当前位置:文档之家› 分子晶体与原子晶体教案

分子晶体与原子晶体教案

分子晶体与原子晶体教案
分子晶体与原子晶体教案

教学过程1.概念:

只含分子的晶体称为分子晶体。

2.结构特点:

(1)分子晶体中存在的粒子:分子。

(2)粒子间的作用力:

①分子内原子间以共价键相结合。

②若分子间作用力只是范德华力,由于范德华力不具有方

向性,因此分子晶体有分子密堆积特征,即通常每个分子

周围有12个紧邻的分子。

例如:干冰晶体

干冰结构模型每个分子周围有12个紧邻的分子

a.干冰在常压下极易升华

b.干冰中的CO

2

分子间只存在范德华力而不存在氢键,

一个CO

2

分子周围等距紧邻的CO

2

分子有12个。

③若分子间含有其它作用力,如氢键,则每个分子周围紧

邻的分子数要少于12个。

例如:冰

冰的结构模型每个水分子周围只有4个紧邻的分子

a.冰晶体中水分子间的主要作用力是氢键,当然也存在

范德华力。

从本质上揭示

分子内部的结

构。

使用模型、图

片,增强学生

的观察力。

借助图片的观

察,增强学生

的总结归纳能

力。

教学过程

b.氢键有方向性,它的存在迫使在四面体中心的每个水

分子与四面体顶角方向的4个相邻水分子互相吸引。

3.分子晶体种类:

(1)所有非金属氢化物,如:H

2

O、H

2

S等。

(2)部分非金属单质,如:白磷(P

4

)、卤素(X

2

)等。

(3)部分非金属氧化物,如:CO

2

、SO

2

等。

(4)几乎所有的酸,如:HNO

3

、H

2

SO

4

等。

(5)绝大多数有机物的晶体,如:乙酸、苯等。

4.分子晶体的物理性质及熔沸点变化规律:

(1)因为分子晶体是通过分子间作用力结合构成的,分子

间作用力较弱,故分子晶体的熔、沸点较低,硬度较小。

(2) 熔沸点变化规律:

①对组成和结构相似、晶体中不含氢键的物质来说,随

着相对分子质量的增大,分子间作用力增强,熔沸点升高。

如:卤素单质,四卤化碳,稀有气体等。

②有机物中,同分异构体支链数越多,熔沸点越低。

③如果分子间存在氢键,则其沸点要高于组成和结构相

似的没有氢键的分子晶体,如沸点:H

2

O>H

2

S;HF>HCl;NH

3

>PH

3

二.原子晶体:

1.概念:

相邻原子间以共价键相互结合形成的具有三维的共价

键网状结构的晶体,叫原子晶体,又叫共价晶体。

2.结构特点:

(1)原子晶体的基本粒子:原子。

(2)形成原子晶体的作用力:共价键。

3.典型的原子晶体:

(1)金刚石:

①在晶体中每个碳原子以

四个共价键与相邻的4

个碳原子相结合。金刚石的晶体结构模型

按类别总结,

便于学生记

忆。

由物质的本质

(结构)决定

物质的特征

(现象),增强

学生辩证唯物

主义观念。

从本质上定

义,便于学生

今后判断。

利用图形和模

具直观教学,

增强学生的总

结归纳能力。

教学过程

②晶体中C-C-C夹角为109°28′,碳原子采取了sp3杂

化。

③最小环上有六个碳原子。

④晶体中碳原子个数与C-C键数之比为1:(4×

2

1

)=1:2

(2)二氧化硅:

二氧化硅晶体结构模型

4.原子晶体的种类:

(1)某些非金属单质,如:金刚石、晶体硅、晶体硼等。

(2)某些非金属化合物,如:碳化硅(SiC)等。

(3)某些氧化物,如二氧化硅等。

5.原子晶体的物理性质及变化规律:

(1)结构特点:

原子晶体是原子间以共价键结合而成的空间网状结

构,晶体中不存在单个分子。

(2)物理性质特点:

①因为原子晶体中原子间以较强的共价键相结合,熔化

时需要很多的能量克服共价键,所以原子晶体的熔、沸点

很高,硬度很大,没有延展性。

②因为构成原子晶体的原子最外层电子都已成键,结构

稳定,键能较大,所以原子晶体一般不导电,难溶于水。

(3)物理性质的变化规律:

在结构相似的情况下,原子半径越小,键长越短,键

能越大,晶体的熔点就越高,硬度越大。

三.分子晶体和原子晶体的区别:(见附表)

〖课堂练习〗略。

便于学生记住

常见的原子晶

体。

培养学生分析

问题的能力。

掌握物质由结

构决定性质的

特征。

利用对比分析

便于学生掌握

附表:分子晶体与原子晶体的比较:

《分子晶体与原子晶体》教案(人教版选修3)

2 分子晶体与原子晶体 第一课时分子晶体 [教材内容分析] 晶体具有的规则的几何外形源于组成晶体的微粒按一定规律周期性的重复排列。本节延续前面一节离子晶体,以“构成微粒---晶体类型---晶体性质”的认知模式为主线,着重探究了典型分子晶体冰和干冰的晶体结构特点。并谈到了分子间作用力和氢键对物质性质的影响。使学生对分子晶体的结构和性质特点有里一个大致的了解。并为后面学习原子晶体做好了知识准备,以形成比较。 [教学目标设定] 1.使学生了解分子晶体的组成粒子、结构模型和结构特点及其性质的一般特点。 2.使学生了解晶体类型与性质的关系。 3.使学生理解分子间作用力和氢键对物质物理性质的影响。 4.知道一些常见的属于分子晶体的物质类别。 5.使学生主动参与科学探究,体验研究过程,激发他们的学习兴趣。 [教学重点难点] 重点掌握分子晶体的结构特点和性质特点 难点是氢键的方向性和氢键对物体物理性质的影响 从三维空间结构认识晶胞的组成结构 [教学方法建议] 运用模型和类比方法诱导分析归纳 [教学过程设计] 复问:什么是离子晶体?哪几类物质属于离子晶体? (离子化合物为固态时均属于离子晶体,如大部分盐、碱、金属氧化物属于离子晶体) 教师诱导:这些物质属于离子晶体吗?构成它们的基本粒子是什么?这些粒子间通过什么作用结合而成的? 学生分组讨论回答 板书分子通过分子间作用力形成分子晶体 二、分子晶体 1.定义:含分子的晶体称为分子晶体 也就是说:分子间以分子间作用力相结合的晶体叫做分子晶体 看图3-9,如:碘晶体中只含有I2分子,就属于分子晶体问:还有哪些属于分子晶体? 2.较典型的分子晶体有非金属氢化物,部分非金属单质,部分非金属氧化物,几乎所有的酸,绝大多数有机物的晶体。 3.分子间作用力和氢键

