当前位置:文档之家› 概率论与数理统计习题解答李书刚编,科学出版社

概率论与数理统计习题解答李书刚编,科学出版社

概率论与数理统计习题解答李书刚编,科学出版社
概率论与数理统计习题解答李书刚编,科学出版社

第一章 随机事件及其概率

1. 写出下列随机试验的样本空间:

(1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标;

(3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数;

(4)测量一汽车通过给定点的速度. 解 所求的样本空间如下

(1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x 2

+y 2

<1}

(3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0}

2. 设A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示下列事件: (1)A 发生,B 和C 不发生; (2)A 与B 都发生,而C 不发生; (3)A 、B 、C 都发生; (4)A 、B 、C 都不发生; (5)A 、B 、C 不都发生; (6)A 、B 、C 至少有一个发生; (7)A 、B 、C 不多于一个发生; (8)A 、B 、C 至少有两个发生. 解 所求的事件表示如下

U U U U U U (1)(2)(3)(4)(5)(6)(7)(8)ABC

ABC ABC ABC ABC

A B C

AB BC AC AB BC CA

3.在某小学的学生中任选一名,若事件A 表示被选学生是男生,事件B 表示该生是三年

级学生,事件C 表示该学生是运动员,则 (1)事件AB 表示什么?

(2)在什么条件下ABC =C 成立?

(3)在什么条件下关系式C B ?是正确的? (4)在什么条件下A B =成立? 解 所求的事件表示如下

(1)事件AB 表示该生是三年级男生,但不是运动员.

(2)当全校运动员都是三年级男生时,ABC =C 成立.

(3)当全校运动员都是三年级学生时,关系式C B ?是正确的.

(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=,P (A -B )=,试求()P AB 解 由于 A

B = A – AB , P (A )= 所以

P (A B ) = P (A AB ) = P (A )

P (AB ) = ,

所以 P (AB )=, 故 ()P AB = 1 = .

5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=14

,P(AB) = P(CB) = 0, P(AC)= 18

A 、

B 、

C 中至少有一个发生的概率. 解 由于,()0,

?=ABC AB P AB 故P(ABC) = 0

则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC)

1111500044488

=++---+=

6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}.

解 由题意,基本事件总数为2a b A +,有利于A 的事件数为22a b A A +,有利于B 的事件数为1111112a b b a a b A A A A A A +=,

则 2

2

112

22()()a b a b a b

a b

A A A A

P A P B A A +++==

7. 若10件产品中有件正品,3件次品,

(1)不放回地每次从中任取一件,共取三次,求取到三件次品的概率; (2)每次从中任取一件,有放回地取三次,求取到三次次品的概率. 解 (1)设A={取得三件次品} 则

333333101016

()()120720

或者====

C A P A P A C A .

(2)设B={取到三个次品}, 则

3

3327

()101000

==P A .

8. 某旅行社100名导游中有43人会讲英语,35人会讲日语,32人会讲日语和英语,9

人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求: (1)此人会讲英语和日语,但不会讲法语的概率; (2)此人只会讲法语的概率.

解 设 A={此人会讲英语}, B={此人会讲日语}, C={此人会讲法语} 根据题意, 可得

(1) 32923()()()100100

100

=-=-=P ABC P AB P ABC

(2) ()()()P ABC P AB P ABC =- ()01()P A B P A B =+-=-+ 1()()()P A P B P AB =--+

433532541100100100100

=-

-+=

9. 罐中有12颗围棋子,其中8颗白子4颗黑子,若从中任取3颗,求:

(1) 取到的都是白子的概率;

(2) 取到两颗白子,一颗黑子的概率; (3) 取到三颗棋子中至少有一颗黑子的概率; (4) 取到三颗棋子颜色相同的概率. 解

(1) 设A={取到的都是白子} 则

38

31214()0.25555

===C P A C .

(2) 设B={取到两颗白子, 一颗黑子}

21

84

312

()0.509==C C P B C .

(3) 设C={取三颗子中至少的一颗黑子} ()1()0.745=-=P C P A .

(4) 设D={取到三颗子颜色相同}

3384

312

()0.273+==C C P D C .

10. (1)500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?

(2)6个人中,恰好有个人的生日在同一个月的概率是多少? 解

(1) 设A = {至少有一个人生日在7月1日}, 则 500

500

364()1()10.746365=-=-=P A P A

(2)设所求的概率为P(B)

41

2

6126

11()0.007312??==C C P B

11. 将C ,C ,E ,E ,I ,N ,S 7个字母随意排成一行,试求恰好排成SCIENCE 的概率p. 解 由于两个C ,两个E 共有2222A A 种排法,而基本事件总数为77A ,因此有 22

2277

0.000794A A

p A ==

12.从5副不同的手套中任取款4只,求这4只都不配对的概率. 解 要4只都不配对,我们先取出4双,再从每一双中任取一只,共有?4452C 中取法. 设

A={4只手套都不配对},则有

?==445410

280()210C P A C

13.一实习生用一台机器接连独立地制造三只同种零件,第i 只零件是不合格的概率为

=

+1

1i p i

,i=1,2,3,若以x 表示零件中合格品的个数,则P(x =2)为多少?

解 设A i = {第i 个零件不合格},i=1,2,3, 则1()1i i P A p i

==

+ 所以 ()11i i i P A p i

=-=

+

123123123(2)()()()P x P A A A P A A A P A A A ==++

由于零件制造相互独立,有:

123123()()()()P A A A P A P A P A =,123123()()()()P A A A P A P A P A =

123123()()()()P A A A P A P A P A =

11112111311

,(2)23423423424

P x ==??+??+??=

所以

14.假设目标出现在射程之内的概率为,这时射击命中目标的概率为,试求两次独立射击

至少有一次命中目标的概率p.

解 设A={目标出现在射程内},B={射击击中目标},B i ={第i 次击中目标}, i=1,2.

则 P(A)=, P(B i|A)= 另外 B=B 1+B 2,由全概率公式

12()()()

()()(|)()(()|)

P B P AB P AB P AB P A P B A P A P B B A =+===+ 另外, 由于两次射击是独立的, 故

P(B 1B 2|A)= P(B 1|A) P(B 2|A) = 由加法公式

P((B 1+B 2)|A)= P(B 1|A)+ P(B 2|A)-P(B 1B 2|A)=+ 因此 P(B)= P(A)P((B 1+B 2)|A)=× =

15.设某种产品50件为一批,如果每批产品中没有次品的概率为,有1,2,3,4件次品

的概率分别为, , , ,今从某批产品中抽取10件,检查出一件次品,求该批产品中次品不超过两件的概率.

