当前位置:文档之家› 讲稿连锁遗传分析与染色体作图

讲稿连锁遗传分析与染色体作图

讲稿连锁遗传分析与染色体作图
讲稿连锁遗传分析与染色体作图

讲稿连锁遗传分析与染色

体作图

Ting Bao was revised on January 6, 20021

第五章连锁遗传分析

性染色体与性别决定

位于一对同源染色体上的非等位基因间的遗传关系以及性染色体上基因的遗传

一、性染色体的发现

1性染色体(sex chromosome)

成对染色体中直接与性别决定有关的一个或一对染色体。

成对性染色体往往是异型的:形态、结构、大小、功能上都有所不同。

2常染色体(autosome, A)

同源染色体是同型的。

例:果蝇(Drosophila melangaster, 2n=8)染色体组成与性染色体。

[性染色体与性别决定.swf]

二、性染色体决定性别的几种类型

1 雄杂合型(XY型):

两种性染色体分别为X、Y;

雄性个体的性染色体组成为XY(异配子性别),产生两种类型的配子,分别含X和Y染色体;

雌性个体则为XX(同配子性别),产生一种配子含X染色体。

性比一般是1:1。

2XO型:

与XY型相似,但只有一条性染色体X;

雄性个体只有一条X染色体(XO,不成对),它产生含X染色体和不含性染色体两种类型的配子;

雌性个体性染色体为XX。

如:蝗虫、蟋蟀。

3 雌杂合型(ZW型):

两种性染色体分别为Z、W染色体;

雌性个体性染色体组成为ZW(异配子性别),产生两种类型的配子,分别含Z和W染色体;

雄性个体则为ZZ(同配子性别),产生一种配子含Z染色体。

性比一般是1:1。

三、性别决定畸变

1 果蝇性别决定畸变

果蝇的性别决定与Y染色体有无与数目无关,而是由X染色体与常染色体的组成比例决定。其中:

X:A=1→雌性 X:A=→雄性

X:A大于1的个体将发育成超雌性,小于时发育成超雄性,介于两者则为间性(inter sex);并伴随着生活力、育性下降。

2 人类性别决定畸变.

人类也存在由于性染色体组成异常而产生的性别畸变现象,对这些畸变现象的研究表明:与果蝇不同,人类的性别主要取决于是否存在Y染色体。

几种常见的人类性别畸变与症状表现:

XO型(2n=45): 表现为女性,但出现唐纳氏(Turner’s)综合症;性别为女性,身材矮小(120-140cm),蹼颈、肘外翻和幼稚型生殖器官;部分表现为智力低下;卵巢发育不全、无生育能力。

XXY型(2n=47): 表现为男性,但出现克氏(Klinefelter’s)综合症;性别为男性,身材高大,第二性征类似女性,一般智力低下,睾丸发育不全、无生育能力。

XYY型(2n=47):性别为男性,智力稍差(也有智力高于一般人的)、较粗野、进攻性强,有生育能力。

四、其它类型的性别决定

1 染色体倍数性决定

蜜蜂等膜翅目的昆虫:性别取决于染色体的倍数性,并受到环境影响。

雄蜂为单倍体,孤雌生殖产生,形成配子时不进行减数分裂;

雌蜂(蜂王)为二倍体,受精卵发育而来,并在幼虫期得到足够的蜂王浆(5天);如果幼虫期仅得到2-3天蜂王浆则发育为工蜂。

2 植物性别决定

对于植物而言,存在性染色体决定个体性别(如雌雄异株的蛇麻XY型性别决定)的类型;

也可能是由少数几对等位基因控制的个体性别。

例如:

正常情况下玉米为雌雄同株异花。

Ba基因突变会导致雌花序不能正常发育形成;

Ts基因突变会导致雄花序不能正常发育(发育成顶端雌花序)。

3环境对性别的影响与决定

(1)环境对性别决定的作用主要表现在遗传作用的基础上的修饰性作用,例如:

蜂王(♀)与工蜂形成的差异;

牝鸡司晨现象;

雌雄同株异花植物的花芽分化;等。

(2)少数情况下,环境也会超越遗传作用而决定性别:

有些蛙类性别决定是XY型:蝌蚪在20℃以下环境发育时性别由其性染色体决定;但在30℃条件下XX和XY个体均会发育成雄性个体。

恐龙的灭绝与此有关吗

性连锁遗传(sex linkage)

性连锁:也称为伴性遗传 (sex-linked inheritance),指位于性染色体上的基因所控制的某些性状总是伴随性别而遗传的现象;特指X或Z染色体上基因的遗传。

一、摩尔根关于果蝇伴性遗传的研究

1910年摩尔根等在研究果蝇性状遗传时最先发现性连锁现象,研究结果同时还最终证明了基因位于染色体上。

果蝇的眼色不仅受pr+/pr基因控制(红眼对紫眼显性);还受另一对基因W/w控制(红眼对白眼为显性)。

果蝇眼色基因W/w的遗传Array果蝇眼色:红眼(W)对白眼(w)为显性;

P:红眼(♀) ×白眼(♂)

F1:红眼(♀♂)

F2:红眼(♀/♂):白眼(♂)

红:白=3:1,♀:♂=1:1,隐性的白眼性状只在雄蝇中出现

为了证明F1中雌果蝇从父本得到的是带w基因的X染色体(Xw);摩尔根等进行了下述测交试验:

以F1中的雌性果蝇为母本;表型为白眼的雄果蝇为父本。

测交结果(Ft表现):红眼(♀)(X W X w)

红眼(♂)(X W Y)

白眼(♀)(X w X w)

白眼(♂)(X w Y)

交叉遗传(criss-cross inheritance):母亲把性状传给儿子,父亲把性状传给女儿。

二、人类的伴性遗传

携带者(Carrier)

半合子(hemizygote)

第一性比男胎儿:女胎儿=120

100

第二性比男婴:女婴=(103~105) 100

第三性比男青年:女青年= 1

1(一夫一妻制)

老翁: 老妪= 62:100(男性仅有一条X染色体的缘故)

(85岁)

1 伴X显性遗传:.Vitamin D resistant rickets

(1)患者女性多于男性;

(2)每代都有患者;

(3)男性患者的女儿都为患者;

(4)女性患者的子女患病的机会为1/2。

2 伴X隐性遗传:

①人群中男性患者远较女性患者多,系谱中往往只有男性患者;

②双亲无病时,儿子可能发病,女儿则不会发病;儿子如果发病,母亲肯定是一个携带者,女儿也有1/2的可能性为携带者;

③男性患者的兄弟、外祖父、舅父、姨表兄弟、外甥、外孙等也有可能是患者;

④如果女性是一患者,其父亲一定也是患者,母亲一定是携带者。

3 Y连锁遗传

例如:毛耳缘遗传

[姓氏基因]:

中国人的姓氏与遗传基因之间有着密切的关系,姓氏的传递方式与代表人类男性的Y染色体的遗传方式相同,姓氏以其特殊的血缘文化,记录了中国人五千年父系社会的进化史。中国人姓氏几乎都以父传子的垂直方式世代相传,故姓氏形成了Y染色体上的一个特殊遗传位点,每个姓氏相当于这个位点上的一种等位基因。

三、鸡的伴性遗传

ZW性别决定型的Z染色体性连锁遗传。与X染色体上基因的遗传非常相似;只是在与性别关系上是相反的。例:鸡的芦花条纹遗传。

四、从性遗传

从性遗传(sex-controlled inheritance),也称为性影响遗传(sex-influenced inheritance):控制性状的基因位于常染色体上,但其性状表现受个体性别影响的现象。

从性遗传的实质是常染色体上基因所控制的性状受到性染色体遗传背景和生理环境(内分泌等因素)的影响。

人的秃头性状也表现为类似的遗传现象。

剂量补偿效应(dosage compensation effect)

一、Barr小体

1949年,Barr等人发现:sex-chromatin body

二、剂量补偿效应

1 剂量补偿效应

指在XY性别决定机制的生物中,使性连锁基因在两种性别中有相等或近乎相等的有效剂量的遗传效应。

也就是说,在雌性和雄性细胞里,由X染色体编码产生的酶或其他蛋白质产物在数量上相等或近乎相等。

2 两种情况:

(1)X染色体的转录速度不同

(2)雌性细胞中有一条染色体是失活的。(哺乳类和人类)。

三、Lyon假说(X染色体失活假说)

英国遗传学家Mary Lyon 在1961年首先提出了X染色体失活假说,即Lyon假说,其要点是:

①雌性哺乳动物细胞内只有一条X染色体有活性,另一条失活并固缩,后者在间期细胞表现为性染色质;

②失活发生在胚胎的早期;

