当前位置:文档之家› 智爱高中数学--函数值域求法十一种(详解)

智爱高中数学--函数值域求法十一种(详解)

智爱高中数学--函数值域求法十一种(详解)
智爱高中数学--函数值域求法十一种(详解)

函数值域求法十一种

在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。 1. 直接观察法

对于一些比较简单的函数,其值域可通过观察得到。 1. 求函数

x 1

y =

的值域。

解:∵0x ≠

∴0x 1≠

显然函数的值域是:),0()0,(+∞-∞

2. 求函数x 3y -

=的值域。

解:∵0x ≥

3x 3,0x ≤-≤-∴

故函数的值域是:]3,[-∞

2. 配方法

配方法是求二次函数值域最基本的方法之一。 3. 求函数]2,1[x ,5x 2x

y 2

-∈+-=的值域。

解:将函数配方得:

4)1x (y 2

+-= ∵]2,1[x -∈

由二次函数的性质可知:当x=1时,4y m i n =,当1x -=时,8y m a x =

故函数的值域是:[4,8]

3. 判别式法

4. 求函数

22x 1x x 1y +++=

的值域。

解:原函数化为关于x 的一元二次方程 0x )1y (x )1y (2

=-+-

(1)当1y ≠时,R x ∈

0)1y )(1y (4)1(2

≥----=? 解得:2

3y 2

1≤≤

(2)当y=1时,0x =,而??????∈23,211 故函数的值域为??

?

???23,21

5. 求函数)x 2(x x y -+

=的值域。

解:两边平方整理得:0y x )1y (2x

222

=++-(1)

∵R x ∈

0y 8)1y (42

≥-+=? 解得:21y 21+≤≤-

但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤

由0≥?,仅保证关于x 的方程:0y x )1y (2x 22

2

=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥?求出的范围可能比y 的实际范围大,故不能确定此函数的值域为??

?

?

??23,21。 可以采取如下方法进一步确定原函数的值域。

∵2x 0≤≤

0)x 2(x x y ≥-+=∴

21y ,0y min +==∴代入方程(1)

解得:]2,0[2

2

222x 41∈-+=

即当2

2222x 4

1-+=

时, 原函数的值域为:]21,0[+

注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。

4. 反函数法

直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 6. 求函数6

x 54x 3++值域。

解:由原函数式可得:3

y 5y 64x --=

则其反函数为:3

x 5y 64y --=,其定义域为:5

3x ≠

故所求函数的值域为:?

??

?

?∞-53,

5. 函数有界性法

直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。

例7. 求函数1

e 1

e y x x +-=的值域。

解:由原函数式可得:1

y 1

y e x -+=

∵0e x > ∴01

y 1

y >-+

解得:1y 1<<- 故所求函数的值域为)1,1(-

8. 求函数3

x s i n x c o s y -=的值域。

解:由原函数式可得:y 3x c o s x s i n

y =-,可化为:

y 3)x (x sin 1y 2=β++

即1

y y 3)x (x sin 2+=β+

∵R x ∈

∴]1,1[)x (x sin -∈β+ 即11

y y 312

≤+≤-

解得:4

2y 42≤≤-故函数的值域为????????-42,42 6. 函数单调性法 9. 求函数)10x 2(1x log 2

y 35

x ≤≤-+=-的值域。

解:令1x l o g y ,2y 325

x 1-==-

则21y ,y 在[2,10]上都是增函数 所以21y y y +=在[2,10]上是增函数 当x=2时,

8112l o g

2y 3

3m i n =

-+=-

当x=10时,339log 2y 35

max =+= 故所求函数的值域为:??