解 设A i ={一批产品中有i 件次品},i=0, 1, 2, 3, 4, B={任取10件检查出一件次品}, C={产品中次品不超两件}, 由题意

019

149110

5019248210

5019347310

5019446110

50(|)0

1

(|)516

(|)4939

(|)98988

(|)2303

=========P B A C C P B A C C C P B A C C C P B A C C C P B A C

由于 A 0, A 1, A 2, A 3, A 4构成了一个完备的事件组, 由全概率公式

4

0()()(|)0.196

===∑i i i P B P A P B A

由Bayes 公式

000111222()(|)

(|)0

()

()(|)

(|)0.255

()

()(|)

(|)0.333

()=

=====P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B

2

0()(|)0.588

===∑i i P C P A B

16.由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为,,,现

在从中随机地取三件,发现三件全是好的,试分析这批物品的损坏率是多少(这里设物品件数很多,取出一件后不影响下一件的概率).

解 设B={三件都是好的},A 1={损坏2%}, A 2={损坏10%}, A 1={损坏90%},则A 1, A 2, A 3是两两互斥, 且A 1+ A 2 +A 3=Ω, P(A 1)=, P(A 2)=, P(A 2)=. 因此有 P(B| A 1) = , P(B| A 2) = , P(B| A 3) = , 由全概率公式

3

1333()()(|)

0.80.980.150.900.050.100.8624

===?+?+?=∑i i i P B P A P B A

由Bayes 公式, 这批货物的损坏率为2%, 10%, 90%的概率分别为

3

13

23

3()(|)0.80.98(|)0.8731

()0.8624()(|)0.150.90(|)0.1268

()0.8624

()(|)0.050.10(|)0.0001

()0.8624

?===?=

==?===i i i i i i P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B

由于P( A 1|B) 远大于P( A 3|B), P( A 2|B), 因此可以认为这批货物的损坏率为.

17.验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有两只残次品,且

含0,1和2件残次品的箱各占80%,15%和5%,现在随意抽取一箱,随意检查其中4只;若未发现残次品,则通过验收,否则要逐一检验并更换残次品,试求: (1)一次通过验收的概率α;

(2)通过验收的箱中确定无残次品的概率β. 解 设H i ={箱中实际有的次品数}, 0,1,2=i , A={通过验收} 则 P(H 0)=, P(H 1)=, P(H 2)=, 那么有:

04

2314244222424(|)1,

5

(|),

695

(|)138

P A H C P A H C C P A H C =====

(1)由全概率公式

20

()()(|)0.96α====∑i i i P A P H P A H

(2)由Bayes 公式 得

00()(|)0.81

(|)0.83

()0.96

β?==

==i P H P A H P H A P A

18.一建筑物内装有5台同类型的空调设备,调查表明,在任一时刻,每台设备被 使用的

概率为,问在同一时刻

(1)恰有两台设备被使用的概率是多少? (2)至少有三台设备被使用的概率是多少?

解 设5台设备在同一时刻是否工作是相互独立的, 因此本题可以看作是5重伯努利试验. 由题意,有p=, q=1

p=, 故

(1) 2231

5

5

(2)(0.1)(0.9)0.0729

===P P C

(2) 2

555(3)(4)(5)

P P P P =++

332441550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=

第二章 随机变量及其分布

1. 有10件产品,其中正品8件,次品两件,现从中任取两件,求取得次品数X 的分律. 解 X 的分布率如下表所示:

2. 进行某种试验,设试验成功的概率为34

,失败的概率为14

以X 表示试验首次成功所需试验的次数,试写出X 的分布律,并计算X 取偶数的概率. 解 X 的分布律为:

1

13(),1,2,3,44k P X k k -??

??

=== ?

???

??

L

X 取偶数的概率:

21

13{}(2)4411116331165116

k k P X P X k -∞

????

=== ? ?

??

????

==?=

?-??∑∑∑k=1k=1k=1为偶数 3. 从5个数1,2,3,4,5中任取三个为数123,,x x x .求:

X =max (123,,x x x )的分布律及P(X ≤4); Y =min (123,,x x x )的分布律及P(Y>3). 解 基本事件总数为:3510C =,

X 3 4 5

(1)X 的分布律为:

P(X ≤4)=P(3)+P(4)= (2)Y 的分布律为

P(X>3) =0

4. C 应取何值,函数f(k) =!

k

C k λ,k =1,2,…,λ>0

成为

分布律?

解 由题意, 1()1k f x ∞

==∑, 即

01

1

0(1)1!!!0!k

k

k k k k C C C C e k k k λλλλλ∞

∞===??==-=-= ???

∑∑

∑ 解得:1(1)

C e λ

=-

5. 已知X

的分布律

X -1 1 2 P 16

2

6 36

求:(1)X 的分布函数;(2)12P X ??< ??

?

;(3)312P X ??

<≤ ??

?

.

解 (1) X 的分布函数为()()k k x x

F x P X x p ≤=≤=∑

0,

11/6,

11()1/2,121,

2

x x F x x x <-??-≤

(2) 11(1)26

P X P X ??<==-= ?

?

?

(3) 31()02P X P ??<≤=?= ??

?

6. 设某运动员投篮投中的概率为P =,求一次投篮时投中次

数X

解 X 的分布函数

0()0.6

0111

x F x x x ≤??=<≤??>?

7. 对同一目标作三次独立射击,设每次射击命中的概率为p ,求:

(1)三次射击中恰好命中两次的概率;

(2)目标被击中两弹或两弹以上被击毁,目标被击毁的概率是多少? 解 设A={三次射击中恰好命中两次},B=目标被击毁,则

(1) P(A) =2232233(2)(1)3(1)P C p p p p -=-=-

(2) P(B) =22323333233333(2)(3)(1)(1)32P P C p p C p p p p --+=-+-=-

8. 一电话交换台每分钟的呼唤次数服从参数为4的泊松分布,求:

(1)每分钟恰有6次呼唤的概率;

(2)每分钟的呼唤次数不超过10次的概率.

(1) P(X=6) =6

4

40.104

!6!

k e e k λλ--==或者

P(X=6) =

!k

e

k λ

λ-44

6744!!

k k k k e e k k ∞

∞--===-∑∑= – = . (2) P(X ≤10)10

44

01144110.00284

!!

k

k

k k e e k k ∞

--====-=-∑∑ =

9. 设随机变量X 服从泊松分布,且P(X =1)=P(X =2),求P(X =4)

解 由已知可得, 12

,1!2!

e e λλ

λλ--=

解得λ=2, (λ=0不合题意)

42

2,(4)4!

