)e-x.

例3 求微分方程y''-2y'+5y= 0的通解.

解所给方程的特征方程为

r2-2r+5=0.

特征方程的根为r1=1+2i,r2=1-2i,是一对共轭复根,

因此所求通解为

y=e x(C1cos2x+C2sin2x).

n阶常系数齐次线性微分方程:方程

y(n) +p1y(n-1)+p2 y(n-2) +???+p n-1y'+p n y=0,

称为n阶常系数齐次线性微分方程,其中p1,p2 ,???,p n-1,p n都是常数.

二阶常系数齐次线性微分方程所用的方法以及方程的通解形式,可推广到n阶常系数齐次线性微分方程上去.

引入微分算子D,及微分算子的n次多项式:

L(D)=D n+p1D n-1+p2 D n-2 +???+p n-1D+p n,

则n阶常系数齐次线性微分方程可记作

(D n+p1D n-1+p2 D n-2 +???+p n-1D+p n)y=0或L(D)y=0.

注: D叫做微分算子D0y=y, D y=y', D2y=y'', D3y=y''',???,D n y=y(n).

分析:令y=e rx,则

L(D)y=L(D)e rx=(r n+p1r n-1+p2 r n-2 +???+p n-1r+p n)e rx=L(r)e rx.

因此如果r是多项式L(r)的根,则y=e rx是微分方程L(D)y=0的解.

n阶常系数齐次线性微分方程的特征方程:

L(r)=r n+p1r n-1+p2 r n-2 +???+p n-1r+p n=0

称为微分方程L(D)y=0的特征方程.

特征方程的根与通解中项的对应:

单实根r对应于一项:Ce rx;

一对单复根r 1, 2=α ±i β 对应于两项: e αx (C 1cos βx +C 2sin βx ); k 重实根r 对应于k 项: e rx (C 1+C 2x + ? ? ? +C k x k -1); 一对k 重复根r 1, 2=α ±i β 对应于2k 项:

e αx [(C 1+C 2x + ? ? ? +C k x k -1)cos βx +( D 1+D 2x + ? ? ? +D k x k -1)sin βx ]. 例4 求方程y (4)-2y '''+5y ''=0 的通解. 解 这里的特征方程为

r 4-2r 3+5r 2=0, 即r 2(r 2-2r +5)=0, 它的根是r 1=r 2=0和r 3, 4=1±2i . 因此所给微分方程的通解为

y =C 1+C 2x +e x (C 3cos2x +C 4sin2x ). 例5 求方程y (4)+β 4y =0的通解, 其中β>0. 解 这里的特征方程为 r 4+β 4=0. 它的根为)1(2

2,1i r ±=

β

, )1(2

4,3i r ±-

.

因此所给微分方程的通解为 )2

sin

2

cos

(212x C x C e

y x

β

β

β

+=)2

sin

2

cos

(432

x C x C e

x

β

β

β

++-.

二、二阶常系数非齐次线性微分方程简介

二阶常系数非齐次线性微分方程: 方程 y ''+py '+qy =f (x )

称为二阶常系数非齐次线性微分方程, 其中p 、q 是常数. 二阶常系数非齐次线性微分方程的通解是对应的齐次方程 的通解y =Y (x )与非齐次方程本身的一个特解y =y *(x )之和: y =Y (x )+ y *(x ).

当f (x )为两种特殊形式时, 方程的特解的求法: 一、 f (x )=P m (x )e λx 型

当f (x )=P m (x )e λx 时, 可以猜想, 方程的特解也应具有这种形式. 因此, 设特解形式为y *=Q (x )e λx , 将其代入方程, 得等式

Q ''(x )+(2λ+p )Q '(x )+(λ2+p λ+q )Q (x )=P m (x ).

(1)如果λ不是特征方程r 2+pr +q =0 的根, 则λ2+p λ+q ≠0. 要使上式成立, Q (x )应设为m 次多项式:

Q m (x )=b 0x m +b 1x m -1+ ? ? ? +b m -1x +b m ,

通过比较等式两边同次项系数, 可确定b 0, b 1, ? ? ? , b m , 并得所求特解

y *=Q m (x )e λx .

(2)如果λ是特征方程 r 2+pr +q =0 的单根, 则λ2+p λ+q =0, 但2λ+p ≠0, 要使等式 Q ''(x )+(2λ+p )Q '(x )+(λ2+p λ+q )Q (x )=P m (x ). 成立, Q (x )应设为m +1 次多项式: Q (x )=xQ m (x ),

Q m (x )=b 0x m +b 1x m -1+ ? ? ? +b m -1x +b m ,

通过比较等式两边同次项系数, 可确定b 0, b 1, ? ? ? , b m , 并得所求特解 y *=xQ m (x )e λx .