????33,81

10. 求函数1x 1x y --+=

的值域。

解:原函数可化为:1

x 1x 2y -++=

令1x y ,1x y 21-=+=,显然21y ,y 在],1[+∞上为无上界的增函数

所以1y y =,2y 在],1[+∞上也为无上界的增函数 所以当x=1时,21y y y +=有最小值2,原函数有最大值

22

2=

显然0y >,故原函数的值域为]2,

0(

7. 换元法

通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。

11. 求函数1x x y -+=的值域。

解:令t 1x =-,)0t (≥ 则1t x 2+=

43

)21t (1t t y 22+

+=++= 又0t ≥,由二次函数的性质可知 当0t =时,1y m i n

= 当0t →时,+∞→y

故函数的值域为),1[+∞

12. 求函数2

)1x (12x y +-++=的值域。

解:因

0)1x (12

≥+-

1)1x (2

≤+ 故可令],0[,c o s 1x π∈ββ=+

∴1cos sin cos 11cos y 2

+β+β=β-++β=1)4

sin(2+π+β= ∵

π

≤π+β≤π≤β≤45

40,0 2

11)4sin(201)4

sin(22+≤+π

+β≤∴≤π

+β≤-

∴ 故所求函数的值域为]21,0[+

13. 求函数1

x 2x x

x y 2

43++-=的值域。 解:原函数可变形为:2

2

2x 1x 1x 1x 221y +-?

+?= 可令β=tg x ,则有β=+-β=+2222c o s x

1x 1,2s i n x 1x 2 β

-=β?β-=∴4sin 41

2cos 2sin 21y

当82k π-π=β时,

41y max = 当82k π+π=β时,41

y m i n -= 而此时βt a n 有意义。

故所求函数的值域为??

?

???-41,41 14. 求函数)1x )(c o s 1x (s i n

y ++=,??

????ππ-∈2,12x 的值域。

解:)1x )(c o s 1x (s i n y ++=

1x cos x sin x cos x sin +++=

令t x cos x sin =+,则 )

1t (2

1x cos x sin 2-=

2

2)1t (21

1t )1t (21y +=++-=

由)4/x sin(2x cos x sin t π+=+=

且???

???ππ-

∈2,12x 可得:2t 2

2≤≤ ∴当2t =时,2

23

y m a x +=,当2

2t =时,

2

2

43y +=

故所求函数的值域为???

?????++223

,2243。

15. 求函数

2

x 54x y -++=的值域。

解:由0x 52≥-,可得5|x |≤

故可令],0[,c o s 5x π∈ββ=

4

)4sin(10sin 54cos 5y +π

+β=β++β=

∵π≤β≤0 4544π≤π+β≤π∴

当4/π=β时,104y max +=

当π=β时,54y m i n

-=

故所求函数的值域为:]104,54[+-

8. 数形结合法

其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。

16. 求函数

2

2)8x ()2x (y ++-=的值域。

解:原函数可化简得:|8x ||2x |y ++-=

上式可以看成数轴上点P (x )到定点A (2),)8(B -间的距离之和。 由上图可知,当点P 在线段AB 上时,10|AB ||8x ||2x |y ==++-=

当点P 在线段AB 的延长线或反向延长线上时,10|AB ||8x ||2x |y =>++-= 故所求函数的值域为:],10[+∞

17. 求函数5x 4x 13x 6x y 2

2++++-=的值域。

解:原函数可变形为:

2

222)10()2x ()20()3x (y ++++-+-=

上式可看成x 轴上的点)0,x (P 到两定点)1,2(B ),2,3(A --的距离之和,

由图可知当点P 为线段与x 轴的交点时,

43)12()23(|AB |y 2

2min =+++==, 故所求函数的值域为],43[+∞

18. 求函数5x 4x 13x 6x y 2

2++-+-=的值域。

解:将函数变形为:2

222)10()2x ()20()3x (y -++--+-=

上式可看成定点A (3,2)到点P (x ,0)的距离与定点)1,2(B -到点)0,x (P 的距离之差。 即:|BP ||AP |y -= 由图可知:(1)当点P 在x 轴上且不是直线AB 与x 轴的交点时,如点'P ,则构成'ABP ?,根据三角