P X e -==因此=

10. 商店订购1000瓶鲜橙汁,在运输途中瓶子被打碎的概率为,求商店收到的玻璃瓶,(1)恰有两只;(2)小于两只;(3)多于两只;(4)至少有一只的概率. 解 设X={1000瓶鲜橙汁中由于运输而被打破的瓶子数},则X 服从参数为n=1000, p=的二项分布,即X~B(1000, , 由于n 比较大,p 比较小,np=3, 因此可以用泊松分布来近似, 即X~π(3). 因此

(1) P(X=2) 23

30.2242!

e -==

(2)323

(2)1(2)110.80080.1992

!

k

k P X P X e k ∞

-=<=-≥=-=-=∑

(3)3

33(2)(2)0.5768!

k k P X P X e k ∞

-=>=>==∑

(4)3

13(1)0.9502!

k k P X e k ∞

-=≥==∑

11. 设连续型随机变量X 的分布函数为

20,0(),

011,1

x F x kx x x ?

求:(1)系数k ;(2)P

F(x )=P(X ≤x )=P(X<0)+P(0≤X ≤x )=k x 2

又F(1) =1, 所以k ×12

=1

因此k=1.

(2) P

2,01

()'()0,x x f x F x Other ≤≤?==?

?

(4) 由(2)知,P

P{四次独立试验中有三次在, 内} =

334340.5(10.5)0.25C --=.

12. 设连续型随机变量X 的密度函数为

2

1()10,

1

x F x x x ?

?≥?

求:(1)系数k ;(2)12P X

??<

???

(3)X 的分布函数.

解 (1)由题意, ()1f x dx +∞

-∞

=?

, 因此

1

1

1

()arcsin 111

f x dx k x k k ππ

+∞

+-∞

-====-=

?

?

解得:

(2)

1/21/1/21111

arcsin 1/22663

P x x ππππ--?

???<===-

= ? ?-????? (3) X 的分布函数

1()()1/2arcsin /11

111/x x F x f x dx x x x k ππ-∞

<-??

==+-≤≤??>?

=?解得:

13. 某城市每天用电量不超过100万千瓦时,以Z 表示每天的耗电率(即用电量除以100万千瓦时),它具有分布密度为

212(1),01

()0,

x x x F x ?-<<=?

?其他

若该城市每天的供电量仅有80万千瓦时,求供电量不够需要的概率是多少?如每天供电量为90万千瓦时又是怎样的?

解 如果供电量只有80万千瓦,供电量不够用的概率为: P(Z>80/100)=P(Z>=1

2

0.8

12(1)0.0272x x dx -=?

如果供电量只有80万千瓦,供电量不够用的概率为:

P(Z>90/100)=P(Z>=1

2

0.9

12(1)0.0037x x dx -=?

14. 某仪器装有三只独立工作的同型号电子元件,其寿命(单位 小时)都服从同一指数分布,分布密度为

600

1,0()600

0,x

e x F x x

?

=??≥?

试求在仪器使用的最初200小时以内,至少有一只电子

元件损坏的概率.

解 设X 表示该型号电子元件的寿命,则X 服从指数分布,设A={X ≤200},则 P(A)=

1

200

600

30

11600

x e dx e --=-?

设Y={三只电子元件在200小时内损坏的数量},则所求的概率为:

10030

3

33

1

(1)1(0)1()(1())

1()1P Y P Y C P A P A e e

-

-≥=-==--=-=-

15. 设X 为正态随机变量,且X ~N(2,2σ),又P(2

求P(X<0) 解 由题意知

()222422(24)00.3X P X P σ

σ

σσ---????<<=<<=Φ-Φ= ? ?????

20.30.50.8σ??

Φ=+= ???

故 20222(0)10.2X P X P σ

σσσ---??????<=<=Φ=-Φ= ? ? ???????

16. 设随机变量X 服从正态分布N(10,4),求a ,使P(|X -10|

解 由于()()10|10|102

2

2a X a P X a P a X a P --??-<=-<-<=<<

???

210.9222a a a -??????

=Φ-Φ=Φ-= ? ? ???????

所以0.952a ??

Φ= ???

查表可得, 2

a =

即 a =

17. 设某台机器生产的螺栓的长度X 服从正态分布N ,,规定X 在范围±厘米内为合格品,求螺栓不合格的概率.

解 由题意,设P 为合格的概率,则

()10.05(|10.05|0.12)0.1210.050.12220.06

X P P X P X P -??=-<=-<-<=-<

< ??

?

(2)(2)2(2)120.977210.9544=Φ-Φ-=Φ-=?-=

则不合格的概率=1P =

18. 设随机变量X 服从正态分布N(60,9),求分点x 1,x 2,使X 分别落在(-∞,x 1)、(x 1,x 2)、(x 2,+∞)的概率之比为3:4:5. 解 由题,

111116060603()()0.253

333456060()1()0.75,

33

x x X P X x P x x ---??

<=<=Φ== ?

++??--Φ-=-Φ=

查表可得

160

0.673

x --

=

解得, x 1 =

22260606034()(

)0.5833333345x x X P X x P ---+??

<=<=Φ== ?++??

查表可得

260

0.213

x -=

解得, x 2 =.

19. 已知测量误差X (米)服从正态分布N, 102

),必须进行多少次测量才能使至少有一次误差的绝对值不超过10米的概率大于?

解 设一次测量的误差不超过10米的概率为p , 则由题可知

107.57.5107.5(10)101010(0.25)( 1.75)(0.25)1(1.75)0.598710.95990.5586

X p P X P ----??

=<=<< ??

?=Φ-Φ-=Φ-+Φ=-+= 设 Y 为n 次独立重复测量误差不超过10米出现的次数,则Y~B(n,

于是 P(Y ≥1)=1P(X=0)=1(1n

≥ ≤, n ≥ln/ln 解得:n ≥

取n=5, 即,需要进行5次测量. 20. 设随机变量X 的分布列为

X -2 0 2 3

P

1

7

17 3

7

2

7

试求:(1)2X 的分布列;(2)x 2

的分布列. 解 (1) 2X 的分布列如下

(2) x 2

的分布列

21. 设X 服从N(0,1)分布,求Y =|X |的密度函数.

解 y=|x|的反函数为 ,

0h(y)=,

x x x x -

≥?, 从而可得

Y=|X|的密度函数为: 当y>0

2222

2

2

()()|()'|()|'|y y y Y X X f y f y y f y y e e e

---=--+=

+

=

当y ≤0时,()Y f y =0 因此有

2

2

,0()0,0

y Y

y f y y ->=≤?

22. 若随机变量X 的密度函数为

23,01

()0,

x x f x ?<<=?

?其他

求Y =1x

的分布函数和密度函数.

解 y=1x

在(0,1)上严格单调,且反函数为 h(y)= 1y

,

y>1, h ’(y)=2

1y -

2224

11113

()[()]|()|3Y X X f y f h y h y f y y y y y

??????'==-== ? ?????????

因此有

4

3

,1()0,Y y y f y other ?>?=???

Y 的分布函数为:433131,1()10,y Y y y dy y y y F y other

---?=-=->?=???

?