苏教版选修3高中化学原子晶体教案

原子晶体 教学目标1.理解原子晶体的概念、结构与性质 2.掌握原子晶体的结构分析 教学重点原子晶体的结构 教学难点原子晶体的结构 教学方法讲授法、探究法、归纳法 教学过程 教学内容 [引入] 原子与原子之间通过共用电子对形成的化学键为共价键,离子键构成离子晶体,金属键构成金属晶体,那么共价键呢?它会构成什么晶体呢? [知识梳理] 1.原子晶体 (1)定义:。 (2)构成微粒: (3)微粒间的作用: (4)典型的原子晶体有 (5)原子晶体的结构 ①金刚石(书P46 图3-26) a.5个碳原子构成正四面体(C—C键长相等,键角)SP3杂化 b.金刚石晶体中的最小碳环由个碳原子组成且它们不在同一平面内 c.金刚石中碳原子个数与C—C键数之比为 d.金刚石晶胞(书P47 图3-27)中的碳原子个数为 e.晶体硅的与金刚石相似。但硅硅键键长大于金刚石中碳碳键键长。 强调:石墨不是原子晶体,是一种混合晶体——层内存在共价键,层间以分子间作用力结合,兼具分子晶体、原子晶体的特征。石墨的结构特点: a.6个碳原子构成平面正六边形(C—C键长相等,键角)SP2杂化 b.石墨晶体中的最小碳环由个碳原子组成且它们在同一平面内,实际平均碳原 子数为个 c.石墨中碳原子个数与C—C键数之比为 d.石墨的熔点与金刚石相比:石墨金刚石(大于、小于、等于) C60也是分子晶体。 ②二氧化硅(书P54 图3-36) SiO2晶体中,每个Si原子周围以共价键结合个O原子,同时每个O原子跟个Si原子结合。其中硅氧原子个数比为,从而形成空间网状结构晶体。 a.每个硅原子与4个O原子构成正四面体,前者在正四面体的中心,后者在正四面

高中化学《分子晶体与原子晶体》说课稿

高中化学《分子晶体与原子晶体》说课稿 一、教材分析 《分子晶体与原子晶体》是高中化学选修3的第三章“晶体的结构与性质”第二节内容。本课时是在学习了分子的结构与性质和分子晶体之后编排的。本节在复习化学键等知识的基础上引入晶体结构、化学键间相互作用力等基本概念和基本理论,并运用化学键理论和晶体结构理论分析晶体结构与性质的关系,本节是中学化学教学的重难点,也是历来高考的热点。通过本节课的学习,既可以对共价键和分子的立体构型的知识进一步巩固和深化,又可以为以后学习金属晶体与离子晶体打下基础。此外,金刚石、二氧化硅的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。 二:学情分析 (1)学生已经掌握原子空间构型、化学键、杂化轨道等理论为基础 (2)学生学习了分子晶体,对晶体有了一定的了解,对空间结构有一定的了解。 三:目标分析 1、知识与技能目标 (1)了解原子晶体的概念,掌握原子晶体的熔、沸点,硬度等物理性质,能够区分原子晶体和分子晶体 (2)掌握金刚石典型晶体的晶胞和结构特征。能够通过金

刚石结构特征分析晶体硅、二氧化硅等原子晶体结构。 (3)理解并掌握原子晶体内原子间作用力的类型。 2、过程与方法目标 (1)通过对原子晶体概念的教学,培养学生准确描述概念、深刻理解概念、比较辨析概念的能力。 (2)从结构理解原子晶体的性质,明确原子晶体的物理性质及化学变化特点和空间结构。 (3)运用归纳、对比等方法,理解原子晶体的特点和与分子晶体的区别及联系。 3、情感态度价值观 (1)通过小组讨论小组竞赛等方法,引导学生积极思维,激发学生学习化学的兴趣。 (2)通过结构决定性质的知识对学生进行内外因辩证关系的教育。 四:重点难点分析 重点:原子晶体的概念 原子晶体的结构与性质的关系 难点:原子晶体的结构及特点 五:教法学法分析 教法:探究教学法为主,多媒体教学法为辅 学法:思考、讨论、归纳等自主学习 六:预计课时: 2

怎样区分分子晶体与原子晶体

分子晶体与原子晶体 1 原子晶体:相邻原子之间通过强烈的共价键结合而成的空间网状结构的晶体叫做原子晶体。 (1)原子晶体中,组成晶体的微粒是原子,原子间的相互作用是共价键,共价键结合牢固,原子晶体的熔、沸点高,硬度大,不溶于一般的溶剂,多数原子晶体为绝缘体,有些如硅、锗等是优良的半导体材料。原子晶体中不存在分子,用化学式表示物质的组成,单质的化学式直接用元素符号表示,两种以上元素组成的原子晶体,按各原子数目的最简比写化学式。常见的原子晶体是周期系第ⅣA族元素的一些单质和某些化合物,例如金刚石、硅晶体、SiO2、SiC等。(但碳元素的另一单质石墨不是原子晶体,石墨晶体是层状结构,以一个碳原子为中心,通过共价键连接3个碳原子,形成网状六边形,属过渡型晶体。)对不同的原子晶体,组成晶体的原子半径越小,共价键的键长越短,即共价键越牢固,晶体的熔,沸点越高,例如金刚石、碳化硅、硅晶体的熔沸点依次降低。 (2)一般键长越短,熔沸点越高。例如:金刚石(C—C) > 二氧化硅(Si—O) > 碳化硅(Si—C) > 晶体硅(Si—Si) 2分子间通过分子间作用力(包括范德华力和氢键)构成的晶体。 (1)典型的分子晶体 ①所有非金属氢化物 ②大部分非金属单质,如:稀有气体、卤素(X2)、氧气、硫(S8)、氮(N2)、白磷(P4)、C60等 ③部分非金属氧化物,如:CO2、SO2、SO3、P4O6、P4O10等 ④几乎所有的酸 ⑤绝大多数有机化合物,如:苯、乙酸、乙醇、葡萄糖等 ⑥所有常温下呈气态的物质、常温下呈液态的物质(除汞外)、易挥发的固态物质 (2)分子晶体是由分子组成,可以是极性分子,也可以是非极性分子。分子间的作用力很弱,分子晶体具有较低的熔、沸点,硬度小、易挥发,许多物质在常温下呈气态或液态,例如O2、CO2是气体,乙醇、冰醋酸是液体。同类型分子的晶体,其熔、沸点随分子量的增加而升高,例如卤素单质的熔、沸点按F2、Cl2、Br2、I2顺序递增;非金属元素的氢化物,按周期系同主族由上而下熔沸点升高;有机物的同系物随碳原子数的增加,熔沸点升高。但HF、H2O、NH3、CH3CH2OH等分子间,除存在范德华力外,还有氢键的作用力,它们的熔沸点较高。在固态和熔融状态时都不导电。 分子组成的物质,其溶解性遵守“相似相溶[1]”原理,极性分子易溶于极性溶剂,非极性分子易溶于非极性的有机溶剂,例如NH3、HCl极易溶于水,难溶于CCl4和苯;而Br2、I2难溶于水,易溶于CCl4、苯等有机溶剂。根据此性质,可用CCl4、苯等溶剂将Br2和I2从它们的水溶液中萃取、分离出来。 (3)分子间作用力越强,熔沸点越高 ①组成和结构相似的分子晶体,一般相对分子质量越大,分子间作用力越强,熔沸点越高。例如:元素周期表中第ⅦA族的元素单质其熔沸点变化规律为:At2>I2 > Br2 >