形两边之差小于第三边,有

26)12()23(|AB |||'BP ||'AP ||2

2=-++=<-

(2)当点P 恰好为直线AB 与x 轴的交点时,有26|AB |||BP ||AP ||==-

综上所述,可知函数的值域为

:]26,26(-

注:由例17,18可知,求两距离之和时,要将函数式变形,使A 、B 两点在x 轴的两侧,而求两距离之差时,则要使A ,B 两点在x 轴的同侧。

如:例17的A ,B 两点坐标分别为:(3,2),)1,2(--,在x 轴的同侧;例18的A ,B 两点坐标分别为(3,2),)1,2(-,在x 轴的同侧。

9. 不等式法

利用基本不等式

abc 3c b a ,ab 2b a 3

≥++≥+)R c ,b ,a (+∈,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。 19. 求函数4)x

c o s 1x (c o s )x

s i n 1x (s i n y 22-+++=的值域。

解:原函数变形为:

5

2x cot x tan 3x cot x tan 3x sec x ces 1x

cos 1

x sin 1)x cos x (sin y 22322222222=+≥++=++=+

++=

当且仅当x c o t x t a

n = 即当4

k x π±π=时)z k (∈,等号成立 故原函数的值域为:),5[+∞

20. 求函数x 2s i n x s i n 2y =的值域。

解:x c o s x s i n x s i n 4y = x cos x sin 42=

27

64]3/)x sin 22x sin x [(sin 8)x sin 22(x sin x sin 8x cos x sin 16y 322222224=-++≤-==

当且仅当x s i n

22x s i n

2

2

-=,即当3

2x s i n

2

=

时,等号成立。 由27

64y 2≤可得:9

38y 9

38

≤-

故原函数的值域为:???

?

????-938,938

10. 一一映射法

原理:因为)0c (d

cx b ax y ≠++=在定义域上x 与y 是一一对应的。故两个变量中,若知道一个变量范围,

就可以求另一个变量范围。 21. 求函数1

x 2x 31y +-=的值域。

解:∵定义域为???

?

??->-<21x 21x |x 或 由1x 2x 31y +-= 得 3y 2y 1x +-= 故213y 2y 1x ->+-=

或 21

3y 2y 1x -<+-=

解得23

y 23y ->-<或

故函数的值域为??

?

??+∞-??? ??-

∞-,2323,

11. 多种方法综合运用 22. 求函数3

x 2x y ++=

的值域。 解:令)0t (2x t ≥+=,则1t 3x 2+=+

(1)当0t >时,

21

t

1t 11t t y 2≤

+=+=

当且仅当t=1,即1x -=时取等号,所以21y 0≤<

(2)当t=0时,y=0。 综上所述,函数的值域为:??

????21,0 注:先换元,后用不等式法

23. 求函数4

24

32x x 21x x x 2x 1y ++++-+=

的值域。

解:4

23

4

24

2x x 21x

x x

x 21x x 21y ++++

+++-=22

22x 1x x 1x 1++???

? ?

?+-=

令2

tan x β=,则 β=???

?

??+-22

2

2

cos x 1x

1 β=+sin 2

1

x 1x 2 1sin 2

1

sin sin 21cos y 22+β+β-=β+β=∴161741sin 2

+

??? ??-β-= ∴当4

1s i n =β时,1617

y max =

当1sin -=β时,2y m i n

-=

此时2

t a n β都存在,故函数的值域为??

?

??