23. 设随机变量X 的密度函数为

2

2,0(1)

()0,0

x x f x x π?

>?+=??≤?

试求Y =lnX 的密度函数.

解 由于ln y x =严格单调,其反函数为(),'()y y h y e h y e ==且,

2()[()]|()|()2(1)

2

,()

y y

Y X X y

y y y

f y f h y h y f e e e e y e e ππ

-'===+=

-∞<<+∞

+

24. 设随机变量X 服从N(μ,2σ)分布,求Y =x e 的分布密度.

解 由于x y e =严格单调,其反函数为1()ln ,'(),h y y h y ==且y

y>0,

2

2

1

(ln)

2

1

()[()]|()|(ln)

,0

Y X X

y

f y f h y h y f y

y

e y

μ

σ

--

'

==

=>

当0

y≤时

因此

2

2

1

(ln)

2,0

()

0,0

y

Y

y

f y

y

μ

σ

--

?

>

=

?

25.假设随机变量X服从参数为2的指数分布,证明:Y

=2

1x

e-

-在区间(0, 1)上服从均匀分布.

解由于2

1x

y e-

=-在(0, +∞)上单调增函数,其反函数为:

1

()ln(1),01,

2

h y y y

=--<<

并且1

'()

2(1)

h y

y

=

-

,则当01

y

<<

1

2(ln(1))

2

()[()]|()|

11

(ln(1))

22(1)

1

21

2(1)

Y X

X

y

f y f h y h y

f y

y

e

y

---

'

=

=--

-

==

-

当y≤0或y≥1时,()

Y

f y=0.

因此Y在区间(0, 1)上服从均匀分布.

26.把一枚硬币连掷三次,以X表示在三次中正面出现的

次数,Y表示三次中出现正面的次数与出现反面的次数之差的绝对值,试求(X,Y)的联合概率分布.

解根据题意可知, (X,Y)可能出现的情况有:3次正面,2次正面1次反面, 1次正面2次反面, 3次反面, 对应的X,Y的取值及概率分别为

P(X=3, Y=3)=1

8

P(X=2, Y=1)=2

2

3

113

228

C

????

=

? ?

????P(X=1, Y=1)= 31

1

3

113

228

C

-

????

=

???

????

P(X=0, Y=3)= 3

11

28

??

=

?

??于是,(X,

27. 在10件产品中有2件一级品,7件二级品和1件次品,从10件产品中无放回抽取3件,用X 表示其中一级品件数,Y 表示其中二级品件数,求: (1)X 与Y 的联合概率分布; (2)X 、Y 的边缘概率分布; (3)X 与Y 相互独立吗?

解 根据题意,X 只能取0,1,2,Y 可取的值有:0,1,2,3,由古典概型公式得:

(1) 2

71

310

(,),

i

j k ij

C C C p P X i Y j C

====其中,3,0,1,2,i j k i ++==0,1,2,3j =

0,1k =,可以计算出联合分布表如下

(2) X,Y 的边缘分布如上表

(3) 由于P(X=0,Y=0)=0, 而P(X=0)P(Y=0)≠0, P(X=0,Y=0)≠P(X=0)P(Y=0), 因此X,Y 不相互独立.

28. 袋中有9张纸牌,其中两张“2”,三张“3”,四张“4”,任取一张,不放回,再任取一张,前后所取纸牌上的数

分别为X 和Y ,求二维随机变量(X, Y)的联合分布律,以及概率P(X +Y>6)

解 (1) X,Y 可取的值都为2,3,4, 则(X,Y)的联合概率

(2) P(X+Y>6) = P(X=3, Y=4) + P(X=4, Y=3) + P(X=4,Y=4)

=1/6+1/6+1/6=1/2.

29. 设二维连续型随机变量(X, Y)的联合分布函数为

(,)arctan arctan 23x y F x y A B C ?

???=++ ????

???,

求:(1)系数A 、B 及C ; (2)(X, Y)的联合概率密度; (3)X ,Y 的边缘分布函数及边缘概率密度;(4)随机变量X 与Y 是否独立?

解 (1) 由(X, Y)的性质, F(x, -∞) =0, F(-∞,y) =0, F(-∞, -∞) =0, F(+∞, +∞)=1, 可以得到如下方程组:

arctan 0

22arctan 0

230

221

22x A B C y A B C A B C A B C ππππππ?????+-= ? ???

?????????-+=? ? ???

????

?????--= ? ???

????

?????++= ? ???

????

解得: (2)

2222(,)6(,)(4)(9)

F x y f x y x y x y π?==??++

(3) X 与Y 的边缘分布函数为:

211()(,)arctan arctan 2

22222X x x F x F x ππππππ??????

=+∞=

++=+ ??? ??????? 211()(,)arctan arctan 222322Y y y F y F y ππππππ??????

=+∞=++=+ ??? ???????

X 与Y 的边缘概率密度为:

'22()()(4)

X X f x F x x π==+

'23

()()(9)

Y Y f y F y y π==

+

(4) 由(2),(3)可知:(,)()()X Y f x y f x f y =, 所以X ,Y 相互独立.

30. 设二维随机变量(X, Y)的联合概率密度为

-(x+y)e ,

0,

(,)0,x f x y ?<<+∞=?

?

其他

(1)求分布函数F(x, y);

(2)求(X ,Y)落在由x =0,y =0,x +y =1所围成的三角形区域G 内的概率.

解 (1) 当x>0, y>0时, ()00(,)(1)(1)y

x

u v x y F x y e dudv e e -+--==--?? 否则,F (x, y ) = 0.