③失活是随机的,即失活的X染色体既可来自父亲也可来自母亲,但一个细胞某条X-旦失活,由该细胞繁衍而来的子细胞都具有同一条失活的X染色体。后知,X染色体失活发生在囊胚期,约在妊娠16天左右。

四、X染色体失活的分子机制

现在知道,失活的一条XX染色体上的基因并非全都失活,如已知Xg血型基因、寻常牛皮癣基因等是不失活的。

X失活中心

五、应用:当怀疑有X染色体异常时,可以通过用性染色质检查作出初步诊断。例如,X染色质在XO时为0,正常女性为1,XXY患者为1,XXX患者为2。

连锁基因的交换和重组(linkage gene)

孟德尔定律的例外

位于一对同源染色体上的非等位基因间的遗传关系

一、连锁现象的发现

根据遗传的染色体学说与独立分配规律:

位于非同源染色体上的非等位基因遗传时独立分配;

如果有一些基因位于同一染色体上,必然会出现非独立分配的现象,否则各种性状的数目(基因对数)就不能超过细胞内染色体对数。

在1906年,科学家贝特生等在研究香豌豆的两对相对性状时,发现同一亲本的两种性状,在杂交后代中,比较多地连在一起出现,并不按照孟德尔自由组合规律的比例发生分离,这使他们感到非常困惑,甚至对孟德尔的遗传规律产生怀疑。

美国的遗传学家摩尔根(T. H. Morgan,1866-1945) 和他的同事(1910)用果蝇做实验材料,进行了大量的遗传学研究,终于解开了人们心中的疑团,这不仅证实了孟德尔的遗传规律的正确性,并且丰富发展了关于两对(或两对以上)基因的遗传理论,提出了遗传的第三个规律----基因的连锁互换规律,并创立基因论(theory of the gene)。

摩尔根等的果蝇(Drosophila melanogaster)遗传试验

雄果蝇的完全连锁

眼色与翅长的连锁遗传:

眼色:灰身(b+)对黑身(b)为显性;

翅长:长翅(vg+)对残翅(vg)为显性。

结果:1:1

雌果蝇的不完全连锁

F1形成四种类型的配子;:::

但比例显然不符合1:1:1:1,且亲本类型配子明显多于重组型配子;

两种亲本型配子数大致相等,两种重组型配子数也大致相等。

连锁遗传现象的解释

连锁遗传规律:连锁遗传的相对性状是由位于同一对染色体上的非等位基因间控制,具有连锁关系,在形成配子时倾向于连在一起传递;交换型配子是由于非姊妹染色单体间交换形成的。

控制果蝇眼色和翅长的两对非等位基因位于同一同源染色体上。

二、完全连锁和不完全连锁

1 完全连锁 (complete linkage):如果连锁基因的杂种F1(双杂合体)只产生两种亲本类型的配子,而不产生非亲本类型的配子,就称为完全连锁。

2 不完全连锁 (incomplete linkage):指连锁基因的杂种F1不仅产生

亲本类型的配子,还会产生重组型配子。

3 交换(crossover)与不完全连锁的形成

重组合配子的产生是由于:减数分裂前期 I 同源染色体的非姊妹染色单体间发生了节段互换。(基因论的核心内容)

(1)同一染色体上的各个非等位基因在染色体上各有一定的位置,呈线性排列;

(2)染色体在间期进行复制后,每条染色体含两条姊妹染色单体,基因也随之复制;

(3)同源染色体联会、非姊妹染色单体节段互换,导致基因交换,产生交换型染色单体;

(4)发生交换的性母细胞中四种染色单体分配到四个子细胞中,发育成四种配子(两种亲本型、两种重组合型/交换型)。

(5)相邻两基因间发生断裂与交换的机会与基因间距离有关:基因间距离越大,断裂和交换的机会也越大。

(6)重组型配子的比例

尽管在发生交换的性母细胞所产生的配子中,亲本型和重组型配子各占一半,但是双杂合体所产生的四种配子的比例并不相等,因为并不是所有的性母细胞都发生两对基因间的交换。

重组型配子比例是发生交换的性母细胞比例的一半,并且两种重组型配子的比例相等,两种亲本型配子的比例相等。

连锁交换定律

连锁:处在同一染色体上的两个或两个以上基因遗传时,联合在一起的频率大于重新组合的频率。

交换:重组类型的产生是由于配子形成过程中,同源染色体的非姐妹染色单间发生了局部交换的结果。

连锁群(linkage group):存在于同一染色体上的基因,组成一个连锁群。

连锁群的数目:一种生物连锁群的数目与染色体的对数是一致的。即有n 对染色体就有n个连锁群,如水稻有12对染色体,就有12个连锁群。人类: 24个(22 autosome+X+Y)

Linkage and cross-over

Linkage is the tendency for alleles of different genes to be passed together from one generation to the next.

Only genes situated on the same chromosome can show linkage. Genes on non-homologous chromosomes are, by definition, unlinked and always show 50% recombination.

Parental gametes carry the same set of alleles as were inherited together from one parent. Recombinant gametes carry alleles derived from both parents.

The degree of linkage between two genes depends on the frequency of cross-overs that occur between them during meiosis. The closer they are together the less likely a cross-over will occur between them.

Groups of genes that are linked are called linkage groups.

遗传的第三定律

一、交换的细胞学证据

二、遗传的第三定律

重组频率(recombiantion frequency, RF)的计算:RF=重组型数目/总数目重组频率,又称交换值(cross-over value)或,重组值,是指重组型配子占总配子的百分率。即:

重组频率(玉米为例)。

多线交换与最大交换值

双交换(Double crossingover)fig 5-15 双交换分析,

双交换的特点

(1)双交换概率显着低于单交换的概率。如果两次同时发生的交换互不干扰,各自独立,则双交换发生的概率是两个单交换概率的乘积。

(2)3个连锁基因发生双交换的结果,旁侧基因无重组。

最大交换值

三大定律的关系

分离律是自由组合定律和连锁定律的基础,而后两者又是生物体遗传的性状发生变异的主流。

自由组合的基因是由不同源的染色体所传递,重组类型是由染色体间重组(interchromosomal recombination)造成。

连锁交换则是由同源染色体所传递,是染色体内重组(intrachromosomal recombination)产生。

自由组合受到生物染色体对数的限制,连锁交换则受到染色体本身长度的限制。

染色体上的突变越多,由交换而产生的重组类型的数量也越大。自由组合是有限的,连锁交换限度较小。

染色体作图

1 基因直线排列原理和相关概念

基因定位(gene mapping/ localization / location):根据重组值确定不同基因在染色体上的相对位置和排列顺序的过程。

广义的基因定位有三个层次:染色体定位(单体、缺体、三体定位法);染色体臂定位(端体分析法);连锁分析(linkage analysis)。染色体图(chromosome map):基因连锁图(linkage map)或遗传图(genetic map)。根据基因之间的交换值(或重组值),确定连锁基因在染色体上的相对位置而绘制的简单线性示意图。

图距:centimorgan,cM,1cM=1%重组值(map unit)去掉%的数值。

交换值与遗传距离

1.非姊妹染色单体间交换数目及位置是随机的;

2.两个连锁基因间交换值的变化范围是[0,50%],其变化反映基因间的连锁强度、基因间的相对距离;两基因间的距离越远,基因间的连锁强度越小,交换值就越大;反之,基因间的距离越近,基因间的连锁强度越大,交换值就越小。

3.通常用交换值/重组率来度量基因间的相对距离,也称为遗传距离(genetic distance)。

通常以1%的重组率作为一个遗传距离单位/遗传单位。 centiMorgan (cM)

两对基因间的排列次序

根据两个基因位点间的交换值能够确定两个基因间的相对距离,但并不能确定基因间的排列次序。

一次基因定位工作常涉及三对或三对以上基因位置及相互关系。

例:玉米糊粉层有色C/无色c基因、籽粒饱满Sh/凹陷sh基因均位于第九染色体上;且C-Sh基因间的交换值为%。

根据上述信息可知: C-Sh间遗传距离为个遗传单位;

但不能确定它们在染色体上的排列次序,因而有两种可能的排列方向,如下图所示:

2 基因定位(连锁分析)的主要方法:

(1)两点测交(two-point testcross)

通过三次测验,获得三对基因两两间交换值、估计其遗传距离;每次测验两对基因间交换值;根据三个遗传距离推断三对基因间的排列次序。

例:三个连锁基因:a, b, c

①通过三次亲本间两两杂交,杂种F1与双隐性亲本测交,考察测交子代的类型与比例。

②计算三对基因两两间的交换值,估计基因间的遗传距离。

a-b:X,b-c:Y,

a-c:Z(=X+Y or X-Y)