(3)如果λ是特征方程 r 2+pr +q =0的二重根, 则λ2+p λ+q =0, 2λ+p =0, 要使等式 Q ''(x )+(2λ+p )Q '(x )+(λ2+p λ+q )Q (x )=P m (x ). 成立, Q (x )应设为m +2次多项式: Q (x )=x 2Q m (x ),

Q m (x )=b 0x m +b 1x m -1+ ? ? ? +b m -1x +b m ,

通过比较等式两边同次项系数, 可确定b 0, b 1, ? ? ? , b m , 并得所求特解 y *=x 2Q m (x )e λx .

综上所述, 我们有如下结论: 如果f (x )=P m (x )e λx , 则二阶常系数非齐次线性微分方程y ''+py '+qy =f (x )有形如 y *=x k Q m (x )e λx

的特解, 其中Q m (x )是与P m (x )同次的多项式, 而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.

例1 求微分方程y ''-2y '-3y =3x +1的一个特解.

解 这是二阶常系数非齐次线性微分方程, 且函数f (x )是P m (x )e λx 型(其中P m (x )=3x +1, λ=0). 与所给方程对应的齐次方程为 y ''-2y '-3y =0, 它的特征方程为 r 2-2r -3=0.

由于这里λ=0不是特征方程的根, 所以应设特解为 y *=b 0x +b 1. 把它代入所给方程, 得 -3b 0x -2b 0-3b 1=3x +1, 比较两端x 同次幂的系数, 得

?

??=--=-1323

3100b b b , -3b 0=3, -2b 0-3b 1=1.

由此求得b 0=-1, 3

1

1=b . 于是求得所给方程的一个特解为 3

1*+-=x y .

例2 求微分方程y ''-5y '+6y =xe 2x 的通解.

解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e λx 型(其中P m (x )=x , λ=2). 与所给方程对应的齐次方程为 y ''-5y '+6y =0, 它的特征方程为 r 2-5r +6=0.

特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为 Y =C 1e 2x +C 2e 3x .

由于λ=2是特征方程的单根, 所以应设方程的特解为 y *=x (b 0x +b 1)e 2x . 把它代入所给方程, 得 -2b 0x +2b 0-b 1=x . 比较两端x 同次幂的系数, 得

?

??=-=-021

2100

b b b , -2b 0=1, 2b 0-b 1=0.

由此求得210-

=b , b 1=-1. 于是求得所给方程的一个特解为

x e x x y 2)12

1(*--=. 从而所给方程的通解为

x x x e x x e C e C y 223221)2(2

1+-+=. 提示:

y *=x (b 0x +b 1)e 2x =(b 0x 2+b 1x )e 2x ,

[(b 0x 2+b 1x )e 2x ]'=[(2b 0x +b 1)+(b 0x 2+b 1x )?2]e 2x , [(b 0x 2+b 1x )e 2x ]''=[2b 0+2(2b 0x +b 1)?2+(b 0x 2+b 1x )?22]e 2x .

y *''-5y *'+6y *=[(b 0x 2+b 1x )e 2x ]''-5[(b 0x 2+b 1x )e 2x ]'+6[(b 0x 2+b 1x )e 2x ]

=[2b 0+2(2b 0x +b 1)?2+(b 0x 2+b 1x )?22]e 2x -5[(2b 0x +b 1)+(b 0x 2+b 1x )?2]e 2x +6(b 0x 2+b 1x )e 2x =[2b 0+4(2b 0x +b 1)-5(2b 0x +b 1)]e 2x =[-2b 0x +2b 0-b 1]e 2x .