(2) 由题意,所求的概率为

数三概率论与数理统计教学大纲

数三《概率论与数理统计》教学大纲 教材:四川大学数学学院邹述超、何腊梅:《概率论与数理统计》,高等教育出版社出,2002年8月。 参考书:袁荫棠:《概率论与数理统计》(修订本),中国人民大学出版社。 四川大学数学学院概率统计教研室:《概率论与数理统计学习指导》 总学时:60学时,其中:讲课50学时,习题课10学时。 学分:3学分。 说明: 1.生源结构:数三的学生是由高考文科生和一部分高考理科生构成。有些专业全是文科生或含极少部分理科生(如:旅游管理,行政管理),有些专业约占1/4~1/3的理科生(国贸,财政学,经济学),有些专业全是理科生(如:国民经济管理,金融学)。 2.高中已讲的内容:高中文、理科都讲了随机事件的概率、互斥事件的概率、独立事件的概率,即教材第一章除条件概率以及有关的内容以外,其余内容高中都讲了。高中理科已讲离散型随机变量的概率分布(包括二项分布、几何分布)和离散型随机变量的期望与方差,统计基本概念、频率直方图、正态分布、线性回归。而高中文科则只讲了一点统计基本概念、频率直方图、样本均值和样本方差的简单计算。 3.基本要求:学生的数学基础差异大,不同专业学生对数学课重视程度的差异大,这就给讲授这门课带来一定的难度,但要尽量做到“分层次”培养学生。高中没学过的内容要重点讲解,学过的内容也要适当复习或适当增加深度。讲课时,既要照顾数学基础差的学生,多举基本例子,使他们掌握大纲要求的基本概念和方法;也要照顾数学基础好的学生,使他们会做一些综合题以及简单证明题。因为有些专业还要开设相关的后继课程(如:计量经济学),将用到较多的概率统计知识;还有一部分学生要考研,数三的概率考研题往往比数一的难。 该教材每一章的前几节是讲述基本概念和方法,习题(A)是针对基本方法的训练而编写的,因此,这一部分内容须重点讲解,并要求学生必须掌握;每一章的最后一节是综合例题,习题(B)具有一定的综合性和难度,可以选讲部分例题,数学基础好的学生可选做(B)题。 建议各章学时分配(+号后面的是习题课学时): 第一章随机事件及其概率 一、基本内容 随机事件的概念及运算。概率的统计定义、古典定义及公理化定义。概率的基本性质、加法公式、条件概率与乘法公式、全概率公式、贝叶斯公式。事件的独立性,独立随机试验、

概率论与数理统计期末试卷+答案

一、单项选择题(每题2分,共20分) 1.设A 、B 是相互独立的事件,且()0.7,()0P A B P A ?==则 ()P B = ( A A. 0.5 B. 0.3 C. 0.75 D. 0.42 2、设X 是一个离散型随机变量,则下列可以成为X 的分布律的是 ( D ) A. 10 1p p ?? ?-??( p 为任意实数) B. 123450.1 0.3 0.3 0.2 0.2x x x x x ?? ??? C. 3 3()(1,2,...) ! n e P X n n n -== = D. 3 3()(0,1,2,...) ! n e P X n n n -== = 3.下列命题 不正确的是 ( D ) (A)设X 的密度为)(x f ,则一定有?+∞ ∞-=1 )(dx x f ; (B)设X 为连续型随机变量,则P (X =任一确定值)=0; (C)随机变量X 的分布函数()F x 必有01)(≤≤x F ; (D)随机变量X 的分布函数是事件“X =x ”的概率; 4.若()()() E XY E X E Y =,则下列命题不正确的是 ( B ) (A)(,)0Cov X Y =; (B)X 与Y 相互独立 ; (C)0=XY ρ; (D)()()D X Y D X Y -=+; 5. 已知两随机变量X 与Y 有关系0.80.7Y X =+,则X 与Y 间的相关系数 为 ( B ) (A)-1 ( B)1 (C)-0.8 (D)0.7 6.设X 与Y 相互独立且都服从标准正态分布,则 ( B ) (A)(0)0.25P X Y -≥= (B)(min(,)0)0.25P X Y ≥=

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

概率论与数理统计练习题

概率论与数理统计练习题 一、填空题 1、设A 、B 为随机事件,且P (A)=,P (B)=,P (B A)=,则P (A+B)=__ __。 2、θθθ是常数21? ,?的两个 无偏 估计量,若)? ()?(21θθD D <,则称1?θ比2?θ有效。 3、设A 、B 为随机事件,且P (A )=, P (B )=, P (A ∪B )=,则P (B A )=。 4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。 5. 设随机变量X 的概率密度是: ?? ?<<=其他 103)(2 x x x f ,且{}784 .0=≥αX P ,则α= 。 6. 已知随机向量(X ,Y )的联合密度函数 ?????≤≤≤≤=其他 , 010,20, 2 3 ),(2y x xy y x f ,则 E (Y )= 3/4 。 7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。设Z =X -Y +3,则Z ~ N (2, 13) 。 * 8. 设A ,B 为随机事件,且P (A)=,P (A -B)=,则=?)(B A P 。 9. 设随机变量X ~ N (1, 4),已知Φ=,Φ=,则{}=<2X P 。 10. 随机变量X 的概率密度函数1 22 1 )(-+-= x x e x f π ,则E (X )= 1 。 11. 已知随机向量(X ,Y )的联合密度函数 ?? ?≤≤≤≤=其他 , 010,20, ),(y x xy y x f ,则 E (X )= 4/3 。 12. 设A ,B 为随机事件,且P (A)=, P (AB)= P (B A ), 则P (B )= 。 13. 设随机变量),(~2σμN X ,其密度函数6 4 4261)(+-- = x x e x f π ,则μ= 2 。 14. 设随机变量X 的数学期望EX 和方差DX >0都存在,令DX EX X Y /)(-=,则D Y= 1 。 15. 随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X -2Y )= 44。 16. 三个人独立地向某一目标进行射击,已知各人能击中的概率分别为3 1 ,41,51,则目标能被击中 的概率是3/5 。 17. 设随机变量X ~N (2,2σ),且P {2 < X <4}=,则P {X < 0}= 。 ! 18. 设随机变量X 的概率分布为5.0)3(,3.0)2(,2.0)1(======X P X P X P ,则X 的期望

华东师范大学末试卷(概率论与数理统计)复习题

华东师范大学期末试卷 概率论与数理统计 一. 选择题(20分,每题2分) 1. 已知随机变量X ~N(0,1),则2X 服从的分布为: A .)1(χB 。)1(2 χC 。)1,0(N D 。)1,1(F 2. 讨论某器件的寿命,设:事件A={该器件的寿命为200小时},事件B={该器件的寿 命为300小时},则: A . B A =B 。B A ? C 。B A ? D 。Φ=AB 3.设A,B 都是事件,且1)(,0)(,1)(≠>=A P A P B A P ,则=)(A B P () A.1 B.0 C.0.5 D.0.2 4.设A,B 都是事件,且2 1 )(= A P ,A, B 互不相容,则=)(B A P () B.41 C.0 D. 5 1 5.设A,B 都是事件,且2 1 )(= A P , A, B 互不相容,则=)(B A P () B. 41 C.0 D. 5 1 B 。若A,B 互不相容,则它们相互独立 C .若A,B 相互独立,则它们互不相容 D .若6.0)()(==B P A P ,则它们互不相容 7.已知随机变量X ~)(λπ,且}3{}2{===X P X P ,则)(),(X D X E 的值分别为: A.3,3 B.9,9 C.3,9 D.9,3 8.总体X ~),(2 σμN ,μ未知,4321,,,X X X X 是来自总体的简单随机样本,下面估计量中的哪一个是μ的无偏估计量:、