③根据基因间的遗传距离确定基因间的排列次序并作连锁遗传图谱。C-Sh: Wx-Sh: 20 Wx-C: (两种可能排列)

两点测交的局限性

①工作量大,需要作三次杂交,三次测交;

②不能排除双交换的影响,准确性不够高。当两基因位点间超过五个遗传

单位时,两点测验的准确性就不够高。

(2)三点测交(three-point testcross)

一次测验就考虑三对基因的差异,从而通过一次测验获得三对基因间的距

离并确定其排列次序。将3个基因包括在同一次交配中

例如,用3个基因的杂合体abc/+++与3个基因的隐性纯合体做测交。

一次3点测交=3次2点测交

三点测交的意义:

比两点测交方便、准确,1次三点测交相当于3次两点测交;

发现双交换;

证实了基因在染色体上直线排列。

三点测交试验举例(果蝇)

先只考虑两个基因对间的重组,而把第三个基因对暂时忘掉。

三点测交结果总结

计算基因间的交换值,绘制连锁遗传图。交换频率ec-cv: %, cv-ct: %, ec-ct: %,双交换:%

ec-cv-ct

三点测交基因顺序的简单确定

在任何三点测交试验中,在测交后代的8种可能的表型中,个体数最少

(甚至完全没有)的两种表型是双交换的产物。根据这一点,不必计算重组

值,一眼就能正确无误地判断这三个基因的顺序。

用两种双交换型配子与两种亲本型配子比较:双交换配子与亲本型配子中不同的基因(改变了位置的基因)一定位于中间。

双交换与校正

由于双交换实际上在两个区域均发生交换,所以在估算每个区域交换值

时,都应加上双交换值,才能够正确地反映实际发生的交换频率。用双倍双交换值来校正。

例:交换频率ec-cv: %, cv-ct: %,

ec-ct: % 双交换:%

ec-cv: %+2*%

3 干涉和并发

1)理论双交换值

连锁与互换的机理表明:染色体上除着丝粒外,任何一点均有可能发生非姊妹染色单体间的交换。但是相邻两个交换是否会发生相互影响呢如果相邻两交换间互不影响,即交换独立发生,那么根据乘法定理,双交换发生的理论频率(理论双交换值)应该是两个区域交换频率(交换值)的乘积。

2)干涉(interference):实际双交换值低于理论双交换值,这是由于两个基因间一旦发生一次交换后就会影响另一个区域交换的发生,使双交换的频率下降。

这种现象称为干涉(interference),或干扰:一个交换发生后,它往往会影响其邻近交换的发生。其结果是使实际双交换值不等于理论双交换值。

3)并发系数(coefficient of coincidence,C)

为了度量两次交换间相互影响的程度,提出了并发系数的概念。用以衡量两次交换间相互影响的性质和程度。

并发系数C=观察到的双交换率/两个单交换率的乘积

4)大图距的准确计算-作图函数的推导和应用

大于50个遗传单位的遗传距离说明什么

人类基因组的染色体作图

人类基因组包括细胞核内的基因组及细胞质内线粒体基因组,它们大致结构如图。

一、人类基因定位方法

基因定位

基因组是生物的生殖细胞中所含全部基因的总和。人类基因组具有极其复杂的结构,其编码蛋白质的结构基因大约有100,000个,每个单倍体DNA含有×109 bp,分布在24条常染色体和X,Y性染色体上。此外,还含有大量的非编码的重复DNA序列。

基因定位(gene location)是用一定的方法将基因确定到染色体的实际位置。这是现代遗传学的重要研究内容之一。将不同的基因确定于染色体的具体位置之后,即可绘制出基因图(gene map)。

有两种基本方式制作人类染色体的基因图:即物理作图和遗传作图。

物理作图(physical mapping)是从DNA分子水平制作基因图。它表示不同基因(包括遗传标记)在染色体上的实际距离,是以碱基对为衡量标准,所以物理图谱(physical map)最终是以精确的DNA碱基对顺序来表达,从而说明基因的DNA分子结构。

从细胞遗传学水平,用染色体显带等技术在光学显微镜下观察,将基因定位不同染色体的具体区带,又称区域定位(regiona assignmer),而把基因只定位到某条染色体上称为染色体定位(chromosomal assignment)。这个水平上的基因图谱又称细胞遗传图(cytogenetical map)。分辨率可达5Mb至

1Mb。

遗传作图(genetic mapping)是以研究家族的减数分裂,以了解两个基因分离趋势为基础来绘制基因座位间的距离,它表明基因之间连锁关系和相对距离,并以重组率来计算和表示,以厘摩(cM)为单位。两个遗传座位间1%的重组率即为1厘摩。人类精细的遗传图水平可达1cM即100kb(1Mb)左右。

方法

1家系分析法

家系的连锁分析首先要从群体中选择适合的家系,要求被挑选家系中双亲之一或两个为双杂合体,并且注意双杂合体家系要随机抽样,避免产生偏倚。同时必须剔除下列几种家系:(1)双亲性状不能在子代中得到分离的,如GgTt╳GGTT;(2)家庭中仅有一个子代的;(3)亲本之一的基因型不明或死亡的。在三代系谱中较容易确定子代是否发生基因重组,可直接计算重组值。

2 基因剂量效应法

3 DNA介导的基因定位

当前较常用的基因定位有:荧光原位杂交、放射杂交体、脉冲场电泳、染色体步移、定位克隆等。

4 体细胞杂交定位法

1968年 Donahue 发现染色体着丝粒区异常与Duffy血型( Fy )相关

体细胞是生物体除生殖细胞外的所有细胞。

细胞杂交又称细胞融合(cell fusion),是将来源不同的两种细胞融合成一个新细胞。

大多数体细胞杂交是用人的细胞与小鼠、大鼠或仓鼠的体细胞进行杂交。这种新产生的融合细胞称为杂种细胞(hybrid cell),含有双亲不同的染色体。

杂种细胞有一个重要的特点是在其繁殖传代过程中出现保留啮齿类一方染色体而人类染色体则逐渐丢失,最后只剩一条或几条(一般情况下)。这种仅保留少数甚至一条人染色体的杂种细胞正是进行基因连锁分析和基因定位的有用材料。

由于人和鼠类细胞都有各自不同的生化和免疫学特征,Miller等运用体细胞杂交并结合杂种细胞的特征,证明杂种细胞的存活需要胸苷激酶(TK)。但凡含有人第17号染色体的杂种细胞都因有TK活性而存活,反之则死亡。从而推断TK基因定位于第17号染色体上(表)。这是首例用细胞杂交法进行的基因定位。由此可见,研究基因定位时,由于有杂种细胞这一工具,只需要集中精力于某一条染色体上,就可找到某一基因座位。

基因定位的应用

基因定位和基因图对遗传学、医学和人类及生物进化的研究都有十分重要的意义。它可提供遗传病和其他疾病的诊断的遗传信息,可以指导对这些疾病的致病基因的克隆和对病症病因的分析与认识,这些又取决于遗传图和物理图的相互依赖关系。通过多态位点标记进行连锁分析获得物理图的位置有助于遗传作图,同时通过连锁分析(部分有减数分裂的交换)又能指导物理作图,使基因定位更为精细。

1.连锁分析检测基因突变指导遗传病的诊断

2.连锁分析进行致病基因的鉴别与定位

3.促进对癌基因和瘤抑制基因的定位与克隆

4.位置克隆与基因定位

二、人类基因组计划

1990年美国正式开始实施《人类基因组作图及测序计划》。

测定和分析人体基因组全部核苷酸排列次序→揭示携带的全部遗传信息→阐明遗传信息表达规律和最终生物学效应。

对生物学和医学产生革命性变革,是生物学中的最重大事件和遗传学领域中一个跨世纪宏伟计划。

人类基因组的“工作草图”在2000年6月26日已宣布完成测序(历时十年)。

我国研究第3号染色体,共计3000万个碱基对,约占人类基因组全部序列1%,中科院遗传所人类基因组中心杨焕明教授负责,1999年9月加入这一研究计划。

人类基因组计划主要目标与程序:①研究人类遗传的基础结构;②确立人类生物学的DNA顺序;③进行基因的生化分析,也就是要进行人类基因定位。全部核苷酸顺序的分析,有助于了解结构,认识功能,亦即人类能够“读出”

并“读懂”人类基因组的全部ATGC语言,从遗传学来认识人类正常功能和病理变化,也是从分子水平来认识人类自身的结构与功能特征。

人类基因组计划与人类遗传性疾病:人类基因组项目(HGP)产生出更多的研究成果时,人们对遗传性疾病的认识也会日益深入。

P96 最后解读的人类第1连锁群

人类基因组计划大事记

1985年,美国能源部提出,要将共包含约3×109碱基对的人类基因组全部碱基序列分析清楚;