原子晶体教案(公开课)

专题3 第三单元《原子晶体》导学案 【考纲要求】 1、了解原子晶体的特征; 2、能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。 【学习目标】 1、了解原子晶体的特征; 2、学会比较原子晶体熔沸点高低、硬度大小; 3、掌握金刚石、二氧化硅原子晶体的结构; 4、了解判断原子晶体的方法。 【学习重难点】 原子晶体的特征、原子晶体熔沸点高低的影响因素、金刚石、二氧化硅原子晶体的结构 【导学过程】 引言:同学们好,很高兴有时间能与同学们共同学习。高二(2)班班风正、学风浓,今天我们将以小组为单位,采取组内合作、组间竞争的方式展开学习,相信同学定能勇于提出回答问题,展现高二(2)班的学生风采,你们有信心吗? 学生:有 让我们先来看两幅图片: 投影幻灯片1: 图片1:在象征最高权利的英王权杖上,镶嵌着世界上最大的一颗钻石,无瑕中透着淡蓝,形似水滴,重530.2克拉。 图片2:世界上最大的有色钻石,原石890克拉,切磨出了407.48克拉(81.50克)的梨形钻,在1988年拍卖会中以1250万美元成交。 教师:钻石莹剔透,光芒四射,一句话“钻石恒久远,一颗永流传”的已深入人心。 教师(边说边投影投影幻灯片2:金刚石图片、项链、钻头和玻璃刀):纯净的金刚石是无色透明、正八面体形状的固体。天然采集到的金刚石经过仔细琢磨后,可以成为璀璨夺目的装饰品——钻石,可制成项链。这是用金刚石制成的钻头和玻璃刀。 质疑: (1)通过刚才的图片,结合已有的知识,谈谈金刚石有哪些用途以及 这些用途反映了金刚石的什么性质? 金刚石钻头和切具、砂轮和石英都很坚固,硅太阳能电池中的硅板历经 风吹雨淋日晒,不改其性等 熔点和沸点高、硬度大、难溶于一些常见的溶剂…… 追问:为什么金刚石具有这些物理特性呢? 结构决定性质。事实上,金刚石具有很高的熔点、沸点和很大的硬度, 你能结合金刚石晶体结构示意图(图示和桌上模型),解释其中的原因吗? (提示:结构的特点是什么?共价键的特点是什么?) 学生:由于金刚石晶体中所有原子都是通过共价键结合的,而共价键的键能大,如C-C键的键能为 348kJ·mol-1。所以金刚石晶体熔、沸点很高,硬度很大。

分子晶体和原子晶体教案

分子晶体与原子晶体 高中化学选修三第三章第三节 教学目标: 知识与技能: 1、知道什么是分子晶体和原子晶体,说出他们的典型代表。 2、能够判断和区分分子晶体和原子晶体。 3、理解并能说明晶体结构对其物理性质的影响。 4、能够简单比较晶体的熔沸点高低。 5、掌握干冰、冰、金刚石、晶态二氧化硅的晶体结构。过程与方法: 通过分子晶体与原子晶体的对比,学会对比学习的方法。情感态度和价值观: 体会分类研究物质的方法在化学中的运用。 教材分析:本节内容是在晶体常识之后对分子晶体和原子晶体两大类晶体的具体介绍。两类晶体的构成微粒间的作用方式对熔沸点的影响与前面知识联系紧密。 学情分析:学生已具备了原子内部的结构特征以及微粒间的相互作用(化学键、分子间作用力、氢键)等基本概念。并在本章第一节了解了晶体、非晶体、晶胞等知识。为继续学习不同类型晶体的打下了基础。但在运用所学知识理解和解释晶体结构和物理性质的关系时,还需要老师引导。 教学重点: 1、原子晶体和分子晶体的概念及结构特征。 2、氢键对晶体物理性质的影响。 3、典型晶体的结构和性质。

教学难点: 1、常见分子晶体和原子晶体的判断及物理性质比较。 2、晶体结构对其性质的影响。 教学过程: 【导入】ppt 展示常见晶体的图片 [讲]上节课我们学习了晶体常识,知道了晶体和非晶体的区别,生活中的晶体是很多的,可以说是形形色色的晶体。对于一类物质我们通常将其细分成类来研究。晶体可以分为四类。ppt 展示分类。今天这节课我们来认识分子晶体和原子晶体。 【分子晶体】ppt 展示冰晶体结构、CO2 晶体、I 2 晶体的晶胞。请同学们找出三种晶体的共同点。 根据共同点得出分子晶体的概念。结合导学案介绍构成分子晶体的组成(构成微粒、微粒间作用方式) 【问】分子晶体中一定存在化学键吗?特例:稀有气体请回忆分子间作用力范德华力的特点,推测分子晶体的物理性质。【生】结合导学案回忆,范德华力是分子间作用力,不是化学键,比化学键弱得多。因此分子晶体的熔沸点较低。 【师】以干冰、碘易升华的事实肯定学生的推测。ppt 归纳出分子晶体的性质和结够特点。常 见的分子晶体介绍,ppt 归纳,显示周期表中的位置。 生】听讲,填写导学案【师】分子晶体中比较典型的是干冰和冰。ppt 展示干冰的晶体结构。【问】每个晶胞中有几个CO2 分子?多少个原子?每个CO2 分子周围有几个等距紧邻的CO2 分子? 【生】4,12,12 【师】ppt 展示氧族元素氢化物的熔沸点图,发现水偏高。展示冰的结构,分析原因。动画展

半导体结晶学-典型晶体结构及电子材料-06

第五章 典型半导体材料及电子材料晶体 结构特点及有关性质 5.1 典型半导体材料晶体结构类型 5.2 半导体材料晶体结构与性能 5.3 电子材料中其他几种典型晶体结构 5.4 固溶体晶体结构 5.5 液晶的结构及特征 5.6 纳米晶体的结构及特征 2013-12-81

5.1.1 金刚石型结构 硅 Si:核外电子数14,电子排布式方式为 1s2 2s22p6 3s23P2 锗Ge:核外电子数32,电子排布式方式为 1s2 2s22p6 3s23p63d104s24p2 在Si原子与Si原子,Ge原子与Ge原子相互作用构成Si、Ge晶体时,由于每个原子核对其外层电子都有较强的吸引力。又是同一种原子相互作用,因此原子之间将选择共价键方式结合。 电负性:X Si= X Ge=1.8,⊿X = 0, ∴形成非极性共价键 2013-12-83