?-1617,2

注:此题先用换元法,后用配方法,然后再运用βs i n 的有界性。

总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

函数定义域值域求法十一种

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。 解:要使函数有意义,则必须满足 x 2 2x 15 0 ① 11 或 x>5。 3且x 11} {x |x 5}。 1 例2求函数y ' 定义域。 *16 x 2 解:要使函数有意义,则必须满足 sinx 0 ① 16 x 2 0 ② 由①解得2k x 2k ,k Z ③ 由②解得 4x4 ④ 由③和④求公共部分,得 4 x 或 0 x 故函数的定义域为(4, ] (0,] 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知f(x)的定义域,求f [g(x)]的定义域。 (2)其解法是:已知f (x)的定义域是]a , b ]求f [g(x)]的定义域是解a g(x) b , 即为所求的定义域。 例3已知f(x)的定义域为[—2, 2],求f (x 2 3 x 3,故函数的定义域是{x | x (2)已知f [g(x)]的定义域,求f(x)的定义域。 其解法是:已知f [g(x)]的定义域是]a , b ],求f(x)定义域的方法是:由 a x b ,求 g(x)的值域,即所求f(x)的定义域。 例4已知f(2x 1)的定义域为]1,2],求f(x)的定义域。 解:因为 1 x 2,2 2x 4,3 2x 1 5。 即函数f(x)的定义域是{x 13 x 5}。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为 R ,求 参数的范围问题通常是转化为恒成立问题来解决。 例5已知函数y . mx 2 6mx m 8的定义域为R 求实数m 的取值范围。 分析:函数的定义域为 R ,表明mx 2 6mx 8 m 0 ,使一切x € R 都成立,由x 2项 例1求函数y ,x 2 2x 15 |x 3| 8 的定义域。 |x 3| 8 0 ② 由①解得 x 3或x 5。 由②解得 x 5或x 11 解:令 2 x 2 1 2 ,得 1 x 2 3,即 0 x 2 3,因此0 | x | 3,从而 1)的定义域。 3}。 ③和④求交集得x 3且x 故所求函数的定义域为 {x |x

函数值域的求法(精选例题)

函数值域的求法 1、(观察法)求下列函数的值域 (1)求函数y1=121 1x +的值域 (]1,0 (2)求函数y1=2-x 的值域。 (]2-,∞ 2、(配方法)求下列函数的值域 (1)求函数225,[1,2]y x x x =-+∈-的值域 ][84, (2)求函数y =的值域: ][20, (3),x y 是关于m 的方程2260m am a -++=的根,则()()2211x y -+-的最小值是( ) C A.-1241 B.18 C.8 D.43

3、(换元法)求下列函数的值域 (1)21y x =+[)∞+,3 (2)4y x =++ ][234,1+ (3)求函数y=32 ++x x 的值域 ??????21,0 (4)求函数y = ][2,1 (5)求函数 y=12243++-x x x x 的值域 ??????41,41-

4、(分离常数法)求下列函数的值域 (1)求值域(1)1 (4)2x y x x -=≥-+ ()??? ???∞+∞,,251- (2)求函数122+--=x x x x y 的值域。 ?????? 131 -, 5、(判别式法)求下列函数的值域 (1)求函数的值域2222 1x x y x x -+=++ ][51, (2)求函数3274222++-+=x x x x y 的值域。 ?????? 229 -, (3)已知函数12)(22 +++=x b ax x f x 的值域是[1,3 ],求实数a , b 的值. a=2或-2,b=2

6、(单调性法)求下列函数的值域 (1)求函数32()2440f x x x x =+-,[3,3]x ∈-的最小值。 (2)-48f = (2)设函数f(x)=ln(2x +3)+x 2.求f(x)在区间???? ??-34,14上的最大值和最小值. max 171()=ln +4216()f f x = min 11(-)=ln 2+24()f f x = 7、(数形结合法)求下列函数的值域 (1)求函数y=4 1362+-x x 4-542++x x 的值域 (]265-, (2)求函数y=4 12++x x 4-1 - 2 +x x 的值域 ()1,1-

函数定义域值域求法(全十一种)

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ???>-≥②①0 x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤ ≤-。

值域经典题型

值域简单练习题 1.求6)(2+-=x x x f 在[]11, -上的值域 2.求函数132)(++= x x x f 的值域 3. 求函数1 33)(2+++=x x x x f 的值域 4.求函数x x x f -+=1)(的值域 5.1321 3)(x x +?-=x f 6.1)(22 +--=x x x x x f 7.x -1x 3131)(-+=x f 8.x x x f +-+=243)( 9.2x 2x -)(2++=x f 10.y =11.2256y x x =-++ 12.2cos 1 3cos 2x y x +=- 13. 求函数()1y x =≥的值域。