方程y ''+py '+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解形式 应用欧拉公式可得 e λx [P l (x )cos ωx +P n (x )sin ωx ]

]2)(2)([ i

e e x P e e

x P e x i x i n x i x

i l

x ωωωωλ---++= x i n

l

x i n l e x iP x P e x iP x P )()()]()([21)]()([21ωλωλ-+++-=

x i x i e x P e x P )()()()(ωλωλ-++=,

其中)(21

)(i P P x P n l -=, )(2

1)(i P P x P n l +=. 而m =max{l , n }. 设方程y ''+py '+qy =P (x )e (λ+i ω)x 的特解为y 1*=x k Q m (x )e (λ+i ω)x , 则)(1)(*ωλi m k e x Q x y -=必是方程)()(ωλi e x P qy y p y -=+'+''的特解, 其中k 按λ±i ω不是特征方程的根或是特征方程的根依次取0或1. 于是方程y ''+py '+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解为 x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ-++=

)sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ-++= =x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ]. 综上所述, 我们有如下结论:

如果f (x )=e λx [P l (x )cos ωx +P n (x )sin ωx ], 则二阶常系数非齐次线性微分方程 y ''+py '+qy =f (x ) 的特解可设为

y *=x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ],

其中R (1)m (x )、R (2)m (x )是m 次多项式, m =max{l , n }, 而k 按λ+i ω (或λ-i ω)不是特征方程的根或是特征方程的单根依次取0或1.

例3 求微分方程y ''+y =x cos2x 的一个特解. 解 所给方程是二阶常系数非齐次线性微分方程,

且f (x )属于e λx [P l (x )cos ωx +P n (x )sin ωx ]型(其中λ=0, ω=2, P l (x )=x , P n (x )=0). 与所给方程对应的齐次方程为 y ''+y =0, 它的特征方程为 r 2+1=0.

由于这里λ+i ω=2i 不是特征方程的根, 所以应设特解为 y *=(ax +b )cos2x +(cx +d )sin2x .

把它代入所给方程, 得

(-3ax -3b +4c )cos2x -(3cx +3d +4a )sin2x =x cos2x . 比较两端同类项的系数, 得 31-=a , b =0, c =0, 9

4=d . 于是求得一个特解为 x x x y 2sin 9

42cos 31*+-=. 提示:

y *=(ax +b )cos2x +(cx +d )sin2x .

y *'=a cos2x -2(ax +b )sin2x +c sin2x +2(cx +d )cos2x , =(2cx +a +2d )cos2x +(-2ax -2b +c )sin2x ,

y *''=2c cos2x -2(2cx +a +2d )sin2x -2a sin2x +2(-2ax -2b +c )cos2x =(-4ax -4b +4c )cos2x +(-4cx -4a -4d )sin2x . y *''+ y *=(-3ax -3b +4c )cos2x +(-3cx -4a -3d )sin2x .

由?

????=--=-=+-=-0

340304313d a c c b a , 得31-=a , b =0, c =0, 94=d .

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有 xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(2 2 =-+-dy x y dx y x 解:当0)1)(1(2 2 ≠--y x 时,有 dx x x dy y y 1 12 2-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(2 2 =--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(2 2 为常数C C y x =--。 ⑵可化为变量可分离方程的方程:

①、形如)(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到 )(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程, 得到)(0 ),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(2 221 11c y b x a c y b x a f dx dy ++++= 解法:01、 02 2 11=b a b a ,转化为 )(by ax G dx dy +=,下同①; 0 2、 022 1 1≠b a b a ,?? ?=++=++00 222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u 得到,)()( )(221 12211u v g u v b a u v b a f v b u a v b u a f du dv =++=++=,下同②; 还有几类:xy u dy xy xg dx xy yf ==+,0)()( xy v xy f dx dy x ==),(2 22),(x y w x y xf dx dy == θθsin ,cos ,0))(,())(,(r y r x ydx xdy y x N ydy xdx y x M ===-++ 以上都可以化为变量可分离方程。 例2.1、 2 5 --+-=y x y x dx dy 解:令2--=y x u ,则du dx dy -=,代入得到u u dx du 71+=- ,有dx udu 7-= 所以)(72 2 为常数C C x u +-=,把u 代入得到)(72 22 为常数) (C C x y x =+--。 例2.2、 1 212+-+-=y x y x dx dy

二阶微分方程解法知识讲解

二阶微分方程解法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程: 方程 y ''+py '+qy =0 称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数. 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解. 我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程 y ''+py '+qy =0 得 (r 2+pr +q )e rx =0. 由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解. 特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出. 特征方程的根与通解的关系: (1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解. 这是因为,

函数x r e y 11=、x r e y 22=是方程的解, 又x r r x r x r e e e y y )(21212 1-==不是常数. 因此方程的通解为 x r x r e C e C y 2121+=. (2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解. 这是因为, x r e y 11=是方程的解, 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111=++++=q pr r xe p r e x r x r , 所以x r xe y 12=也是方程的解, 且x e xe y y x r x r ==1112不是常数. 因此方程的通解为 x r x r xe C e C y 1121+=. (3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解. 函数y 1=e (α+i β)x 和y 2=e (α-i β)x 都是方程的解, 而由欧拉公式, 得 y 1=e (α+i β)x =e αx (cos βx +i sin βx ), y 2=e (α-i β)x =e αx (cos βx -i sin βx ), y 1+y 2=2e αx cos βx , )(2 1cos 21y y x e x +=βα, y 1-y 2=2ie αx sin βx , )(21sin 21y y i x e x -=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解. 可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解. 因此方程的通解为

二阶常微分方程的解法及其应用.