为了形成具有8个外层电子的稳定结构,必然趋于与邻近的四个原子形成四个共价键。由杂化理论可知,一个s轨道和三个p轨道杂化,结果产生四个等同的sp3杂化轨道,电子云的方向刚好指向以原子核为中心的正四面体的四个顶角,四个键在空间处于均衡,每两个键的夹角都是109°28′。如图5.11所示。 图5.1.1 SP3杂化轨道方向 2013-12-84

每个原子都按此正四面体键,彼此以共价键结合在一起,便形成如图5.1.2和图5.1.3所示的三维空间规则排列结构—金刚石性结构。金刚石型结构的晶体具有Oh群的高度对称性。(对称中心在哪里? 答案 ) 2013-12-85

5.1.2 闪锌矿结构 化合物半导体GaAs、InSb、GaP等都属于闪锌矿结构,以GaAs为例介绍其结构特点。 Ga 的原子序数 31,核外电子排布式 1s2 2s22p6 3s23p63d10 4s24p1 As 的原子序数 33,核外电子排布式 1s2 2s22p6 3s23p63d10 4s24p3 电负性:X Ga =1.6,X As=2.0,电负性差⊿X=0.4 <1.5。 ∴形成共价键(极性共价键) 。 2013-12-86

分子晶体和原子晶体解析

分子晶体和原子晶体 第一课时 教学目标 知识与技能 1、了解分子晶体的概念 2、了解冰、二氧化碳的晶体结构及晶体中分子间作用力类型 3、掌握分子晶体关于熔、沸点等方面的物理性质 过程与方法 联系旧知识,学习新知识,通过列举各种晶体及其特征,达到逐个掌握的目的 情感、态度与价值观 通过对水结冰密度减小这一学生已知事实的讲解,激发学生探究物质内部结构奥秘的兴趣 教学重点 分子晶体的概念、结构特点 教学难点 氯键对冰晶体结构和性质的影响 教学过程 【问题讨论】雪花、冰糖、食盐、水晶和电木(酚醛树脂)这些固体,是否属于晶体?若不是晶体,请说明理由。 雪花、冰糖、食盐、水晶都是晶体。 电木不是晶体。它是高聚物,无固定的熔点。 【阅读】教材P 66碘晶胞、P 70干冰晶胞 这两个晶胞有何共同点? 组成这两个晶胞的微粒都是分子。 【师】这节课我们来学习第二节——分子晶体和原子晶体 【板书】第二节——分子晶体和原子晶体 一、分子晶体 1.定义:只.含有分子的晶体。 【师】1、既然组成分子晶体的微粒都是分子,那这些微粒之间存在着哪些作用呢? 范德华力(分子间作用力)与氢键 2、据此,可推断出分子晶体有哪些特点?

熔、沸点低、硬度小 【板书】2.分子晶体的特点 有单个分子存在,化学式就是分子式。熔、沸点低、硬度小,易升华。 【师】根据分子晶体的概念,哪些物质的晶体属于分子晶体呢? 【板书】3.分子晶体的形成 ⑴所有非金属气态氢化物。 ⑵多数非金属单质。如卤素(X2)、氧(O2)、氢(H2)、氮(N2)、白磷(P4)、硫(S8)、C60等。 ⑶多数非金属氧化物。如:CO2、P4O6、P4O10、SO2等。 ⑷所有的酸。 ⑸绝对大多数有机物。 【师】下面,我们来看一下分子晶体都有哪些物理性质。 【板书】4.分子晶体的物理性质 ⑴分子晶体不导电。 【师】物质导电的条件是存在自由移到的电子或离子。由于构成分子晶体的粒子都是分子,不管是晶体还是晶体熔化成的液体,都没有带电荷的离子存在。因此,分子晶体及它熔化成的液体都不导电(但碲能导电)。分子晶体溶于水时,有的能导电(如:HCl),有的不能导电(如:CH3CH2OH)。 【板书】⑵分子晶体的溶解性和熔、沸点。 【师】组成分子的分子不同,分子晶体的性质也不同。如在溶解性以及熔沸点上,不同晶体之间存在着较大的差异。 【板书】溶解性:相似相溶、氢键; 熔、沸点:氢键、分子间作用力、分子的极性。 5.分子晶体的结构特征和结构模型 ⑴如果分子间作用力只是范德华力,若以一个分子为中心,其周围通常可以有12个紧邻的分子。如干冰晶体。 ⑵如果分子间还有其他作用力,如存在氢键的分子晶体,由于氢键具有方向性,必然要对这些分子的堆积方而成的晶体的构型产生影响。如晶体冰。 ⑶干冰的晶体模型 【师】提问: 1、与一个CO2分子距离最近且相等的CO2分子共有多少个? 2、一个干冰晶胞中平均有几个CO2分子? 3、干冰晶体中,CO2分子的排列方向有几种? 答案:1、12个;2、4个;3、4种(顶点一种,三个面心各一种)。

《原子晶体与分子晶体》习题3

《原子晶体与分子晶体》习题 第一课时 1.下列关于只含非金属元素的化合物的说法中,正确的是 ( ) A ?有可能是离子化合物 B. 一定是共价化合物 C. 其晶体不可能是原子晶体 D .其晶体不可能是离子晶体 解析:选A 。只含非金属元素的化合物,有可能是离子化合物,如: NH 4CI 等;只含非金属 元素的化合物晶体可能是原子晶体,如 SiC 。 2 ?下列说法中正确的是( ) A .金刚石晶体中的最小碳原子环由 6个碳原子构成 B. Na 2O 2晶体中阴离子与阳离子数目之比为 1 : 1 C. 1 mol SiO 2晶体中含 2 mol Si — O 键 D .金刚石化学性质稳定,即使在高温下也不会和 。2反应 解析:选A 。Na 2O 2晶体中存在的阴、阳离子分别是 0亍、Na 十,所以个数比为1 : 2。SiO ?晶 体中一个Si 与周围四个O 形成共价键,所以1 mol SiO 2中含有4 mol Si —O 键。 3. (2011年山东威海高二调研)下表是某些原子晶体的熔点和硬度。 分析表中的数据,判断下列叙述正确的是 (双选)( ) A .构成原子晶体的原子种类越多,晶体的熔点越高 B .构成原子晶体的原子间的共价键键能越大,晶体的熔点越高 C .构成原子晶体的原子的半径越大,晶体的硬度越大 D .构成原子晶体的原子的半径越小,晶体的硬度越大 解析:选BD 。原子晶体的熔点和硬度与构成原子晶体的原子间的共价键键能有关,而原子 间的共价键键能与原子半径的大小有关。 4 .氮化硼是一种新合成的无机材料,它是一种超硬耐磨、耐高温、抗腐蚀的物质。下列各 组物质熔化时所克服的微粒间的作用力与氮化硼熔化所克服的微粒间的作用力类型相同的 是() A .硝酸钠和金刚石 C .晶体硅和水晶 解析:选C 。氮化硼超硬耐磨、耐高温,它必是一种原子晶体,熔化时破坏共价键。 B .冰和干冰 D .萘和苯 A 选项