1986年,美国宣布启动“人类基因组计划(Human Genome Project, HGP)”。

1991年,美国建立第一批基因组研究中心。

1993年,桑格研究中心在英国剑桥附近成立。

1997年,法国国家基因组测序中心成立。

1998年,中国在北京和上海设立国家基因组中心。

1999年,中国获准加入人类基因组计划,承担1%的测序任务,成为参与这一计划的惟一发展中国家。

1999年12月1日,首条人类染色体完成测序,人类第22号染色体DNA全序列测定宣布完成。

2000年4月6日,美国Celera遗传信息公司宣布,该公司已破译出一名实验者的完整遗传密码。

2000年6月26日,中、美、日、德、法、英等6国科学家宣布首次绘成人类基因组“工作框架图”。

2001年2月12日,六国科学家联合在学术期刊上发表人类基因组“工作框架图”及初步分析结果。

2001年8月26日,人类基因组“中国卷”的绘制工作宣告完成。

2003年4月14日,中、美、日、德、法、英等6国科学家宣布人类基因组序列图绘制成功,人类基因组计划的所有目标全部实现。

2004年10月,人类基因组完成图公布。

2005年3月,人类X染色体测序工作基本完成,并公布了该染色体基因草图。

我国科学家2007年10月11日对外宣布,他们已经成功绘制完成第一个完整中国人基因组图谱(又称“炎黄一号”),这也是第一个亚洲人全基因序列图谱。

连锁互换与基因作图(一).doc

连锁互换与基因作图(一) (总分:286.00,做题时间:90分钟) 一、填空题(总题数:15,分数:42.00) 1.在链孢霉中,某一基因发生第二次分裂分离的频率是2/3,则基因型为AaAa的子囊所占比例为(不包括aAaA) 1。 (分数:1.50) 2.植物有10%的花粉母细胞的某染色体上两个基因在减数分裂前期工发生单交换,则该两个基因之间的理论交换值是 1。 (分数:1.50) 3.三个连锁基因的杂合体的测交后代中出现6种表现型(而不是通常的8种),其原因是 1。 (分数:1.50) 4.玉米6号染色体上有两对基因PL(紫株)、pl(绿株)及PY(高茎)、py(矮茎)。他们之间图距为20个单位。对于PLPY/plpy×PLPY/plpy杂交后代中plpy/plpy基因型的比率是 1,紫色矮茎植株的比率是 2。 (分数:3.00) 5.一对同源四倍体的染色体数目是48,则它的连锁群数目为1;一对异源四倍体的染色体数目是48,则它的连锁群数目是 2。 (分数:3.00) 6.在果蝇中,雌+++/abc×雄abec/abc,得到下列结果:+++460,abc460,a++18,+bc12,ab+22,++c28。则这三个基因间的符合系数(并发系数)为 1。 (分数:1.50) 7.如果在F 1的性母细胞减数分裂时,有6%的细胞在连锁着的基因AB之间出现了交叉结,则表明在这6%的细胞中有总数的 1的染色单体在A、B之间发生过 2。所以这些F 1个体在配子形成将有 3重组型, 4亲本型。 (分数:6.00) 8.已知A、B、C连锁,若在AC基因之间观察到0.09%的双交换率,而AB之间及BC之间的单交换率分别为18.4%与3.5%时,正干涉作用则应该为 1。一般而言,如果AC基因之间的图距越远,所受到正干涉作用就越 2,当AC基因之间的距离十分临近时正干涉作用可以达到 3%。 (分数:4.50) 9.基因a和b位于同一染色体上,图距是8cM。这意味着在1000个卵母细胞中有1个卵母细胞在这两个基因间在减数分裂前期工发生了 2。 (分数:3.00) 10.减数分裂产生重组型配子的两个途径是 1、 2。 (分数:3.00) 11.已知人体中G、T、C三个基因都位于17号染色体的长臂,在检出T转化株时,发现19%的细胞株中有G 和T共转化,74%的细胞株中有C和T共转化,这一发现表明 1。 (分数:1.50) 12.两个基因在 1上的距离的数量单位称为图距。1%重组值去掉其百分率的数值定义为一个图距单位,后人为纪念现代遗传学的奠基人 2,将图距单位称为 3。 (分数:4.50) 13.绘制遗传学图时,基因定位所采用的主要方法有两种,即 1和 2。 (分数:3.00) 14.在abc三杂合体的测交中得到如下结果:a++、ab+、+6+、+bc、++c、a+c六种表型的个体数依次为810、62、89、828、88、103,则这三个基因的排列顺序为 1。 (分数:1.50) 15.两点测交测得每两个基因间的重组值是a-b 3%,a-c 13%,b-c 11%,则这三个基因间的顺序是 1,a-c 间的图距是 2。 (分数:3.00)

医学遗传学 染色体畸变与染色体病

Copyright ? 1995-2016 LIZC. All rights reserved 一、单选题 1、染色体非整倍性改变的机制可能是() A.染色体断裂及断裂之后的异常重排:结构畸变的机制,不选 B.染色体易位:结构畸变,不选 C.染色体倒位:结构畸变,不选 D.染色体不分离:正确,非整倍性改变的机制包括染色体不分离和染色体丢失E.染色体核内复制:整倍性改变的机制(四倍体),不选 考核点:非整倍性改变的机制 2、染色体不分离( ) A.只是指姐妹染色单体不分离 B. 只是指同源染色体不分离 C.只发生在有丝分裂过程中 D.只发生在减数分裂过程中 E.是指姐妹染色单体或同源染色体不分离

解析:染色体不分离是导致染色体非整倍性改变(尤其是三体和单体)的主要原因。不分离既可发生在减数分裂(包括第一、二次减数分裂),也可发生在有丝分裂(将导致嵌合体出现)。选项A的含义是:只是第二次减数分裂和有丝分裂中染色体不分离;选项B的含义是:只发生在第一次减数分裂;选项C、D肯定不正确;选项E的含义是:指姐妹染色单体不分离即有丝分裂和第二次减数分裂),同源染色体不分离即第一次减数分裂。 考核点:非整倍性改变的机制 3、人类精子发生的过程中,如果第一次减数分裂时发生了某号同源染色体的不分离现象,而第二次减数分裂正常进行,则其可形成( ) A.一个异常性细胞 B.两个异常性细胞 C.三个异常性细胞 D.四个异常性细胞 E.正常的性细胞 解析:如果第一次减数分裂时发生了某号同源染色体的不分离现象,而第二次减数分裂正常进行, 则其可形成4个异常配子(共2种),其中一种染色体数目为n+1,另一种为n-1,受精后要么是三体,要么是单体。若第一次减数分裂正常,第二次发生某号染色体不分离,则可形成4个可

连锁互换与基因作图.doc

连锁互换与基因作图 (总分:286.00,做题时间:90分钟) 一、填空题(总题数:15,分数:42.00) 1.在链孢霉中,某一基因发生第二次分裂分离的频率是2/3,则基因型为AaAa的子囊所占比例为(不包括aAaA) 1。 (分数:1.50) 填空项1:__________________ 2.植物有10%的花粉母细胞的某染色体上两个基因在减数分裂前期工发生单交换,则该两个基因之间的理论交换值是 1。 (分数:1.50) 填空项1:__________________ 3.三个连锁基因的杂合体的测交后代中出现6种表现型(而不是通常的8种),其原因是 1。 (分数:1.50) 填空项1:__________________ 4.玉米6号染色体上有两对基因PL(紫株)、pl(绿株)及PY(高茎)、py(矮茎)。他们之间图距为20个单位。对于PLPY/plpy×PLPY/plpy杂交后代中plpy/plpy基因型的比率是______,紫色矮茎植株的比率是______。 (分数:3.00) 填空项1:__________________ 5.一对同源四倍体的染色体数目是48,则它的连锁群数目为______;一对异源四倍体的染色体数目是48,则它的连锁群数目是______。 (分数:3.00) 填空项1:__________________ 6.在果蝇中,雌+++/abc×雄abec/abc,得到下列结果:+++460,abc460,a++18,+bc12,ab+22,++c28。则这三个基因间的符合系数(并发系数)为 1。 (分数:1.50) 填空项1:__________________ 7.如果在F1的性母细胞减数分裂时,有6%的细胞在连锁着的基因AB之间出现了交叉结,则表明在这6%的细胞中有总数的______的染色单体在A、B之间发生过______。所以这些F1个体在配子形成将有______重组型,______亲本型。 (分数:6.00) 填空项1:__________________ 8.已知A、B、C连锁,若在AC基因之间观察到0.09%的双交换率,而AB之间及BC之间的单交换率分别为18.4%与3.5%时,正干涉作用则应该为______。一般而言,如果AC基因之间的图距越远,所受到正干涉作用就越______,当AC基因之间的距离十分临近时正干涉作用可以达到______%。 (分数:4.50) 填空项1:__________________ 9.基因a和b位于同一染色体上,图距是8cM。这意味着在1000个卵母细胞中有______个卵母细胞在这两个基因间在减数分裂前期工发生了______。