值域的求法加强练习题 解答题(共10小题) 1.已知函数的定义域为集合A,函数的值域为集合B,求A∩B和(C R A)∩(C R B). 2.已知函数f(x)=x2﹣bx+3,且f(0)=f(4). (1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合; (2)求函数y=f(x)在区间(0,3]上的值域. 3.求函数的值域:. 4.求下列函数的值域: (1)y=3x2﹣x+2;(2);(3); (4);(5)(6); 5.求下列函数的值域 (1); (2); (3)x∈[0,3]且x≠1;

(4). 6.求函数的值域:y=|x﹣1|+|x+4|. 7.求下列函数的值域. (1)y=﹣x2+x+2;(2)y=3﹣2x,x∈[﹣2,9];(3)y=x2﹣2x﹣3,x∈(﹣1,2];(4)y=.8.已知函数f(x)=22x+2x+1+3,求f(x)的值域. 9.已知f(x)的值域为,求y=的值域. 10.设的值域为[﹣1,4],求a、b的值.

高中数学求函数值域的7类题型和16种方法

求函数值域的7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞???? ,当0a <时的值域为 24,4ac b a ?? --∞ ??? ., 3.反比例函数()0k y k x =≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R. 6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠ 当其定义域为R ,其值域为R ; 2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。 题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值)

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一) 一、复习准备: 1.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、讲授新课: (一)函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 (1)一次函数y=ax+b (a≠0)的定义域是R,值域也是R; (2)二次函数2 y ax bx c =++(a≠0)的定义域是R,值域是B;当a>0时,值域244ac b B y y a ??-??=≥?????? ;当a﹤0时,值域244ac b B y y a ??-??=≤?????? 。(3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。(二)区间及写法: 设a 、b 是两个实数,且a≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。 巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0} (三)例题讲解: 例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。 变式:求函数223, {1,0,1,2}y x x x =-+∈-的值域 例2.已知函数1()2f x x =+,(1)求()()2 (3),(),33f f f f --的值;(2) 当a>0时,求(),(1)f a f a -的值。(四)课堂练习: 1.用区间表示下列集合: {}{}{}{} 4,40,40,1,02x x x x x x x x x x x x ≤≤≠≤≠≠-≤>且且或2.已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)的值; 3.课本P 19练习2。

函数值域的求法及例题

函数值域的求法 在函数概念的三要素中,定义域和对应法则是最基本的,值域是由定义域和对应法则所确定,因此,研究值域仍应注重函数对应法则的作用和定义域对值域的制约,以下试举例说明常用方法. [例1]:求下列函数的值域 (1)y =1-2x (x ∈R ) (2)y =|x |-1 x ∈{-2,-1,0,1,2} (3)y =x 2+4x +3 (-3≤x ≤1) (4)y =|x +1|-|x -2| (5)y =2x -3+134-x (6)y =2 224)1(5 +++x x x (7)y =5 21+-x x (8)y =1223222++--x x x x (9)y =3-2x -x 2 x ∈[-3,1] (10)y =2 1322+-x x 分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域. 对于(1)(2)可用“直接法”根据它们的定义域及对应法则得到(1)(2)的值域. 对于(3)(4)可借助数形结合思想利用它们的图象得到值域,即“图象法”. 对于(5)(6)可借用整体思想利用“换元法”求得值域. 对于(7)可将其分离出一个常数,即利用“分离常数法”求得它的值域. 对于(8)可通过对“Δ”的分析,即利用“判别式”法求得其值域. 对于(9)(10)可“通过中间函数的值域去求所求函数的值域”这一方法即“中间媒介法”求得其值域. 解:(1)y ∈R (2)y ∈{1,0,-1} (3)画出y =x 2+4x +3(-3≤x ≤1)的图象,如图所示,当x ∈[-3,1] 时,得y ∈[-1,8] (4)对于y =|x +1|-|x -2|的理解,从几何意义入 手,即利用绝对值的几何意义可知,|x +1|表示在数轴上表示x 的点到点-1的距离,|x -2|表示在数轴上表示x 的点到点2的距离,在数轴上任取三个点x A ≤-1,-1<x B <2,x C ≥c ,如图所示,可以看出|x A +1|-|x A -2|=-3 -3<|x B +1|-|x B -2|<3,|x C +1|-|x C -2|=3,由此可知,对于任意实数x ,都有-3≤|x +1|-|x -2|≤3所以函数y =|x +1|-|x -2|的值域为y ∈[-3,3] (5)对于没有给定自变量的函数,应先考查函数的定义域,再求其值域. ∵4x -13≥0 ∴x ∈[4 13 ,+∞)令t =134-x 则得:x =4132+t