典型的晶体结构

典型的晶体结构 1.铁 铁原子可形成两种体心立方晶胞晶体:910℃以下为α-Fe,高于1400℃时为δ-Fe。在这两种温度之间可形成γ-面心立方晶。这三种晶体相中,只有γ-Fe能溶解少许C。问:1.体心立方晶胞中的面的中心上的空隙是什么对称?如果外来粒子占用这个空隙,则外来粒子与宿主离子最大可能的半径比是多少? 2.在体心立方晶胞中,如果某空隙的坐标为(0,a/2,a/4),它的对称性如何?占据该空隙的外来粒子与宿主离子的最大半径比为多少? 3.假设在转化温度之下,这α-Fe和γ-F两种晶型的最相邻原子的距离是相等的,求γ铁与α铁在转化温度下的密度比。 4.为什么只有γ-Fe才能溶解少许的C? 在体心立方晶胞中,处于中心的原子与处于角上的原子是相接触的,角上的原子相互之间不接触。a=(4/3)r。 ①②③ 1.两个立方晶胞中心相距为a,也等于2r+2r h[如图①],这里r h是空隙“X”的半径,a =2r+2r h=(4/3)r r h/r=0.115(2分) 面对角线(2a)比体心之间的距离要长,因此该空隙形状是一个缩短的八面体,称扭曲八面体。(1分) 2.已知体心上的两个原子(A和B)以及连接两个晶体底面的两个角上原子[图②中C和D]。连接顶部原子的线的中心到连接底部原子的线的中心的距离为a/2;在顶部原子下面的底部原子构成晶胞的一半。空隙“h”位于连线的一半处,这也是由对称性所要求的。所以我们要考虑的直角三角形一个边长为a/2,另一边长为a/4[图③],所以斜边为16 /5a。(1分)r+r h=16 /5a=3/5r r h/r=0.291(2分) 3.密度比=42︰33=1.09(2分) 4.C原子体积较大,不能填充在体心立方的任何空隙中,但可能填充在面心立方结构的八面体空隙中(r h/r=0.414)。(2分) 2.四氧化三铁 科学研究表明,Fe3O4是由Fe2+、Fe3+、O2-通过离子键而组成的复杂离子晶体。O2-的重复排列方式如图b所示,该排列方式中存在着两种类型的由O2-围成的空隙,如1、3、6、7的O2-围成的空隙和3、6、7、8、9、12的O2-围成的空隙,前者为正四面体空隙,后者为正八面体空隙,Fe3O4中有一半的Fe3+填充在正四面体空隙中,另一半Fe3+和Fe2+填充在正八面体空隙中,则Fe3O4晶体中正四面体空隙数与O2-数之比为2:1,其中有12.5%正四面体空隙填有Fe3+,有50%正八面体空隙没有被填充。 Fe3O4中三价铁离子:亚铁离子:O原子=2:1:4 晶胞拥有8个正四面体空隙,4个O2-离子;所以2:1 一半三价铁离子放入正四面体空隙,即一个三价铁离子,所以为1/8=12.5%晶胞实际拥有4个正八面体空隙,其中已经有一个放Fe3+,另外一个Fe2+占据一个正八面体空隙,所以50%的正八面体空隙没有被填充。

离子晶体、分子晶体和原子晶体

离子晶体、分子晶体和原子晶体 [学法指导] 在学习中要加强对化学键中的非极性键、极性键、离子键、晶体类型及结构的认识与理解;在掌握微粒半径递变规律的基础上,分析离子晶体、原子晶体、分子晶体的熔点、沸点等物理性质的变化规律;并在认识晶体的空间结构的过程中,培养空间想象能力及思维的严密性和抽象性。 同时,关于晶体空间结构的问题,很容易与数学等学科知识结合起来,在综合题的命题方法具有广阔的空间,因此,一定要把握基础、领会实质,建立同类题的解题策略和相应的思维模式。 [要点分析] 一、晶体 固体可以分为两种存在形式:晶体和非晶体。 晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。气体、液体和非晶体在一定条件下也可转变为晶体。 晶体是经过结晶过程而形成的具有规则的几何外形的固体。晶体中原子或分子在空间按一定规律周期性重复的排列,从而使晶体内部各个部分的宏观性质是相同的,而且具有固定的熔点和规则的几何外形。 NaCl晶体结构

食盐晶体金刚石晶体金刚石晶体模型钻石 C60分子 二、晶体结构 1.几种晶体的结构、性质比较 2.几种典型的晶体结构: (1)NaCl晶体(如图1):每个Na+周围有6个Cl-,每个Cl-周围有6个Na+,离子个数比为1:1。 (2)CsCl晶体(如图2):每个Cl-周围有8个Cs+,每个Cs+周围有8个Cl-;距离Cs+最近的且距离相等的Cs+有6个,距离每个Cl-最近的且距离相等的Cl-也有6个,Cs+和Cl-的离子个数比为1:1。

(3)金刚石(如图3):每个碳原子都被相邻的四个碳原子包围,以共价键结合成为正四面体结构并向空间发展,键角都是109o28',最小的碳环上有六个碳原子。 (4)石墨(如图4、5):层状结构,每一层内,碳原子以正六边形排列成平面的网状结构,每个正六边形平均拥有两个碳原子。片层间存在范德华力,是混合型晶体。熔点比金刚石高。

[高中化学教案全套]高中化学原子晶体教案

[高中化学教案全套]高中化学原子晶体教案【--高中入团申请书】 1.掌握原子晶体的概念,能够区分原子晶体、离子晶体和分子晶体。 2.掌握金刚石等典型原子晶体的结构特征,理解原子晶体中“相邻原子间通过共价键结合而成空间网状结构”的特征。 3.以金刚石为例,了解原子晶体的物理性质(熔、沸点,导电性和溶解性)。 4.能够根据金刚石、石墨的晶体结构特征,分析比较两种物质的性质特征。由此培养根据晶体的微观结构解释晶体的物理性质的观念。 5.学会比较离子晶体、分子晶体、原子晶体三类晶体的性质特征和结构特征。 [复习提问] (一)基本知识点(学生自学完成)