A.)(31 )(21T 43211X X X X +++= C.)432(5 1 T 43213X X X X +++= A.)(4 1 T 43214X X X X +-+= 9.总体X ~),(2 σμN ,μ未知,54321,,,,X X X X X 是来自总体的简单随机样本,下列μ的无偏估计量哪一个是较为有效的估计量: A.54321141)(81)(41T X X X X X ++++= B.)(61 )(41T 543212X X X X X ++++= D.)2(6 1 T 543214X X X X X ++++= 10.总体X ~),(2 σμN ,μ未知,54321,,,,X X X X X 是来自总体的简单随机样本,记 ∑==n i i X n X 1 1, 21 21 )(11X X n S n i i --=∑=, 2 1 22 )(1X X n S n i i -=∑=, 21 23 )(1μ-=∑=n i i X n S ,21 24)(1μ-= ∑=n i i X n S ,则服从自由度为1-n 的t 分布的 1X t 2 --=n S μ C.n S 3X t μ-= D .n S 4 X t μ -= 11.如果存在常数)0(,≠a b a ,使1}{=+=b aX Y p ,且+∞<<)(0X D ,则Y X ,

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

《概率论与数理统计》在线作业

第一阶段在线作业 第1题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:对立不是独立。两个集合互补。第2题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:A发生,必然导致和事件发生。第3题

您的答案:B 题目分数:0.5 此题得分:0.5 批注:分布函数的取值最大为1,最小为0. 第4题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:密度函数在【-1,1】区间积分。第5题

您的答案:A 题目分数:0.5 此题得分:0.5 批注:A答案,包括了BC两种情况。 第6题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:古典概型,等可能概型,16种总共的投法。第7题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:几何概型,前两次没有命中,且第三次命中,三次相互独立,概率相乘。 第8题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:利用随机变量单调性函数的概率密度求解公式公式。中间有反函数求导数,加绝对值。第9题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用概率密度的性质,概率密度在相应范围上的积分值为1.验证四个区间。 第10题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用分布函数的性质,包括分布函数的值域[0,1]当自变量趋向无穷时,分布函数取值应该是1.排除答案。 第11题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用上分位点的定义。 第12题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用和事件的公式,还有概率小于等于1.P(AB)小于等于P(C)。第13题

概率论与数理统计题库及答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81,81,41,21 (C) 2 1,21,21,21- (D) 16 1, 8 1, 4 1, 2 1 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 4 1414121 (B) 161814121 (C) 16 3 16 14 12 1 (D) 8 18 34 12 1- 3. 设连续型随机变量X 的密度函数 ???<<=, ,0, 10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 21)21(==X P (C) 2 1)21(= < X P (D) 2 1)21(= > X P 4. 若 )(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤? = b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞+∞ -= x x f b d )() 5. 设 )(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ? b a x x f d )( (C) ) ()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

(完整版)概率论与数理统计课程标准

《概率论与数理统计》课程标准 一、课程概述 (一)课程定位 《概率论与数理统计》(Probability Theory and Mathematical Statistics),由概率论和数理统计两部分组成。它是研究随机现象并找出其统计规律的一门学科,是广泛应用于社会、经济、科学等各个领域的定量和定性分析的科学体系。从学科性质讲,它是一门基础性学科,它为建筑专业学生后继专业课程的学习提供方法论的指导。 (二)先修后续课程 《概率论与数理统计》的先修课程为《高等数学》、《线性代数》等,这些课程为本课程的学习奠定了理论基础。 《概率论与数理统计》的后续课程为《混凝土结构设计》、《地基与基础》等课程。通过该课程的学习可为这些课程中的模型建立等内容的知识学习奠定良好的基础,在教学中起到了承上启下的作用。 二.课程设计思路 本课程的基本设计思路是极力用较为通俗的语言阐释概率论的基本理论和数理统计思想方法;理论和方法相结合,以强调数理统计理论的应用价值。总之,强调理论与实际应用相结合的特点,力求在实际应用方面做些有益的探索,也为其它学科的

进一步学习打下一个良好的基础。 三、课程目标 《概率论与数理统计》是一门几乎遍及所有的科学技术领域以及工农业生产和国民经济各部门之中。通过学习该课程使学生掌握概率、统计的基本概念,熟悉数据处理、数据分析、数据推断的各种基本方法,并能用所掌握的方法具体解决工程实践中所遇到的各种问题。 (一)能力目标 力求在简洁的基础上使学生能从整体上了解和掌握该课程的内容体系,使学生能够在实际工作中、其它学科的学习中能灵活、自如地应用这些理论。 (二)知识目标 1.理解掌握概率论中的相关概念和公式定理; 2.学会应用概率论的知识解决一些基本的概率计算; 3.理解数理统计的基本思想和解决实际问题的方法。 (三)素质目标 1.培养学生乐于观察、分析、不断创新的精神; 2.培养具有较好的逻辑思维、较强的计划、组织和协调能力; 3.培养具有认真、细致严谨的职业能力。 四、课程内容 根据能力培养目标的要求,本课程的主要内容是随机事件、随机变量、随机向量、数字特征、极限定理。具体内容和学时分配见表4-1。 表4-1 课程内容和学时分配

概率论与数理统计习题解答

第一章随机事件及其概率 1. 写出下列随机试验的样本空间: (1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标; (3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度. 解所求的样本空间如下 (1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x2+y2<1} (3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示下列事件: (1)A发生,B和C不发生; (2)A与B都发生,而C不发生; (3)A、B、C都发生;

(4)A、B、C都不发生; (5)A、B、C不都发生; (6)A、B、C至少有一个发生; (7)A、B、C不多于一个发生; (8)A、B、C至少有两个发生. 解所求的事件表示如下 3.在某小学的学生中任选一名,若事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运动员,则 (1)事件AB表示什么? (2)在什么条件下ABC=C成立? ?是正确的? (3)在什么条件下关系式C B (4)在什么条件下A B =成立? 解所求的事件表示如下 (1)事件AB表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC=C成立. ?是正确的. (3)当全校运动员都是三年级学生时,关系式C B

(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=,P (A -B )=,试求()P AB 解 由于 A ?B = A – AB , P (A )= 所以 P (A ?B ) = P (A ?AB ) = P (A )??P (AB ) = , 所以 P (AB )=, 故 ()P AB = 1? = . 5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=1 4 ,P(AB) = P(CB) = 0, P(AC)= 1 8 求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,?=ABC AB P AB 故P(ABC) = 0 则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}. 解 由题意,基本事件总数为2a b A +,有利于A 的事件数为2 2a b A A +,有利于B 的事件数为111111 2a b b a a b A A A A A A +=, 则 2 2 11 2 22()()a b a b a b a b A A A A P A P B A A +++==