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

高中数学求函数值域的方法十三种审批稿

高中数学求函数值域的 方法十三种 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

高中数学:求函数值域的十三种方法 一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性 八、函数单调性法(☆) 九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、 十三、一一映射法 十四、 多 种 方 法 综 合 运 用 一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。 【例1】 求函数1y =的值域。 11≥, ∴函数1y =的值域为[1,)+∞。 【例2】求函数 x 1 y = 的值域。 【解析】∵0x ≠ ∴0 x 1≠ 显然函数的值域是: ),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1- =f f,()1 1- f所以: = 2 0= f,()()0 ∈ 3 x,而()()3 -f = 1= {}3,0,1- ∈ y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x∈,则函数的值域为{}1 y。 y ≥ |- 二.配方法:配方法式求“二次函数类”值域的基本方法。形如2 =++的 F x af x bf x c ()()() 函数的值域问题,均可使用配方法。 【例1】求函数225,[1,2] y x x x =-+∈-的值域。 【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,故函数的值域是:[4,8] 【变式】已知,求函数的最值。 【解析】由已知,可得,即函数是定义在区间上的二次函数。将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐标不在区间内,如图2所示。函数的最小值为,最大值为。 图2

求值域的方法,带例题

1.直接观察法:利用常见函数的值域来求值域或者通过对函数定义域、性质或者图像的观察,结合函数的解析式,求得函数的值域。 一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠= k x k y 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R , 当a>0时,值域为{a b ac y y 44|2-≥};当a<0时,值域为{a b a c y y 44|2 -≤}. 练习1.求下列函数的值域 ① y=3x+2 (-1≤x ≤1) ②x x f -+=42)( ③1 += x x y 2.分离常数法:分离常数法在含有两个量(一个常量和一个变量)的关系式(不等式或方程)中,要求变量的取值范围,可以将变量和常量分离(即变量和常量各在式子的一端),从而求出变量的取值范围。 练习2.求函数1 1)(+-= x x e e x f 的值域。 3.有解判别法: 有解判别法一般用于分式函数,其分子或分母只能为二次式,并且分子、分母,没有公因式,解题中要注意二次项系数是否为0的讨论 例1.求函数y=1 1 22+++-x x x x 值域 解:原式可化为1)1(22+-=++x x x x y , 整理得2(1)(1)10y x y x y -+++-=, 若y=1,即2x=0,则x=0; 若y ≠1,由题?≥0,

即0)14(-)1(22≥+y-y , 解得33 1 ≤≤y 且 y ≠1. 综上:值域{y|33 1 ≤≤y }. 例2.求函数6 6 522-++-=x x x x y 的值域(注意此题分子、分母有公因式,怎么求解呢?) 解:把已知函数化为(2)(3)36 1(2)(3)33 x x x y x x x x ---===- -+++ (x ≠2且 x ≠-3) 由此可得 y ≠1 ∵ x=2时 51-=y ∴ 5 1 -≠y ∴函数66522-++-=x x x x y 的值域为 { y| y ≠1且 y ≠5 1 -} 练习3(1)31 (1)2 x y x x +=≤- (2)22 1x x y x x -=-+ 4.二次函数在给定区间上的值域。 例3. 求下列函数的最大值、最小值与值域: ①142+-=x x y ; ②]4,3[,142 ∈+-=x x x y ; ③]1,0[,142∈+-=x x x y ④]5,0[,142∈+-=x x x y ; 注:对于二次函数)0()(2 ≠++=a c bx ax x f , ⑴若定义域为R 时, ①当a>0时,则当a b x 2-=时,其最小值 321-1-2-3 654321-1-2x O y