讲稿连锁遗传分析与染色体作图

第五章连锁遗传分析 5.1 性染色体与性别决定 位于一对同源染色体上的非等位基因间的遗传关系以及性染色体上基因的遗传 一、性染色体的发现 1性染色体(sex chromosome) 成对染色体中直接与性别决定有关的一个或一对染色体。 成对性染色体往往是异型的:形态、结构、大小、功能上都有所不同。 2常染色体(autosome, A) 同源染色体是同型的。 例:果蝇(Drosophila melangaster, 2n=8)染色体组成与性染色体。 [性染色体与性别决定.swf] 二、性染色体决定性别的几种类型 1 雄杂合型(XY型): 两种性染色体分别为X、Y; 雄性个体的性染色体组成为XY(异配子性别),产生两种类型的配子,分别含X和Y染色体; 雌性个体则为XX(同配子性别),产生一种配子含X染色体。 性比一般是1:1。 2XO型: 与XY型相似,但只有一条性染色体X; 雄性个体只有一条X染色体(XO,不成对),它产生含X染色体和不含性染色体两种类型的配子; 雌性个体性染色体为XX。 如:蝗虫、蟋蟀。 3雌杂合型(ZW型): 两种性染色体分别为Z、W染色体; 雌性个体性染色体组成为ZW(异配子性别),产生两种类型的配子,分别含Z和W染色体; 雄性个体则为ZZ(同配子性别),产生一种配子含Z染色体。 性比一般是1:1。 三、性别决定畸变 1 果蝇性别决定畸变 果蝇的性别决定与Y染色体有无与数目无关,而是由X染色体与常染色体的组成比例决定。其中: X:A=1→雌性X:A=0.5→雄性 X:A大于1的个体将发育成超雌性,小于0.5时发育成超雄性,介于两者则为间性(inter sex);并伴随着生活力、育性下降。

连锁互换定律

连锁互换定律 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

连锁与互换定律 1、连锁遗传:原来在亲本中组合在一起的两个性状在F2中有连在一起遗传的倾向,称连锁遗传。连锁相包括互引相(AB、ab)、互斥相(Ab、aB)。 2、亲本型:与两亲本相同的性状表现型称为亲本型;不同的称为重组型。 3、完全连锁遗传:仅有亲本型,缺少重组型,eg:仅见于雄果蝇、雌家蚕。 4、不完全连锁遗传:在连锁遗传的同时发生性状的交换和重组;绝大多数生物为不完全连锁遗传。 5、利用测交法验证连锁遗传现象: 特点:连锁遗传的表现为: 两个亲本型配子数是相等,> 50%; 两个重组型配子数相等,< 50%。 亲组合类型多, 重组合类型出现少 6、交换值(Cv):指不完全连锁的两基因间发生交换的频率(百分率,平均次数) 。 重组值(Rf):不完全连锁的双杂合体产生的重组型配子数占总配子数的比率(百分率)。 通常又把交换值称为重组值。但严格说,交换值不能等同于重组值,因为若两个基因座之间相距较远,其间发生偶数次多重交换时,结果不形成重组型配子,用重组值代表交换值会造成偏低的估计。 7、连锁群:不能进行自由组合的基因群(位于同一染色体上的基因群)。 特点:一种生物连锁群的数目与染色体的对数是一致的。即有n对染色体就有n个连锁群。 8、染色体作图:把染色体的多种基因相互之间的排列顺序确定下来。 连锁遗传的特征 1)摩尔根连锁互换是经典遗传学第三定律,是孟德尔自由组合定律的补充; 2)发生在两对或以上基因间,且基因在染色体上线性排列; 3)连锁基因发生在同一对同源染色体上; 4)减数分裂偶线期,同源染色体联会,非姐妹染色单体间的互换是形成重组型的分子基础; 5)两对基因座间距离越大,交换概率越大、连锁性越弱; 6)完全交换即为自由组合,完全不交换即为完全连锁情形; 染色体作图(基因定位)方法包括两点测交法和三点测交法计算基因间相对距离 (1)非等位基因在染色体上排列的直线距离与基因间的互换率大小有关; (2)遗传学上规定,以互换率的1%作为一个遗传单位将基因定位在一条直线上。 两点测交的局限性:1.工作量大,需要作三次杂交,三次测交。 2.不能排除双交换的影响,准确性不够高。 3.当两基因位点间距离较远时,两点测验的准确性就不够高。 三点测交:只要通过一次杂交(或一次测交)就能同时确定三对等位基因(即三个基因座)的排列顺序和它们之间的遗传距离,且测定结果比较准确。 双交换指检查的双价体的染色体区域发生两次交换。 交换率(重组率)的计算 交换率的计算(测交法) 重组型配子数重组型个体数 交换率= ×100%= ×100% 总配子数重组型个体数+亲本型个体数 交换率=0,完全连锁;交换率=50%,自由组合;1%交换率表示两个基因距离为1遗传单位(图距单位、厘摩,cM);这种通过互换率估算出的距离称为遗传距离。 交换率的计算方法之二(杂合体自交法)用去雄困难的植物。步骤略 A和C之间的重组率=[(45+50+2+3)/1000]×100% =

4连锁遗传与基因作图

连锁遗传与基因作图 习题1 一、填空 1.在A b C a B c×a b c a b c 杂交中,知a,b,c三个基因都位于第三染色体上,杂交后代中以A b c和a B C表型的频率最低,三个基因的正确顺序就为______。 2、若染色体的某一区段发生了负干扰时,这意味着________________________________。 二、名词 1、两点测交法(two-point test cross): 2、三点测验法(three-point test cross): 3、双交换(double crossover): 4、干扰或干涉(interference): 5、正干涉: 负干涉: 6、coindidence 7、linkage map: 8、complete linkage 9、incomplete linkage: 三、选择题 1、AB/ab个体中,ab间平均有10%的交叉,其重组值是()。 a.10% b.20% c.5% d. 1% 2、果蝇中隐性基因a,b,c是性连锁的。两个亲代杂交产生的F1代是a+b+c/abc和abc/y。将这两个F1个体杂交,则正确的结果是:() a.交换值不能根据产生的F2代计算 b.仅按F2代中的雄果蝇就可以测定交换值 c.可以按产生的所有子代估计交换值 d.等位基因a和b在雌F1代是反式排列的 3 构建遗传图谱时,为标记染色体上基因的相对位置。被标记基因间的关系是:( ) A) 在同源染色体上B) 均为隐性基因C) 基因间相互连锁 D) 基因间互为突变体E) 以上所有 4 遗传图距的单位――厘摩(centi-Morgan)表示的意义是:( )