《概率论与数理统计》课程教学大纲

《概率论与数理统计》课程教学大纲 一、课程基本信息 课程编号:450006 课程名称:概率论与数理统计 课程类别:公共基础课(必修) 学时学分:理论48学时/3学分 适用专业:计算机、自动化、经管各专业 开课学期:第一学期 先修课程:高等数学 后续课程: 执笔人: 审核人: 制(修)订时间:2015.9 二、课程性质与任务 概率论与数理统计是研究随机现象客观规律性的数学学科,是高等学校理、工、管理类本科各专业的一门重要的基础理论课。通过本课程的教学,应使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机事件的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。 三、课程教学基本要求 本课程以课堂讲授为主,致力于讲清楚基本的概率统计思想,使学生掌握基本的概率、统计计算方法。注意培养基本运算能力、分析问题和解决实际问题的能力。讲授中运用实例来说明本课程应用的广泛性和重要性。每节课布置适量的习题以巩固所学知识,使学生能够运用概率统计思想和方法解决一些实际问题。 四、课程教学内容及各教学环节要求 (一)概率论的基本概念

1、教学目的 理解随机现象、样本空间、随机事件、概率等概念,掌握事件的关系与运算,掌握古典概犁及其计算、条件概率的计算、全概率公式和贝叶斯公式的应用。 2、教学重点与难点 (1)教学重点 ① 概率、条件概率与独立性的概念; ② 加法公式;乘法公式;全概率公式;贝叶斯公式。 (2)教学难点 ① 古典概型的有关计算;② 全概率公式的应用; ③ 贝叶斯公式的应用。 3、教学方法 采用传统教学方式,以课堂讲授为主,课堂讨论、多媒体演示、课下辅导等为辅的教学方法。加强互动教学,学生对课程的某一学术问题通过检索资料、实际调查来提高自学能力和实践应用能力。 4、教学要求 (1)理解随机试验、样本空间、随机事件等基本概念;熟练掌握事件的关系及运算 (2)理解频率和概率定义;熟练掌握概率的基本性质 (3)理解等可能概型的定义性质;,会计算等可能概型的概率 (4)理解条件概率的定义;熟练掌握加法公式、乘法公式、全概率公式和贝叶斯公式(5)理解事件独立性概念,掌握应用独立性进行概率计算 (二)随机变量及其分布 1、教学目的 了解随机变量的概念;理解离散型随机变量的分布律和连续型随机变量的概率密度的概念及性质,会利用性质确定分布律和概率密度;理解分布函数的概念及性质,会利用此概念和性质确定分布函数,会利用概率分布计算有关事件的概率;掌握正态分布、均匀分布、指数分布、0-1分布、二项分布、泊松分布,会求简单的随机变量函数的分布 2、教学重点与难点 (1)教学重点 ① 随机变量及其概率分布的概念; ② 离散型随机变量分布律的求法;

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 121 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2 Y X =的分布列. 五、(10分)设随机变量X 具有密度函数|| 1()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1 ()(1) ,1,2,,01k P X k p p k p -==-=<< , 的样本,试求未知参数p 的极大似然估计.

概率论与数理统计习题答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

【解】令1,,0,i i X ?? ?若第个产品是合格品其他情形. 而至少要生产n 件,则i =1,2,…,n ,且 X 1,X 2,…,X n 独立同分布,p =P {X i =1}=. 现要求n ,使得 1 {0.760.84}0.9.n i i X P n =≤ ≤≥∑ 即 0.80.9n i X n P -≤≤≥∑ 由中心极限定理得 0.9,Φ-Φ≥ 整理得0.95,Φ≥?? 查表 1.64,10≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能 才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,

考研概率论与数理统计题库-题目

概率论与数理统计 第一章 概率论的基本概念 1. 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(以百分制记分) (2)生产产品直到得到10件正品,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生 (2)A ,B 都发生,而C 不发生 (3)A ,B ,C 中至少有一个发生 (4)A ,B ,C 都发生 (5)A ,B ,C 都不发生 (6)A ,B ,C 中不多于一个发生 (7)A ,B ,C 中不多于二个发生 (8)A ,B ,C 中至少有二个发生。 3. 设A ,B 是两事件且P (A )=0.6,P (B )=0.7. 问(1)在什么条件下P (AB )取到最大值,最 大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 4. 设A ,B ,C 是三事件,且0)()(,4/1)()()(=====BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 5. 在电话号码薄中任取一个电话号码,求后面四个数全不相同的概率。(设后面4个数 中的每一个数都是等可能性地取自0,1,2……9)

6. 在房间里有10人。分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的 号码。 (1)求最小的号码为5的概率。 (2)求最大的号码为5的概率。 7. 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。在搬运中所标笺 脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少? 8. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1)求恰有90个次品的概率。 (2)至少有2个次品的概率。 9. 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少? 10. 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概 率各为多少? 11. 已知)|(,5.0)(,4.0)(,3.0)(B A B P B A P B P A P ?===求。 12. )(,2 1 )|(,31)|(,41)(B A P B A P A B P A P ?=== 求。 13. 设有甲、乙二袋,甲袋中装有n 只白球m 只红球,乙袋中装有N 只白球M 只红球, 今从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,问取到(即从乙袋中取到)白球的概率是多少? (2) 第一只盒子装有5只红球,4只白球;第二只盒子装有4只红球,5只白球。先从第一盒子中任取2只球放入第二盒中去,然后从第二盒子中任取一只球,求取到白球的概率。 14. 已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。今从男女人数相等的人 群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 15. 一学生接连参加同一课程的两次考试。第一次及格的概率为P ,若第一次及格则第 二次及格的概率也为P ;若第一次不及格则第二次及格的概率为2/P

概率论与数理统计学习地总结

概率论与数理统计 学习报告 学院 学号: 姓名:

概率论与数理统计学习报告 通过短短一学期的学习,虽然学习、研究地并不深入,但该课程的每一处内容都有不同的奇妙吸引着我,让我对它在生活中饰演的角色充满遐想;它将我带入了一个由随机变量为桥梁,通过表面偶然性找出其内在规律性,从而与其它的数学分支建立联系的世界,让我对这种进行大量的随机重复实验,通过分析研究得出统计规律性的过程产生了极大地兴趣。我很喜欢这门课程,但也不得不说课后在它上面花的时间并不多,因此学得还不深入,但它真的深深地吸引了我,我一定会找时间进一步深入地学习它。 先简单地介绍一下概率论与数理统计这门学科。 概率论是基于给出随机现象的数学模型,并用数学语言来描述它们,然后研究其基本规律,透过表面的偶然性,找出其内在的规律性,建立随机现象与数学其他分支的桥梁,使得人们可以利用已成熟的数学工具和方法来研究随机现象,进而也为其他数学分支和其他新兴学科提供了解决问题的新思路和新方法。数理统计是以概率论为基础,基于有效的观测、收集、整理、分析带有随机性的数据来研究随机现象,进而对所观察的问题作出推断和预测,直至为采取一定的决策和行动提供依据和建议。 概率论与数理统计是研究随机现象及其规律性的一门数学学科。研究随机现象的规律性有其独特的思想方法,它不是寻求出现每一现象的一切物理因素,不能用研究确定性现象的方法研究随机现象,而是承认在所研究的问题中存在一些人们不能认识或者根本不知道的