目录 1 引言 (1) 2 二阶常系数常微分方程的几种解法 (1) 2.1 特征方程法 (1) 2.1.1 特征根是两个实根的情形 (2) 2.1.2 特征根有重根的情形 (2) 2.2 常数变异法 (4) 2.3 拉普拉斯变化法 (5) 3 常微分方程的简单应用 (6) 3.1 特征方程法 (7) 3.2 常数变异法 (9) 3.3 拉普拉斯变化法 (10) 4 总结及意义 (11) 参考文献 (12)

二阶常微分方程的解法及其应用 摘要:本文通过对特征方程法、常数变易法、拉普拉斯变换法这三种二阶常系数常微分方程解法进行介绍,特别是其中的特征方程法分为特征根是两个实根的情形和特征根有重根的情形这两种情况,分别使用特征值法、常数变异法以及拉普拉斯变换法来求动力学方程,现今对于二阶常微分方程解法的研究已经取得了不少成就,尤其在二阶常系数线性微分方程的求解问题方面卓有成效。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 关键词:二阶常微分方程;特征分析法;常数变异法;拉普拉斯变换

METHODS FOR TWO ORDER ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATION Abstract:This paper introduces the solution of the characteristic equation method, the method of variation of parameters, the Laplasse transform method the three kind of two order ordinary differential equations with constant coefficients, especially the characteristic equation method which is characteristic of the root is the two of two real roots and characteristics of root root, branch and don't use eigenvalue method, method of variation of constants and Laplasse transform method to obtain the dynamic equation, the current studies on solution of ordinary differential equations of order two has made many achievements, especially in the aspect of solving the problem of two order linear differential equation with constant coefficients very fruitful. Application of the theory of ordinary differential equations has made great achievements, however, the existing theory it is still far from meeting the need, needs further development, to make the discipline theory more perfect. Keywords:second ord er ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform 1 引言 数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程

全微分方程及积分因子

全微分方程及积分因子

全微分方程及积分因子 内容:凑微分法,全微分方程的判别式,全微分方程的公式解,积分因子的微分方程,只含一个变量的积分因子和其他特殊形式的积分因子。由于有数学分析多元微积分的基础,本节的定理1可以简化处理。对课本中第三块知识即全微分方程的物理背景可以留到后面处理,对第四块知识增解和失解的情况要分散在本章各小节,每次都要重视这个问题。关于初等积分法的局限性可归到学习近似解法时一起讲解。 重点:全微分方程的公式解和积分因子的计算,难点为凑微分法和积分因子的计算。 习题1(1,3,5),2,3 思考题:讨论其他特殊形式的积分因子。 方程:0),(),(=+dy y x N dx y x M 判定:全微分?x N y M ??≡?? 解法:C dy y x N dx y x M y y x x =+??00),(),(0 初值问题0=C 积分因子:x N y M y M x N ??-??=? ???????-??μμμ1

)(x μ: N x N y M dx d ?? -??=μμ1 )(y μ: M x N y M dy d ??- ??-=μμ1 1.解下列方程: 1)0)(222=-+dy y x xydx 解:x N y M ?? ≡??=x 2 ??=-+x y C dy y xydx 002 )0(2既 C y y x =-3/32 2)0)2(=+---dy xe y dx e y y 解:x N y M ??≡??=y e -- ??=-+-y x y C dy y dx e 00)2(既C y xe y =--2 3)0)1(222=---+dy y x dx y x x 解:x N y M ??≡??=y x --221 ??=---+x y C dy y dx y x x 002)1(2 C y y y x x =-+---+23 232322)(32 )(32 )(32 既C y x x =-+23 2 2)(32 4)0)ln (3 =++dy x y dx x y