染色体异常的减数分裂遗传题归类分析

个性化作业①2015年10月10日编辑 【染色体异常的减数分裂、遗传题归类分析】 【例析】(2011·四川卷·31·II)小麦的染色体数为42条。下图表示小麦的三个纯种品系的部分染色体及基因组成:I、II表示染色体,A为矮杆基因,B为抗矮黄病基因,E为抗条斑病基因,均为显性。乙品系和丙品系由普通小麦与近缘种偃麦草杂交后,经多代选育而来(图中黑色部分是来自偃麦草的染色体片段)。 (1)乙、丙系在培育过程中发生了染色体的变异。该现象如在自然条件下发生,可为提供原材料。 (2)甲和乙杂交所得到的F1自交,所有染色体正常联会,则基因A与a可随的分开面分离。F1自交所得F2中有种基因型,其中仅表现抗矮黄病的基因型有种。(3)甲与丙杂交所得到的F1自交,减数分裂中I甲与I丙因差异较大不能正常配对,而其它染色体正常配对,可观察到个四分体;该减数分裂正常完成,可产生种基因型的配子,配子中最多含有条染色体。 (4)让(2)中F1与(3)中F1杂交,若各种配子的形成机会和可育性相等,产生的种子均发育正常,则后代植株同时表现三种性状的几率为。 【解析】这道题综合考查了遗传的基本规律、染色体变异、减数分裂以及进化等相关知识,考查了学生的理解能力、获取信息能力和综合运用能力。 乙细胞中,普通小麦的Ⅱ号染色体上,B基因所在的打阴影部分的染色体片段来自于偃麦草,偃麦草与普通小麦属于两个不同的物种,没有同源染色体,所以乙在培育的过程中发生了染色体片段由偃麦草的染色体转移到了它的非同源染色体即普通小麦的Ⅱ号染色体上,这属于染色体结构变异,同理,丙系在培育的过程中也发生了染色体结构变异。依据现代生物进化理论,染色体变异能为生物进化提供原材料。 甲和乙杂交所得到的F1,其细胞内染色体组成如右图,F1的基因型为ⅠAⅠaⅡBⅡO,A 与a是位于一对同源染色体上的等位基因,在减数第一次分裂的后期,会随着同源染色体 的分离而分离。F1所有染色体正常联会,且A、B两基因独立遗传,所以F1自交所得F2有9 种基因型,即ⅠAⅠAⅡBⅡB、ⅠAⅠAⅡBⅡO、ⅠAⅠaⅡBⅡB、ⅠAⅠaⅡBⅡO、ⅠaⅠaⅡBⅡB、ⅠaⅠa ⅡBⅡO、ⅠAⅠAⅡOⅡO、ⅠAⅠaⅡOⅡO和ⅠaⅠaⅡOⅡO。其中仅表现抗矮黄病的只有ⅠaⅠaⅡBⅡB和ⅠaⅠaⅡB ⅡO两种基因型。 甲和丙杂交所得到的F1,其细胞内染色体组成如右图,F1的基因型为ⅠAOⅠaEⅡ0ⅡO,除了I甲与I 丙因差异较大不能正常配对形成四分体外,其余20对同源染色体的正常配对,各形成1个四分体,所以可观察到20个四分体。在减数分裂形成配子的过程中,有可能I甲与I丙没有平均分配到两 个次级性母细胞中,而是进入到了同一个次级性母细胞中,这样就会形成ⅠAOⅠaEⅡ0与Ⅱ0 两种基因型的配子;也有可能I甲与I丙平均分配到两个次级性母细胞中,这样就会形成ⅠAO Ⅱ0与ⅠaEⅡ0两种基因型的配子。因此,最终可以形成4种基因型的配子。其中,基因型为 ⅠAOⅠaEⅡ0的配子中既含有I甲又含有I丙,染色体数目最多,为22条。

讲稿连锁遗传分析与染色体作图

讲稿连锁遗传分析与染色 体作图 Ting Bao was revised on January 6, 20021

第五章连锁遗传分析 性染色体与性别决定 位于一对同源染色体上的非等位基因间的遗传关系以及性染色体上基因的遗传 一、性染色体的发现 1性染色体(sex chromosome) 成对染色体中直接与性别决定有关的一个或一对染色体。 成对性染色体往往是异型的:形态、结构、大小、功能上都有所不同。 2常染色体(autosome, A) 同源染色体是同型的。 例:果蝇(Drosophila melangaster, 2n=8)染色体组成与性染色体。 [性染色体与性别决定.swf] 二、性染色体决定性别的几种类型 1 雄杂合型(XY型): 两种性染色体分别为X、Y; 雄性个体的性染色体组成为XY(异配子性别),产生两种类型的配子,分别含X和Y染色体; 雌性个体则为XX(同配子性别),产生一种配子含X染色体。 性比一般是1:1。 2XO型: 与XY型相似,但只有一条性染色体X; 雄性个体只有一条X染色体(XO,不成对),它产生含X染色体和不含性染色体两种类型的配子; 雌性个体性染色体为XX。 如:蝗虫、蟋蟀。 3 雌杂合型(ZW型): 两种性染色体分别为Z、W染色体; 雌性个体性染色体组成为ZW(异配子性别),产生两种类型的配子,分别含Z和W染色体; 雄性个体则为ZZ(同配子性别),产生一种配子含Z染色体。 性比一般是1:1。 三、性别决定畸变 1 果蝇性别决定畸变 果蝇的性别决定与Y染色体有无与数目无关,而是由X染色体与常染色体的组成比例决定。其中: X:A=1→雌性 X:A=→雄性 X:A大于1的个体将发育成超雌性,小于时发育成超雄性,介于两者则为间性(inter sex);并伴随着生活力、育性下降。

※医学遗传学 第十四章 染色体病

染色体病 定义:染色体病(chromosomal disorder):染色体数目或结构异常引起的疾病 分类:常染色体病、性染色体病、染色体异常的携带者 一、染色体的发病概况 染色体病在临床上和遗传上特点: 1.染色体病患者均有先天性多发畸形(包括特殊面容)、生长、智力或性发育落后、特殊肤纹。 2.绝大多数染色体病患者呈散发性,这类患者往往无家族史。 3.少数染色体结构畸变的患者是由表型正常的双亲遗传而得,这类患者常伴有家族史。 二、常染色体病(Autosomal disease) 1.定义:由常染色体数目或结构异常引起的疾病 2.分类:三体综合征、单体综合征、部分三体综合征、部分单体综合征、嵌合体等 (一)Down综合征(Down Syndrome,DS) 1.特点:母亲生育年龄偏大和单卵双生的一致性 2.发生率:新生儿的DS发生率约为1/1000~2/1000 ;发生率随母亲生育年龄的增高而增高,尤其当母亲 年龄大于35岁时,发生率明显增高。 3.表型特点:(1)是一种很明确的综合征 (2)多数情况下,都是新发生的、散在的病例 (3)同卵双生具有一致性 (4)男性患者没有生育力,而极少数女性患者可生育 (5)随母亲年龄增加该病的发生率也升高,尤其当母亲大于35岁时发病率明显升高 (6)患者免疫功能缺陷、易患先天性心脏病 (7)表型特征的表现度不同 (8)急性白血病死亡率增加了20倍 4.遗传分型 (1)游离型(Trisomy) ①游离型(21三体型)即标准型。此型约占全部患者的92.5%。核型为47,XX(XY),+21。 ②此型的发生绝大部分与父母核型无关,它是生殖细胞形成过程中,在减数分裂时不分离的结果。染 色体不分离发生在母方的病例约占95%,另5%见于父方,且主要为第一次减数分裂不分离。(2)易位型(Robertsonian translocation) ①此型约占5%,增加的一条21号染色体并不独立存在,而是与D组或G组的一条染色体发生罗伯 逊易位,染色体总数为46,其中一条是易位染色体。 ②最常见的是D/G易位,如核型为46,XX(XY),-14,+t(14q21q),其次为G/G易位,如核型为46, XX(XY),-21,+t(21q21q)。 (3)嵌合型(Mosaicism) 此型较少见,约占2%。此型产生的原因:一是由于生殖细胞减数分裂不分离,继而因分裂后期染色体行动迟缓引起部分细胞超数的染色体发生丢失而形成含有47,+21/46两个细胞系的嵌合体,由此形成的嵌合体的发生率与标准的三体型一样,随母亲年龄的增加而增加。二是合子后(post-zygotic)有丝分裂不分离的结果。 5.分子机制 (1)21号染色体的分子解剖学 (2)21号染色体上与DS表型相关的基因 ①与智力发育迟缓相关的基因 DS细胞粘附分子DSCAM基因:编码一种细胞粘附分子,表达在成人脑组织中,参与神经系统分化,与DS中枢和外周神经缺陷有关。 活性依赖性神经保护蛋白ADNP基因:在海马、大脑皮质和小脑中表达,是一新型的热休克蛋白,它为DS提供一个该机体所缺乏的保护作用 DSCR1基因:在体内参与调节神经递质和激素释放、突触形成和基因转录等,因此推测DSCR1可 能与DS的学习和行为变化有关。

刘祖洞遗传学第三版答案_第10章_染色体畸变

第十章遗传物质的改变(1)-染色体畸变 1 什么叫染色体畸变? 解答:染色体畸变是指染色体发生数目或结构上的改变。(1)染色体结构畸变指染色体发生断裂,并以异常的组合方式重新连接。其畸变类型有缺失、重复、倒位、易位。(2)染色体数目畸变指以二倍体为标准所出现的成倍性增减或某一对染色体数目的改变统称为染色体畸变。前一类变化产生多倍体,后一类称为非整倍体畸变。 2 解释下列名词: (1)缺失;(2)重复;(3)倒位;(4)易位。 解答: 缺失:缺失指的是染色体丢失了某一个区段。 重复:重复是指染色体多了自己的某一区段 倒位:倒位是指染色体某区段的正常直线顺序颠倒了。 易位:易位是指某染色体的一个区段移接在非同源的另一个染色体上。 3 什么叫平衡致死品系?在遗传学研究中,它有什么用处? 解答:紧密连锁或中间具有倒位片段的相邻基因由于生殖细胞的同源染色体不能交换,所以可以产生非等位基因的双杂合子,这种利用倒位对交换抑制的效应,保存非等位基因的纯合隐性致死基因,该品系被称为平衡致死系。平衡致死的个体真实遗传,并且它们的遗传行为和表型表现模拟了具有纯合基因型的个体,因此平衡致死系又称永久杂种。 平衡致死品系在遗传学研究中的用处: (1)利用所谓的交换抑制子保存致死突变品系-平衡致死系可以检测隐形突变