高中函数值域的12种解法(含练习题)

高中函数值域的12种求法 一、观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为[3,+∞]。 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二、反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y >1}) 三、配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4], ∴0≤√(-x2+x+2)≤3/2,函数的值域是[0,3/2]。 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√(15-4x)的值域。(答案:值域为{y∣y≤3}) 四、判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0(*) 当y≠2时,由Δ=(y-2)2-4(y-2)(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可

函数值域求法十一种

函数值域求法十一种 尚化春 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 例1. 求函数 x 1 y = 的值域。 解:∵0x ≠ ∴0 x 1 ≠ 显然函数的值域是:),0()0,(+∞-∞ 例2. 求函数x 3y - =的值域。 解:∵0x ≥ 3x 3,0x ≤- ≤-∴ 故函数的值域是:]3,[-∞ 2. 配方法 配方法是求二次函数值域最基本的方法之一。 例3. 求函数]2,1[x ,5x 2x y 2 -∈+-=的值域。 解:将函数配方得:4)1x (y 2 +-= ∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y m i n =,当1x -=时,8y m a x = 故函数的值域是:[4,8] 3. 判别式法 例4. 求函数2 2 x 1x x 1y +++= 的值域。 解:原函数化为关于x 的一元二次方程 0x )1y (x )1y (2 =-+- (1)当1y ≠时,R x ∈ 0)1y )(1y (4)1(2 ≥----=? 解得:23y 2 1 ≤ ≤ (2)当y=1时,0x =,而? ?? ???∈23,211

高一数学《函数的定义域值域》练习题

函数值域、定义域、解析式专题 一、函数值域的求法 1、直接法: 例1:求函数y = 例2:求函数1y 的值域。 2、配方法: 例1:求函数242y x x =-++([1,1]x ∈-)的值域。 例2:求 函 数]2,1[x ,5x 2x y 2 -∈+-= 的 值域。 例3:求函数2256y x x =-++的值域。 3、分离常数法: 例1:求函数125 x y x -=+的值域。 例2:求函数1 22+--=x x x x y 的值域. 例3:求函数1 32 x y x -=-得值域. 4、换元法: 例1:求函数2y x = 例2: 求 函 数1x x y -+=的 值 域。 5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。 例1:求函数y x = 例2:求函数()x x x f -++=11的值域。

例3:求 函 数1x 1x y --+=的 值 域。 6、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。 例1:求函数|3||5|y x x =++-的值域。 7、非负数法 根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。 例1、(1)求函数216x y -=的值域。 (2)求函数1 3 22+-=x x y 的值域。 二、函数定义域 例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域. 例3:求下列函数的定义域: ① 2 1 )(-= x x f ; ② 23)(+=x x f ; ③ x x x f -+ += 21 1)( 例4:求下列函数的定义域: ④ 14)(2--=x x f ⑤ ②2 14 3)(2-+--= x x x x f ⑥ 3 7 3132+++-= x x y ④x x x x f -+= 0)1()( 三、解析式的求法 1、配凑法 例1:已知 :23)1(2 +-=+x x x f ,求f(x);

高中数学求函数值域的类题型和种方法

高中数学求函数值域的类 题型和种方法 Last updated on the afternoon of January 3, 2021

求函数值域的 7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞?? ?? ,当0a <时的值域为24,4ac b a ?? --∞ ???., 3.反比例函数()0k y k x = ≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R.