第二节 几类简单微分方程及其解法

第二节 几类简单微分方程及其解法 本节将介绍可分离变量的微分方程、齐次方程以及一阶线性微分方程等一阶微分方程的解法. 一阶微分方程是微分方程中最基本的、最常见的一类方程.它的一般形式可表示为: 0)',,(=y y x F 或),('y x F y =, 其中)',,(y y x F 为,,'x y y 的已知函数,),(y x F 为,x y 的已知函数. 一、可分离变量的微分方程 如果一阶微分方程),('y x F y =的等式右端能分解为: )()(),(y g x f y x F =, 即)()('y g x f y = (7.2.1) 则称方程(7.2.1)为可分离变量的微分方程. 设)(y g ≠0,则方程(6.2.1)改写为: dx x f dy y g )() (1=, 上式两边积分,可得 ??=dx x f dy y g )()(1. 上述将微分方程化成分离变量形式求解的方法,称为分离变量法. 注:在分离变量时,未知函数y 的函数和微分要写在等式的左边. 例1 求微分方程)3(2'+=y x y 的通解. 解1: 原方程可改写为)3(2+=y x dx dy . 分离变量,两边积分,得,23 1??=+xdx dy y ,3ln 12c x y +=+即.312-±=+c x e y 记1c e c ±=,则微分方程的通解为 32 -=x ce y (c 为任意常数). 解2:

原方程可改写为)3(2+=y x dx dy . 分离变量,两边积分,得,23 1??=+xdx dy y ,ln )3ln(2c x y +=+即,3ln 2x c y =+23x ce y =+ 则微分方程的通解为 32 -=x ce y (c 为任意常数). 注:为了简化运算,规定: (1) 微分方程中出现形为 ?u du 的积分时,可不按不定积分基本积分公式表写成 ln du u c u =+?,而是写成ln du u u =?; (2) 不定积分等式中至少有一个形为?u du 的积分时,任意常数不写成c ,而写成c ln 并放在等式右侧. 例2 求微分方程y xy ='的通解. 解: 分离变量,两边积分, 得 ,dy dx y x =?? c x y ln ln ln += cx ln = 则微分方程的通解为cx y = (c 为任意常数). 例3 求微分方程dx e x dy x e y y )1(2)1(2+=+的通解. 解: 分离变量,两边积分, 得 dx x x dy e e y y ??+=+2121, c x e y ln )1ln()1ln(2++=+ )1(ln 2x c +=, ).1(12x c e y +=+ 则微分方程的通解为 ]1)1(ln[2-+=x c y (c 为任意常数). 例4 求微分方程)'('2 y y a xy y +=-的通解.

一阶常微分方程解法总结

页脚内容1 第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )()(=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(11212 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(1212 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有dy y N y Q dx x P x M ) ()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x

页脚内容2 解:当0)1)(1(22≠--y x 时,有dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如)(x y g dx dy = 解法:令x y u = ,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(222111c y b x a c y b x a f dx dy ++++= 解法:01、02211 =b a b a ,转化为)(by ax G dx dy +=,下同①; 02、0221 1 ≠b a b a ,???=++=++00222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

各种类型的微分方程及其相应解法教程文件

各种类型的微分方程及其相应解法 专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法 1.可分离变量的方程 dx x f dy y g )()(=,或)()(y g x f dx dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分??-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2 112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 2.齐次方程 (1))(x y f dx dy = (2) )(c by ax f dx dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222?? ? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得?? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1)2ln(23)1ln(C x u u u +=----

二阶常微分方程解

二阶常微分方程解

————————————————————————————————作者: ————————————————————————————————日期:

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 §7.1 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 ?? 22 dx y d +p dx dy +qy=0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22dx y d ,dx dy ,y 各乘以 常数因子后相加等于零,如果能找到一个函数y,其

22dx y d ,dx dy ,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y=e r x (其中r 为待定常数)来试解 将y =e rx ,dx dy =re r x,22dx y d =r 2e r x 代入方程(7.1) 得 r 2e rx +pre rx +qerx =0 或 e r x(r 2+pr+q )=0 因为e rx ≠0,故得 ? r 2 +pr +q=0 由此可见,若r 是二次方程 ?? r 2+pr +q=0 (7.2) 的根,那么e r x就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1)的特征方程。 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程(7.2)有两个不相等的实根r 1, r 2,此时e r 1x ,e r2x 是方程(7.1)的两个特解。

二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数 非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程 y py qy 0 得 (r 2pr q )e rx 0 由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2pr q 0叫做微分方程y py qy 0的特征方程 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111 =++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e (i )x e x (cos x i sin x ) y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 2 2ie x sin x )(21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为 y e x (C 1cos x C 2sin x )