1.原子晶体:相邻原子间以共价键相结合而形成的空间网状结构的晶体。 2.构成粒子:______________; 3.粒子间的作用______________; 4.原子晶体的物理性质 熔、沸点__________,硬度___________;______________一般的溶剂;_____导电。 原子晶体具备以上物理性质的原因 ____________________________ 原子晶体的化学式是否可以代表其分子式______________。为什么? 5.常见的原子晶体有____________________________等。 6.判断晶体类型的依据

(1)看构成晶体的微粒种类及微粒间的相互作用。 对分子晶体,构成晶体的微粒是______________,微粒间的相互作用是___________; 对于离子晶体,构成晶体的是微粒是______________,微粒间 的相互作__________键。 对于原子晶体,构成晶体的微粒是_______,微粒间的相互作用是___________键。 (2)看物质的物理性质(如:熔、沸点或硬度)。 一般情况下,不同类晶体熔点高低顺序是 ________晶 体>_______晶体>_______晶体。原子晶体、离子晶体比分子晶体的熔、沸点高得多 1.晶体 晶体是指具有规则几何外形的固体。其结构特征是其内的原子 或分子在主维空间的排布具有特定的周期性,即隔一定距离重复出现。

高考第一轮复习——分子晶体和原子晶体 (习题+解析)

1. 下列属于分子晶体的一组物质是 A. CaO、NO、CO B. CCl4、H2O2、He C. CO2、SO2、NaCl D. CH4、O2、Na2O 2. 下列性质符合分子晶体的是 A. 熔点1070℃,易溶于水,水溶液能导电 B. 熔点是10.31°,液体不导电,水溶液能导电 C. 熔点97.81℃,质软,能导电,密度是0.97g/cm3 D. 熔点,熔化时能导电,水溶液也能导电 3. 下列说法正确的是 A. 离子化合物中可能含有共价键 B. 分子晶体中的分子内不含有共价键 C. 分子晶体中一定有非极性共价键 D. 分子晶体中分子一定紧密堆积 4. 干冰汽化时,下列所述内容发生变化的是 A. 分子内共价键 B. 分子间作用力 C. 分子间距离 D. 分子间的氢键 5. 在金刚石的网状结构中,含有共价键形成的碳原子环,其中最小的环上,碳原子数是 A. 2个 B. 3个 C. 4个 D. 6个 6. 在x mol石英晶体中,含有的Si-O键数是 A. x mol B. 2x mol C. 3 x mol D. 4x mol 7. 石墨晶体是层状结构,在每一层内;每一个碳原子都跟其他3个碳原子相结合,如图是其晶体结构的俯视图,则图中7个六元环完全占有的碳原子数是 A. 10个 B. 18个 C. 24个 D. 14个 8. 石英玻璃是将纯石英在1600℃高温下熔化,冷却后形成的玻璃体。关于石英玻璃的结构和性质的叙述中正确的是 A. 石英玻璃属于原子晶体 B. 石英玻璃耐高温且能抵抗一切酸的腐蚀 C. 石英玻璃的结构类似于液体 D. 石英玻璃能经受高温剧变且能抗碱的腐蚀 9. 已知C3N4晶体具有比金刚石还大的硬度,且构成该晶体的微粒间只以单键结合。下列关于C3N4晶体的说法错误的是 A. 该晶体属于原子晶体,其化学键比金刚石中的碳碳键更牢固 B. 该晶体中每个碳原子连接4个氮原子、每个氮原子连接3个碳原子 C. 该晶体中碳原子和氮原子的最外层都满足8电子结构 D. 该晶体与金刚石相似,都是原子间以非极性键形成空间网状结构 10. 碳化硅(SiC)具有类似金刚石的结构,其中碳原子和硅原子的位置是交替的。在下列三种晶体①金刚石②晶体硅③碳化硅中,它们的熔点从高到低的顺序是 A. ①③② B. ②③① C. ③①② D. ②①③

2019_2020学年高中化学第三章第二节分子晶体与原子晶体第2课时原子晶体教案新人教版选修3

第2课时原子晶体 [核心素养发展目标] 1.宏观辨识与微观探析:能辨识常见的原子晶体,并能从微观角度分析原子晶体中各构成微粒之间的作用对原子晶体物理性质的影响。2.证据推理与模型认知:能利用原子晶体的通性推断常见的原子晶体,理解原子晶体中微粒的堆积模型,并能利用均摊法对晶胞进行分析。 一、原子晶体及其结构特点 1.概念 相邻原子间以共价键相结合形成三维的共价键网状结构的晶体叫原子晶体。又叫共价晶体。2.构成微粒及微粒间作用 3.常见原子晶体及物质类别 (1)某些单质:如硼(B)、硅(Si)、锗(Ge)、金刚石等。 (2)某些非金属化合物:如金刚砂(SiC)、二氧化硅(SiO2)、氮化硼(BN)、氮化硅(Si3N4)等。 (3)极少数金属氧化物,如刚玉(α-Al2O3)等。 4.两种典型原子晶体的组成与结构 (1)金刚石 金刚石晶体中,每个碳原子均以4个共价键对称地与相邻的4个碳原子相结合,形成C—C—C 夹角为109°28′的正四面体结构(即金刚石中的碳采取sp3杂化轨道形成共价键),整块金刚石晶体就是以共价键相连的空间网状结构。其中最小的环是六元环。 (2)二氧化硅 二氧化硅晶体中,每个硅原子均以4个共价键对称地与相邻的4个氧原子相结合,每个氧原子与2个硅原子相结合,向空间扩展,形成空间网状结构。晶体结构中最小的环上有6个硅原子和6个氧原子,硅、氧原子个数比为1∶2。

(1)原子晶体中不存在单个的分子,其化学式不是分子式,仅表示该物质中原子个数比。 (2)由原子构成的晶体不一定是原子晶体,如稀有气体分子构成的晶体属于分子晶体。 (3)原子晶体中一定存在共价键,而物质中存在共价键的晶体不一定是原子晶体,如干冰中碳原子与氧原子之间存在共价键,但干冰是分子晶体。 例1(2019·长沙高二检测)下列物质的晶体直接由原子构成的一组是( ) ①CO2②SiO2③晶体Si ④白磷⑤氨基乙酸⑥固态He A.①②③④⑤⑥B.②③④⑥ C.②③⑥D.①②⑤⑥ 【考点】原子晶体的判断 【题点】由物质类别判断 答案 C 解析CO2、白磷、氨基乙酸、固态He是分子晶体,其晶体由分子构成,稀有气体He由单原子分子构成;SiO2、晶体Si属于原子晶体,其晶体直接由原子构成。 例2最近科学家成功研制成了一种新型的碳氧化物,该化合物晶体与SiO2的晶体的结构相似,晶体中每个碳原子均以4个共价单键与氧原子结合,形成一种无限伸展的空间网状结构。下列对该晶体的叙述错误的是( ) A.该晶体是原子晶体 B.该晶体中碳原子和氧原子的个数比为1∶2 C.该晶体中碳原子数与C—O键数之比为1∶2 D.该晶体中最小的环由12个原子构成 【考点】原子晶体的组成与结构 【题点】原子晶体组成与结构的分析 答案 C 解析该化合物晶体中每个碳原子均以4个共价单键与氧原子结合,形成一种无限伸展的空间网状结构,则该化合物晶体中不存在分子,属于原子晶体,A项正确;晶体中每个碳原子均以4个共价单键与氧原子结合,每个氧原子和2个碳原子以共价单键相结合,所以碳、氧原子个数比为1∶2,B项正确;该晶体中每个碳原子形成4个C—O共价键,所以C原子与C—O 键数目之比为1∶4,C项错误;该晶体中最小的环由6个碳原子和6个氧原子构成,D项正确。