(2)用于实验室中致死、半致死或不育突变体培养的保存(3)检测性别 4 解释下列名词: (1)单倍体,二倍体,多倍体。 (2)单体,缺体,三体。 (3)同源多倍体,异源多倍体。 解答: (1)单倍体(haploid):是指具有配子体染色体数目的个体。 二倍体(diploid):细胞核内具有两个染色体组的生物为二倍体。 多倍体(polyploid):细胞中有3个或3个以上染色体组的个体称为多倍体。(2)单体(monosomic):是指体细胞中某对染色体缺少一条的个体(2n-1)。 缺体(nullosomic):是指生物体细胞中缺少一对同源染色体的个体(2n -2),它仅存在于多倍体生物中,二倍体生物中的缺体不能存活。 三体(trisomic):是指体细胞中的染色体较正常2n个体增加一条的变异类型,即某一对染色体有三条染色体(2n+1)。 (3)同源多倍体:由同一染色体组加倍而成的含有三个以上的染色体组的个体 称为同源多倍体。 异源多倍体:是指体细胞中具有2个或2个以上不同类型的染色体组。 5 用图解说明无籽西瓜制种原理。 解答:优良二倍体西瓜品种 人工加倍 ♀四倍体×二倍体♂

染色体畸变实验

实验十染色体畸变试验 可用末梢血淋巴细胞,或人和哺乳动物体细胞系作为材料,常用的体细胞系有中国地鼠卵巢细胞(CHO),中国地鼠肺成纤维细胞(V79和CHL),人胚肺2倍体成纤维细胞等。这里介绍外周血淋巴细胞为对象的染色体畸变的试验方法。 1.实验原理 外周血中小淋巴细胞几乎都处在细胞增殖周期的G1期或G0期(不同于体外培养的体细胞),一般条件下是不会再分裂的。当在培养物中加入适量的PHA,在37℃下,经52~72h 的培养,淋巴细胞开始转化,进入细胞增殖周期,此时可获得大量的有丝分裂的细胞。再经过秋水仙素处理,低渗、固定,即可在显微镜下观察到良好的中期染色体分裂相。电离辐射,化学有害物质作用于机体或体外细胞,均可引起细胞染色体的损伤,且与剂量(浓度)呈良好的线性关系。因此,染色体畸变已用于电力辐射事故的生物计量估算。 2.方法与步骤 (1)试剂 ①RPMI-1640培养液,含20%小牛血清。 ②肝素:每支含肝素12500U,使用时用生理盐水配成500U/ml,4℃冰箱内保存备用。 ③秋水仙素:配成40ug/ml浓度。称取秋水仙素4mg,溶解于100ml 0.85%Nacl 溶液中,经6号细菌漏斗过滤,4℃冰箱内保存。使用时吸取0.05或0.1ml加入到5ml细胞培养物中,其终浓度为0.4~0.8ug/ml。 ④双抗:青霉素100U/ml,链霉素100ug/ml。 ⑤PHA:PHA为冰干注射剂(广州生产)每支10mg,使用时用2ml生理盐水溶解。 ⑥KCl低渗液:KCl 1.88g,双蒸水1000ml使之溶解,其浓度为0.025M. ⑦冰醋酸甲醇固定液:冰醋酸1份,甲醇3份,混合而成。 (2)细胞培养 常规细胞培养。 (3)受试物的处理 实验分组:至少设立五个组,即阳性对照、阴性(溶剂)对照及三个剂量组。最高剂量

连锁遗传分析与染色体作图

第四章连锁遗传分析与染色体作图 第一节连锁与交换 本章主要内容: I. 连锁交换定律:连锁交换定律的发现及内容, II. 基因定位与染色体作图:交换率的计算,连锁作图,三点测交方法进行连锁作图,真菌的四分子分析方法,着丝粒作图,基因转变与重组机理,转座子的分类及转座机理 III. 人类基因组和染色体作图 本章要点: 连锁与交换,链孢霉的顺序四分子分析,重组机理,转座,人类连锁分析本章授课内容: 问题: 基因在染色体上如何排列? 同一条染色体上的基因之间在遗传时如何相互作用? 一、连锁交换定律 (一)连锁交换定律的发现 相引与相斥 1906 ,贝特逊(Bateson, W.)和庞尼特(Punnet, R.C)利用香豌豆(Lathyrus doratus)为材料提出相引(coupling)及相斥(repulsion) Bateson-Punnet 香豌豆杂交试验,例1: P: 紫花长花粉×红花圆花粉 ↓ F1: 紫花长花粉 ↓ 表型观察数(O) 期望比例期望值(E) F2: 紫长 4831 9 3910.5

紫圆 390 3 1303.5 红长 393 3 1303.5 红圆 1338 1 434.5 总计 6952 χ2 = ∑(Oi-Ei)2/Ei=3371.58 df=4-1=3, 差异极显著,结果不符合自由组合定律, F2代中性状的亲组合类型远远多于重组类型。 例2: P: 紫花圆花粉×红花长花粉 ↓ F1: 紫花长花粉 ↓ 表型观察数(O) 期望比例期望值(E) F2: 紫长 226 9 235.8 紫圆 95 3 78.5 红长 97 3 78.5 红圆 1 1 26.2 总计 419 χ2 = ∑(Oi-Ei)2/Ei=32.4 ,df=4-1=3, 差异极显著,结果不符合自由组合定律。 Batson等: 互引相(coupling phase) 前一种亲本组合 互斥相(repulsion phase) 后一种亲本组合1912年,摩尔根:连锁交换定律:凡是伴性遗传的基因,相互之间总是连锁的。 (二)、连锁与交换 连锁(linkage): 1、摩尔根的试验: P: 灰体长翅(BBVV) ×黑体残翅(bbvv) ↓

染色体畸变核型分析

染色体畸变核型分析 【摘要】目的明确染色体畸变核型特点,为人类遗传性疾病的诊治提供参考依据。方法取受检者外周血,进行淋巴细胞培养,常规制备染色体,G显带,镜下计数50个中期分裂相,显微摄影分析10个核型。结果在1065例生殖咨询者中,染色体畸变率为15.7%。其中按畸变类型分类,数目畸变率为9.9%,结构畸变率为2.3%,染色体多态性畸变率为3.5%;按染色体不同分类,常染色体畸变率为11.7%,性染色体畸变率为4.0%。结论人类常染色体易发生畸变,数目畸变是人类染色体畸变的主要类型,结构畸变多发生在常染色体中,染色体多态性以大Y和小Y为主。 【Abstract】Objective To make it clear of the characteristic of the distortion karyotype of the chromosome, provding the reference for the human hereditary disease diagnosis. Methods Peripheral lymphocyte were detected by cytogeneties method,G-banding. Assayed karyotype under micrope,take count of 50metaphase,analysed 10 karyotype. Results In 1065 cases of generation consultants, the rate of chromosome aberration is 15.7%. Distorting of them by type, the rate of number aberration is 9.9%, the rate of the structure aberration is 2.3% and the abnormal rate of the chromosome polymorphism diversity is 3.5%. Distorting of them by chromosome, the rate of the euchromosome aberration is 11.7% and the rate of the sex chromosome aberration is 4.0%. Conclusion The human euchromosome easy to have the distortion. All of them , the predominant type of the humanity chromosomic aberration is the number distortion. The structure distortion often occurs in the euchromosome. The primary chromosome polumorphism is Y-chromosome and y-chromosome. 【Key words】Chromosome;Herectity;Aberration 人类体细胞核内有23 对染色体, 其中常染色体22 对、性染色体1对。染色体畸变是体细胞或生殖细胞内染色体发生的异常改变,可分为数目畸变和结构畸变两大类,在正常健康人群中,还存在着染色体的多态性[2]。了解染色体畸变的不同类型分布特点,分析临床相关症状,对预防先天性出生缺陷极其重要。为此,笔者对染色体畸变的不同类型分布特点进行了分析,现报告如下。 1 资料与方法 1.1 研究对象本院2003-2007年遗传咨询门诊、辅助生殖中心的1065例咨询者,其中男570例、女495例,年龄1 d~52岁。临床主要表现为智力低下、早期自然流产、死胎、多发畸形、宫内停育、性腺发育不良、原发闭经、身材矮小、生育唐氏儿。 1.2 方法对咨询者进行染色体培养及核型分析。取受检者外周血,进行淋巴细胞培养,常规制备染色体,G显带,镜下计数50个中期分裂相,显微摄影分析10个核型。 1.3 统计学方法采用SPSS 10.0统计软件,进行χ2检验。以P<0.05为差