常微分方程考研讲义 一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练 近似解的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的 证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延 拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客 观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一 阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法 求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初 值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值 问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定 性理论,稳定性理论以及其他理论的基础。 例如方程 过点(0,0)的解就是不唯一,易知0 y=是方程过(0,0)的解,此外,容易验证,2 =或更一般地,函数 y x 都是方程过点(0,0)而且定义在区间01 <<的任一数。 c ≤≤上的解,其中c是满足01 x

各种类型的微分方程及其相应解法

各种类型的微分方程及其相应解法 专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法 1.可分离变量的方程 dx x f dy y g )()(=,或)()(y g x f dx dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分??-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2 112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 2.齐次方程 (1))(x y f dx dy = (2) )(c by ax f dx dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222?? ? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得?? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1)2ln(23)1ln(C x u u u +=----

各类微分方程的解法大全

创作编号:BG7531400019813488897SX 创作者:别如克* 各类微分方程的解法 1.可分离变量的微分方程解法 一般形式:g(y)dy=f(x)dx 直接解得∫g(y)dy=∫f(x)dx 设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐 式通解 2.齐次方程解法 一般形式:dy/dx=φ(y/x) 令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u] =dx/x两端积分,得∫du/[φ(u)-u]=∫dx/x 最后用y/x代替u,便得所给齐次方程的通解 3.一阶线性微分方程解法 一般形式:dy/dx+P(x)y=Q(x) 先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce- ∫P(x)dx,再令y=u e-∫P(x)dx代入原方程 解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C] 即y=Ce-∫P(x)dx +e- ∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解 4.可降阶的高阶微分方程解法 ①y(n)=f(x)型的微分方程 y(n)=f(x) y(n-1)= ∫f(x)dx+C1

y(n-2)= ∫[∫f(x)dx+C1]dx+C2 依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程 令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1) 即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2 ③y”=f(y,y’) 型的微分方程 令y’=p则y”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C1) 即dy/dx=φ(y,C1),即dy/φ(y,C1)=dx,所以∫dy/φ(y,C1)=x+C2 5.二阶常系数齐次线性微分方程解法 一般形式:y”+py’+qy=0,特征方程r2+pr+q=0 6.二阶常系数非齐次线性微分方程解法 一般形式: y”+py’+qy=f(x) 先求y”+py’+qy=0的通解y0(x),再求y”+py’+qy=f(x)的一个特解y*(x) 则y(x)=y0(x)+y*(x)即为微分方程y”+py’+qy=f(x)的通解 求y”+py’+qy=f(x)特解的方法: ①f(x)=P m(x)eλx型 令y*=x k Q m(x)eλx[k按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m(x)的m+1个系数 ②f(x)=eλx[Pl(x)cosωx+P n(x)sinωx]型

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x 解:当0)1)(1(22≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程:

①、形如 )(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得 到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程, 得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(2 221 11c y b x a c y b x a f dx dy ++++= 解法:0 1、 02 2 11=b a b a ,转化为 )(by ax G dx dy +=,下同①; 02、 022 1 1≠b a b a ,???=++=++00 222111 c y b x a c y b x a 的解为),(00y x ,令???-=-=0 0y y v x x u 得到,)()( )(221 12211u v g u v b a u v b a f v b u a v b u a f du dv =++=++=,下同②; 还有几类:xy u dy xy xg dx xy yf ==+,0)()( 以上都可以化为变量可分离方程。 例2.1、 2 5--+-=y x y x dx dy 解:令2--=y x u ,则du dx dy -=,代入得到u u dx du 7 1+= - ,有dx udu 7-= 所以)(72 2 为常数C C x u +-=,把u 代入得到)(72 22 为常数) (C C x y x =+--。 例2.2、 1 212+-+-=y x y x dx dy 解:由???=+-=+-012012y x y x 得到?????=-=3131y x ,令?? ???-=+=3131y v x u ,有???==du dx dv dy ,代入得到

(整理)二阶常系数线性微分方程的解法word版.

第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)

的通解. 2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 2 2 sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若 =21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且 ≠=x y y tan 2 1 常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子,

[整理]一阶微分方程解的存在定理.

第三章 一阶微分方程解的存在定理 [教学目标] 1. 理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的误差估计式。 2. 了解解的延拓定理及延拓条件。 3. 理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程 dy dx =过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2 y x =或更一般地,函数 2 0 0() c<1x c y x c x ≤≤?=?-≤? 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性 和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。 1.存在性与唯一性定理: (1)显式一阶微分方程 ),(y x f dx dy = (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2)

相关主题
文本预览
相关文档 最新文档