离子晶体、分子晶体和原子晶体(一)

离子晶体、分子晶体和原子晶体(一) 一、学习目标 1.使学生了解离子晶体、分子晶体和原子晶体的晶体结构模型及其性质的一般特点。 2.使学生理解离子晶体、分子晶体和原子晶体的晶体类型与性质的关系 3.使学生了解分子间作用力对物质物理性质的影响 4.常识性介绍氢键及其物质物理性质的影响。 二、重点难点 重点:离子晶体、分子晶体和原子晶体的结构模型;晶体类型与性质的关系 难点:离子晶体、分子晶体和原子晶体的结构模型;氢键 三、学习过程 (一)引入新课 [复习提问] 1.写出NaCl 、CO2 、H2O 的电子式 。 2.NaCl晶体是由Na+和Cl—通过形成的晶体。

[课题板书] 第一节离子晶体、分子晶体和分子晶体(有课件) 一、离子晶体 1、概念:离子间通过离子键形成的晶体 2、空间结构 以NaCl 、CsCl为例来,以媒体为手段,攻克离子晶体空间结构这一难点 [针对性练习] [例1]如图为NaCl晶体结构图,图中直线交点处为NaCl晶体中Na+与Cl-所处的位置(不考虑体积的大小)。 (1)请将其代表Na+的用笔涂黑圆点,以完成 NaCl晶体结构示意图。并确定晶体的晶胞,分析其构成。 (2)从晶胞中分Na+周围与它最近时且距离相等的 Na+共有多少个? [解析]下图中心圆甲涂黑为Na+,与之相隔均要涂黑

(1)分析图为8个小立方体构成,为晶体的晶胞, (2)计算在该晶胞中含有Na+的数目。在晶胞中心有1个Na+外,在棱上共有4个Na+,一个晶胞有6个面,与这6个面相接的其他晶胞还有6个面,共12个面。又因棱上每个Na+又为周围4个晶胞所共有,所以该晶胞独占的是12×1/4=3个.该晶胞共有的Na+为4个。 晶胞中含有的Cl-数:Cl-位于顶点及面心处,每.个平面上有4个顶点与1个面心,而每个顶点上的氯离于又为8个晶胞(本层4个,上层4个)所共有。该晶胞独占8×1/8=1个。一个晶胞有6个面,每面有一个面心氯离子,又为两个晶胞共有,所以该晶胞中独占的Cl-数为6×1/2=3。 不难推出,n(Na+):n(Cl-)=4:4:1:1。化学式为NaCl. (3)以中心Na+为依据,画上或找出三个平面(主个平面互相垂直)。在每个平面上的Na+都与中心 Na+最近且为等距离。 每个平面上又都有4个Na+,所以与Na+最近相邻且等距的Na+为3×4=12个。 [答案] (1)含8个小立方体的NaCl晶体示意图为一个晶胞 (2)在晶胞中Na+与Cl-个数比为1:1. (3)12个 3、离子晶体结构对其性质的影响

人教版高中化学选修三《分子晶体与原子晶体》word学案

人教版高中化学选修三《分子晶体与原子晶体》word 学案第二节分子晶体与原子晶体 [学习目标] [知识梳理] 1.分子间作用力 (1)分子间作用力__________;又称范德华力。分子间作用力存在于____________之间。 (2)阻碍因素:①分子的极性②组成和结构相似的 2.分子晶体 (1)定义:________________________________ (2)构成微粒________________________________ (3)粒子间的作用力:________________________________ (4)分子晶体一样物质类不________________________________ (5)分子晶体的物理性质________________________________________________ 3.原子晶体:相邻原子间以共价键相结合而形成的空间网状结构的晶体。 4.构成粒子:______________;。 5.粒子间的作用______________, 6.原子晶体的物理性质 (1)熔、沸点__________,硬度___________ (2) ______________一样的溶剂。 (3)______________导电。原子晶体具备以上物理性质的缘故____________________________ 原子晶体的化学式是否能够代表其分子式______________ 缘故____________________________。 7.常见的原子晶体有____________________________等。 [方法导引] 1.判定晶体类型的依据

怎样区分分子晶体与原子晶体

怎样区分分子晶体与原子 晶体 Prepared on 22 November 2020

分子晶体与原子晶体 1 原子晶体:相邻原子之间通过强烈的共价键结合而成的空间网状结构的晶体叫做原子晶体。 (1)原子晶体中,组成晶体的微粒是原子,原子间的相互作用是共价键,共价键结合牢固,原子晶体的熔、沸点高,硬度大,不溶于一般的溶剂,多数原子晶体为绝缘体,有些如硅、锗等是优良的半导体材料。原子晶体中不存在分子,用化学式表示物质的组成,单质的化学式直接用元素符号表示,两种以上元素组成的原子晶体,按各原子数目的最简比写化学式。常见的原子晶体是周期系第ⅣA族元素的一些单质和某些化合物,例如金刚石、硅晶体、SiO2、SiC等。(但碳元素的另一单质石墨不是原子晶体,石墨晶体是层状结构,以一个碳原子为中心,通过共价键连接3个碳原子,形成网状六边形,属过渡型晶体。)对不同的原子晶体,组成晶体的原子半径越小,共价键的键长越短,即共价键越牢固,晶体的熔,沸点越高,例如金刚石、碳化硅、硅晶体的熔沸点依次降低。 (2)一般键长越短,熔沸点越高。例如:金刚石(C—C)> 二氧化硅(Si—O)> 碳化硅(Si—C) > 晶体硅(Si—Si) 2分子间通过分子间作用力(包括范德华力和氢键)构成的晶体。 (1)典型的分子晶体 ①所有非金属氢化物 ②大部分非金属单质,如:稀有气体、卤素(X2)、氧气、硫(S8)、氮(N2)、白磷(P4)、C60等 ③部分非金属氧化物,如:CO2、SO2、SO3、P4O6、P4O10等 ④几乎所有的酸 ⑤绝大多数有机化合物,如:苯、乙酸、乙醇、葡萄糖等 ⑥所有常温下呈气态的物质、常温下呈液态的物质(除汞外)、易挥发的固态物质 (2)分子晶体是由分子组成,可以是极性分子,也可以是非极性分子。分子间的作用力很弱,分子晶体具有较低的熔、,硬度小、易挥发,许多物质在常温下呈气态或液态,例如、CO2是气体,乙醇、冰醋酸是液体。同类型分子的晶体,其熔、沸点随分子量的增加而升高,例如卤素单质的熔、沸点按F2、Cl2、Br2、I2顺序递增;非金属元素的氢化物,按周期系同主族由上而下熔沸点升高;有机物的同系物随数的增加,熔沸点升高。但HF、H2O、NH3、CH3CH2OH等分子间,除存在范德华力外,还有氢键的作用力,它们的熔沸点较高。在固态和熔融状态时都不导电。