随机因素作用下,发生随机现象。这样,人们既可以通过试验来观察随机现象,揭示其规律性,作出决策,也可根据实际问题的具体情况找出随机现象的规律,作出决策。 至今,概率论与数理统计的理论与方法已经广泛应用于自然科学、社会科学以及人文科学等各个领域中,并随着计算机的普及,概率论与数理统计已成为处理信息、制定决策的重要理论和方法。它们不仅是许多新兴学科,如信息论、控制论、排队论、可靠性论以及人工智能的数学理论基础,而且与其他领域的新兴学科的相互交叉而产生了许多新的分支和边缘学科,如生物统计、统计物理、数理金融、神经网络统计分析、统计计算等。 概率论应用随机变量与随机变量的概率分布、数字特征及特征函数为数学工具对随机现象进行描述、分析与研究,其前提条件是假设随机变量的概率分布是已知的;而数理统计中作为研究对象的随机变量的概率分布是完全未知的,或者分布类型已知,但其中的某些参数或某些数字特征是未知的。概率论研究问题的方法是从假设、命题、已知的随机现象的事实出发,按一定的逻辑推理得到结论,在方法上是演绎式的。而统计学的方法是归纳式的,从所研究地对象的全体中随机抽取一部分进行试验或观测,以获得试验数据,依据试验数据所获取的信息,对整体进行推断,是归纳而得到结论的。因此掌握它特有的学习方法是很重要的。 在学习的过程中,不论是老师提出的一些希望我们课后讨论的问题还是自己在做作业看书过程中遇到的一些问题都引发了我的一些

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

概率论与数理统计课本_百度文库

第二章随机变量及其分布第一节随机变量及其分布函数 一、随机变量 随机试验的结果是事件,就“事件”这一概念而言,它是定性的。要定量地研究随机现象,事件的数量化是一个基本前提。很自然的想法是,既然试验的所有可能的结果是知道的,我们就可以对每一个结果赋予一个相应的值,在结果(本事件)数值之间建立起一定的对应关系,从而对一个随机试验进行定量的描述。 例2-1 将一枚硬币掷一次,观察出现正面H、反面T的情况。这一试验有两个结果:“出现H”或“出现T”。为了便于研究,我们将每一个结果用一个实数来代表。比如,用数“1”代表“出现H”,用数“0”代表“出现T”。这样,当我们讨论试验结果时,就可以简单地说成结果是1或0。建立这种数量化的关系,实际上就相当于引入一个变量X,对于试验的两个结果,将X的值分别规定为1或0。如果与样本空间 { } {H,T}联系起来,那么,对于样本空间的不同元素,变量X可以取不同的值。因此,X是定义在样本空间上的函数,具体地说是 1,当 H X X( ) 0,当 T 由于试验结果的出现是随机的,因而X(ω)的取值也是随机的,为此我们称 X( )X(ω)为随机变量。 例2-2 在一批灯泡中任意取一只,测试它的寿命。这一试验的结果(寿命)本身就是用数值描述的。我们以X记灯泡的寿命,它的取值由试验的结果所确定,随着试验结果的不同而取不同的值,X是定义在样本空间 {t|t 0}上的函数 X X(t) t,t 因此X也是一个随机变量。一般地有 定义2-1 设 为一个随机试验的样本空间,如果对于 中的每一个元素 ,都有一个实数X( )与之相对应,则称X为随机变量。 一旦定义了随机变量X后,就可以用它来描述事件。通常,对于任意实数集合L,X在 L上的取值,记为{X L},它表示事件{ |X( ) L},即 。 {X L} { |X( ) L} 例2-3 将一枚硬币掷三次,观察出现正、反面的情况。设X为“正面出现”的次数,则X是一个随机变量。显然,X的取值为0,1,2,3。X的取值与样本点之间的对应关系如表2-1所示。 表2-1 表2-1

概率论与数理统计试卷及答案(1)

模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = , P(B) = , P(B|A ) = , 则P(A|B ) = P( A ∪B) = 2、设事件A 与B 独立,A 与B 都不发生的概率为1 9 ,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:,0 ()1/4, 020,2 x Ae x x x x ??为未知参数,12,, ,n X X X 为其样本,1 1n i i X X n ==∑为样本均值, 则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置 信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案
第 1 章 概率论的基本概念
§1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢 3 次,观察正面 H﹑反面 T 出现的情形. 样本空间是:S=
(2) 一枚硬币连丢 3 次,观察出现正面的次数. 样本空间是:S= 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于 2,则 B= (2) 一枚硬币连丢 2 次, A:第一次出现正面,则 A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= ;b5E2RGbCAP ;p1EanqFDPw .DXDiTa9E3d .
§1 .2 随机事件的运算
1. 设 A、B、C 为三事件,用 A、B、C 的运算关系表示下列各事件: (1)A、B、C 都不发生表示为: .(2)A 与 B 都发生,而 C 不发生表示为: .RTCrpUDGiT (3)A 与 B 都不发生,而 C 发生表示为: .(4)A、B、C 中最多二个发生表示为: .5PCzVD7HxA (5)A、B、C 中至少二个发生表示为: .(6)A、B、C 中不多于一个发生表示为: .jLBHrnAILg 2. 设 S ? {x : 0 ? x ? 5}, A ? {x : 1 ? x ? 3}, B ? {x : 2 ?? 4}:则 (1) A ? B ? (4) A ? B = , (2) AB ? , (5) A B = , (3) A B ? 。 ,
xHAQX74J0X
§1 .3 概率的定义和性质
1. 已知 P( A ? B) ? 0.8, P( A) ? 0.5, P( B) ? 0.6 ,则 (1) P( AB) ? , (2)( P( A B) )= 则 P( AB) = , (3) P( A ? B) = . .LDAYtRyKfE
2. 已知 P( A) ? 0.7, P( AB) ? 0.3,
§1 .4 古典概型
1. 某班有 30 个同学,其中 8 个女同学, 随机地选 10 个,求:(1)正好有 2 个女同学的概率, (2)最多有 2 个女同学的概率,(3) 至少有 2 个女同学的概率. 2. 将 3 个不同的球随机地投入到 4 个盒子中,求有三个盒子各一球的概率.
§1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为 7, 则其中一颗为 1 的概率是 2. 已知 P( A) ? 1 / 4, P( B | A) ? 1 / 3, P( A | B) ? 1 / 2, 则 P( A ? B) ? 。 。
§1 .6 全概率公式
1.
有 10 个签,其中 2 个“中” ,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人 抽“中‘的概率相同。Zzz6ZB2Ltk 1 / 19

相关主题
文本预览
相关文档 最新文档