连锁遗传与基因作图

连锁遗传与基因作图 《普通遗传学》的相关试题,针对遗传学中的每一章节的知识。 连锁遗传与基因作图 习题 1 一、填空 1.在A b C a B c×a b c a b c 杂交中,知a,b,c 三个基因都位于第三染色体上,杂交后代中以A b c 和a B C 表型的频率最低,三个基因的正确顺序就为______。 2、若染色体的某一区段发生了负干扰时,这意味着________________________________。 二、名词1、两点测交法(two-point test cross):2、三点测验法(three-point test cross):3、双交换(double crossover):4、干扰或干涉(interference): 5、正干涉:负干涉: 6、coindidence 7、linkage map: 8、complete linkage 9、incomplete linkage: 三、选择题 1、AB/ab 个体中,ab 间平均有10%的交叉,其重组值是()。 a.10% b.20% c.5% d. 1% 2、果蝇中隐性基因a,b,c 是性连锁的。两个亲代杂交产生的F1 代是a+b+c/abc 和abc/y。将这两个F1 个体杂交,则正确的结果是:()

a.交换值不能根据产生的F2 代计算b.仅按F2 代中的雄果蝇就可以测定交换值c.可以按产生的所有子代估计交换值d.等位基因a 和b 在雌F1 代是反式排列的 3 构建遗传图谱时,为标记染色体上基因的相对位置。被标记基因间的关系是:( A) 在同源染色体上B) 均为隐性基因C) 基因间相互连锁 D) 基因间互为突变体E) 以上所有 4 遗传图距的单位――厘摩(centi-Morgan)表示的意义是:( ) )

遗传学复习重点

遗传性疾病的分类 染色体病、单基因病、多基因病、线粒体基因病、体细胞遗传病 先天性疾病:婴儿出生时即显示出临床症状的疾病 家族性疾病:具有家族聚集现象的一类疾病。 遗传性疾病:遗传物质发生突变所引起的疾病。 人类染色体和染色体病 染色体的分组 非显带染色体分组指标:相对长度,臂比率,着丝粒指数,随体的有无。 A大中(1、2、3)B大亚中(4、5)C中亚中(6~12、X) D中近端,均有随体(13、14、15)E中亚中(16、17、18) F小中(19、20)G小近端,除Y,均有随体(21、22、Y) 染色体的分类、命名和书写原则 根据着丝粒的位置,可以将人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体、近端着丝粒染色体。 染色体畸变的类型 1、数目畸变: (1)整倍体:细胞的染色体数目以n为基数成倍的增加(多倍体) (2)非整倍体(超二倍体(2n+x)指一个细胞中的染色体数目增加了一个或数个、亚二倍体 (2n-x)指一个细胞中的染色体数目减少了一个或数个、假二倍体:指某对染色体减少一个,同时另一对染色体又增加一个,染色体的总数不变) (3)嵌合体:一个个体同时有两种或两种以上不同核型的细胞系。 2、结构畸变: (1)缺失(deletion,del)指染色体臂的部分丢失。 末端缺失:染色体的长臂或短臂发生一次断裂,缺失了末端节段。 中间缺失:染色体的长臂或短臂发生了两次断裂,两断裂面之间的断片脱离后两断裂面又重新结合。(2)重复(duplication,dup)指同源染色体中一条断裂后,其断片连接到另一条同源染色体上的相应部位,结果造成一条同源染色体上部分基因重复了,而另一条同源染色体则相应缺失了。 (3)倒位(inversion,inv)染色体发生两处断裂后,中间的断片倒转180℃后又重新连。 臂倒位(paracentric inversion)指倒位部分不包括着丝粒而仅限于一臂之。 臂间倒位(pericentric inversion)指倒位部分包括着丝粒。 (4)易位(translocation,t) 非相互易位:一条染色体断裂后其片段接到同一条染色体的另一处或接到另一条染色体上去。 相互易位:两条染色体之间的相互易位。即两条染色体都发生断裂,相互交换断片后又重新接合,形成两条新的易位染色体。 罗伯逊易位 (Robertsonian translocation,rob)是一种涉及两条近端着丝粒的易位类型,其断裂发生在着丝粒部位或着丝粒附近,整个染色体臂发生了相互易位,形成两个中着丝粒染色体。 其中由染色体短臂形成的小染色体往往丢失。 (5)环形染色体(ring chromosome,r)由于断裂发生在染色体两个臂的远端,随后这两臂的断裂端彼此粘着形成环形结构。 (6)等臂染色体(isochromosome,i)着丝粒发生横裂,形成两条只有长臂或只有短臂的染色体。 人类染色体畸变的国际命名体制 简式:染色体总数,性染色体组成,染色体畸变类型(染色体号臂区带)

刘祖洞遗传学第三版标准答案-第10章-染色体畸变

第十章遗传物质的改变(1)-染色体畸变 1什么叫染色体畸变? 解答:染色体畸变是指染色体发生数目或结构上的改变。(1)染色体结构畸变指染色体发生断裂,并以异常的组合方式重新连接。其畸变类型有缺失、重复、倒位、易位。(2)染色体数目畸变指以二倍体为标准所出现的成倍性增减或某一对染色体数目的改变统称为染色体畸变。前一类变化产生多倍体,后一类称为非整倍体畸变。 2 解释下列名词: (1)缺失;(2)重复;(3)倒位;(4)易位。 解答: 缺失:缺失指的是染色体丢失了某一个区段。 重复:重复是指染色体多了自己的某一区段 倒位:倒位是指染色体某区段的正常直线顺序颠倒了。 易位:易位是指某染色体的一个区段移接在非同源的另一个染色体上。 3 什么叫平衡致死品系?在遗传学研究中,它有什么用处? 解答:紧密连锁或中间具有倒位片段的相邻基因由于生殖细胞的同源染色体不能交换,所以可以产生非等位基因的双杂合子,这种利用倒位对交换抑制的效应,保存非等位基因的纯合隐性致死基因,该品系被称为平衡致死系。平衡致死的个体真实遗传,并且它们的遗传行为和表型表现模拟了具有纯合基因型的个体,因此平衡致死系又称永久杂种。 平衡致死品系在遗传学研究中的用处: (1)利用所谓的交换抑制子保存致死突变品系-平衡致死系可以检测隐形突变(2)用于实验室中致死、半致死或不育突变体培养的保存(3)检测性别 4 解释下列名词: (1)单倍体,二倍体,多倍体。 (2)单体,缺体,三体。 (3)同源多倍体,异源多倍体。 解答: (1)单倍体(haploid):是指具有配子体染色体数目的个体。

二倍体(diploid):细胞核内具有两个染色体组的生物为二倍体。 多倍体(polyploid):细胞中有3个或3个以上染色体组的个体称为多倍体。(2)单体(monosomic):是指体细胞中某对染色体缺少一条的个体(2n-1)。 缺体(nullosomic):是指生物体细胞中缺少一对同源染色体的个体(2n -2),它仅存在于多倍体生物中,二倍体生物中的缺体不能存活。 三体(trisomic):是指体细胞中的染色体较正常2n个体增加一条的变异类型,即某一对染色体有三条染色体(2n+1)。 (3)同源多倍体:由同一染色体组加倍而成的含有三个以上的染色体组的个体称 为同源多倍体。 异源多倍体:是指体细胞中具有2个或2个以上不同类型的染色体组。 5用图解说明无籽西瓜制种原理。 解答:优良二倍体西瓜品种 人工加倍 ♀四倍体×二倍体♂ ♀三倍体×二倍体♂ 联会紊乱 三倍体无籽西瓜 6异源八倍体小黑麦是如何育成的? 解答: 普通小麦×黑麦 (42)AABBDDRR(14) ABDR 染色体加倍 AABBDDRR(56) 异源八倍体小黑麦 7 何以单倍体的个体多不育?有否例外?举例。 解答:单倍体个体多是不育的,因为单倍体在减数分裂时,由于染色体成单价体存在,没有相互联会的同源染色体,所以最后将无规律地分离到配子中去,结果极大多数不能发育成有效配子,因而表现高度不育。有时也存在特殊的情况,例如四倍

相关主题
文本预览
相关文档 最新文档