分子晶体与原子晶体(教学设计)

第二节分子晶体与原子晶体 第一课时分子晶体 教材内容分析: 晶体具有的规则的几何外形源于组成晶体的微粒按一定规律周期性的重复排列。本节延续前面一节离子晶体,以“构成微粒---晶体类型---晶体性质”的认知模式为主线,着重探究了典型分子晶体冰和干冰的晶体结构特点。并谈到了分子间作用力和氢键对物质性质的影响。使学生对分子晶体的结构和性质特点有里一个大致的了解。并为后面学习原子晶体做好了知识准备,以形成比较。 教学目标设定: 1、使学生了解分子晶体的组成粒子、结构模型和结构特点及其性质的一般特点。 2、使学生了解晶体类型与性质的关系。 3、使学生理解分子间作用力和氢键对物质物理性质的影响。 4、知道一些常见的属于分子晶体的物质类别。 5、使学生主动参与科学探究,体验研究过程,激发他们的学习兴趣。 教学重点难点: 重点掌握分子晶体的结构特点和性质特点 难点是氢键的方向性和氢键对物体物理性质的影响 从三维空间结构认识晶胞的组成结构 教学方法建议: 运用模型和类比方法诱导分析归纳 教学过程设计: 复问:什么是离子晶体?哪几类物质属于离子晶体?

(离子化合物为固态时均属于离子晶体,如大部分盐、碱、金属氧化物属于离子晶体) 投影 展示实物:冰、干冰、碘晶体 教师诱导:这些物质属于离子晶体吗?构成它们的基本粒子是什么?这些粒子间通过什么作用结合而成的? 学生分组讨论回答 板书:分子通过分子间作用力形成分子晶体 一、分子晶体 1、定义:含分子的晶体称为分子晶体 也就是说:分子间以分子间作用力相结合的晶体叫做分子晶体 看图3-9,如:碘晶体中只含有I2分子,就属于分子晶体问:还有哪些属于分子晶体? 2、较典型的分子晶体有非金属氢化物,部分非金属单质,部分非金属氧化物,

高二化学选修3第三章第二节分子晶体与原子晶体教案

高二化学选修3第三章 第二节分子晶体与原子晶体 第一课时分子晶体 教学目标: 1、使学生了解分子晶体的组成粒子、结构模型和结构特点及其性质的一般特点。 2、使学生了解晶体类型与性质的关系。 3、使学生理解分子间作用力和氢键对物质物理性质的影响。 4、知道一些常见的属于分子晶体的物质类别。 5、使学生主动参与科学探究,体验研究过程,激发他们的学习兴趣。 教学重点难点: 重点掌握分子晶体的结构特点和性质特点 难点是氢键的方向性和氢键对物体物理性质的影响 从三维空间结构认识晶胞的组成结构 教学方法建议: 运用模型和类比方法诱导分析归纳 教学过程设计: 复问:什么是离子晶体?哪几类物质属于离子晶体? (离子化合物为固态时均属于离子晶体,如大部分盐、碱、金属氧化物属于离子晶体) 投影 展示实物:冰、干冰、碘晶体教师诱导:这些物质属于离子晶体吗?构成它们的基本粒子是什么?这些粒子间通过什么作用结合而成的? 学生分组讨论回答 板书:分子通过分子间作用力形成分子晶体 一、分子晶体 1、定义:含分子的晶体称为分子晶体 也就是说:分子间以分子间作用力相结合的晶体叫做分子晶体 看图3-9,如:碘晶体中只含有I2分子,就属于分子晶体问:还有哪些属于分子晶体?

2、较典型的分子晶体有非金属氢化物,部分非金属单质,部分非金属氧化物,几乎所有的酸,绝大多数有机物的晶体。 3、分子间作用力和氢键 过度:首先让我们回忆一下分子间作用力的有关知识 阅读必修2P22科学视眼 教师诱导:分子间存在着一种把分子聚集在一起的作用力叫做分子间作用力,也叫范徳华力。分子间作用力对物质的性质有怎么样的影响。 学生回答:一般来说,对与组成和结构相似的物质,相对分子量越大分子间作用力越大,物质的熔沸点也越高。 教师诱导:但是有些氢化物的熔点和沸点的递变却与此不完全符合,如:NH3,H2O和HF 的沸点就出现反常。 指导学生自学:教材中有些氢键形成的条件,氢键的定义,氢键对物质物理性质的影响。 多媒体动画片 氢键形成的过程: ①氢键形成的条件:半径小,吸引电子能力强的原子(N,O,F)与H核 ②氢键的定义:半径小、吸引电子能力强的原子与H核之间的静电吸引作用。氢键可看作是一种比较强的分子间作用力。 ③氢键对物质性质的影响:氢键使物质的熔沸点升高。 ④投影氢键的表示如:冰一个水分子能和周围4个水分子从氢键相结合组成一个正四面体见图3-11 教师诱导:在分子晶体中,分子内的原子以共价键相结合,而相邻分子通过分子间作用力相互吸引。分子晶体有哪些特性呢?学生回答 4.分子晶体的物理特性:熔沸点较低、易升华、硬度小。固态和熔融状态下都不导电。 教师诱导:大多数分子晶体结构有如下特征:如果分子间作用力只是范德华力。以一个分子为中心,其周围通常可以有几个紧邻的分子。如图3-10的O2,C60,我们把这一特征叫做分子紧密堆积。如果分子间除范德华力外还有其他作用力(如氢键),如果分子间存在着氢键,分子就不会采取紧密堆积的方式 学生讨论回答:在冰的晶体中,每个水分子周围只有4个紧邻的水分子,形成正四面体。氢键不是化学键,比共价键弱得多却跟共价键一样具有方向性,而氢键的存在迫使四面体中心的每个水分子与四面体顶角方向的4个相邻水分子的相互吸引,这一排列使冰晶体中空间利用率不高,皆有相当大的空隙使得冰的密度减小。 教师诱导,还有一种晶体叫做干冰,它是固体的CO2的晶体。干冰外观像冰,干冰不是冰。其熔点比冰低的多,易升华。

相关主题
文本预览
相关文档 最新文档