6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠当其定义域为R ,其值域为R ; 2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。 题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值) 1、二次函数)0()(2≠++=a c bx ax x f ,当其定义域为R 时,其值域为 ()()22 4 044 04ac b y a a ac b y a a ?-≥>???-?≤时,()2b f a -是函数的最小值,最大值为(),()f m f n 中 较大者;当0a <时,()2b f a -是函数的最大值,最大值为 (),()f m f n 中较小者。 (2)若[],2b m n a - ?,只需比较(),()f m f n 的大小即可决定函数的最大(小)值。 特别提醒: ①若给定区间不是闭区间,则可能得不到最大(小)值; ②若给定的区间形式是[)(]()(),,,,,,,a b a b +∞-∞+∞-∞等时,要结合图像来确函数的值域; ③当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论。 例1:已知()22f x x --的定义域为[)3,-+∞,则()f x 的定义域为(],1-∞。 例2:已知()211f x x -=+,且()3,4x ∈-,则()f x 的值域为()1,17。 题型三:一次分式函数的值域 1、反比例函数)0(≠= k x k y 的定义域为{}0x x ≠,值域为{}0y y ≠ 2、形如:cx d y ax b +=+的值域:

高考求函数值域及最值得方法及例题_训练题

函数专题之值域与最值问题 一.观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域. 例1:求函数) + =的值域. y- 3x 3 2( 点拨:根据算术平方根的性质,先求出) -的值域. 3 2(x 解:由算术平方根的性质,知) 2(x -≥3。∴函数的值域为) 3 -≥0,故3+) 2(x 3 ,3[+∞ . 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算 术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域. 例2:求函数y=(x+1)/(x+2)的值域. 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数, 故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。 这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1})三.配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域. 例3:求函数y=√(-x2+x+2)的值域. 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。 此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。 配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法:若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4:求函数y=(2x2-2x+3)/(x2-x+1)的值域. 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。

LS 高一数学函数值域求法及例题

君子有三乐,而王天下不与存焉。父母俱存,兄弟无故,一乐也;仰不愧于天,俯不怍于人,二乐也;得天下英才而教育之,三乐也。 函数值域(最值)的常用方法 姓名: 一、基本函数的值域: 一次函数()0y kx b k =+≠的值域为R . 二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ??-+∞????, 当0a <时的值域为24,4ac b a ??--∞ ?? ?. 反比例函数()0k y k x =≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >. 对数函数()log 01a y x a a =>≠且的值域为R . 正,余弦函数的值域为[]1,1-,正,余切函数的值域为R . 二、其它函数值域 一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数) 1、求242-+-=x y 的值域. 2 、求函数y = 的值域. 二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域) 1、求函数][)4,0(422∈+--=x x x y 的值域. 说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制. 2、若,42=+y x 0,0>>y x ,试求xy 的最大值。

三、反表示法(分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型) 对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别为其反函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义域的方法求原函数的值域。 1、求函数1 2+= x x y 的值域. 2、求函数2241x y x +=-的值域. 四、判别式法(分子、分母中含有二次项的函数类型,此函数经过变形后可以化为 0)()()(2=++y C x y B x y A 的形式,再利用判别式加以判断) 1、求函数3 274222++-+=x x x x y 的值域. 2、求函数2122 x y x x += ++的值域. 3、 五、换元法(通过简单的换元把一个函数变为简单函数,其题型特征是无理函数、三角函数(用 三角代换)等) 1、求函数x x y 41332-+-=的值域. 六、数形结合法(对于一些能够准确画出函数图像的函数来说,可以先画出其函数图像,然后利用函数图像求其值域) 1、求函数13y x x =-+-的值域。 七、不等式法(能利用几个重要不等式及推论来求得最值.(如:ab b a ab b a 2,222≥+≥+), 利用此法求函数的值域,要合理地添项和拆项,添项和拆项的原则是要使最终的乘积结果中不含自变量,同时,利用此法时应注意取""=成立的条件.) 1、求函数1(0)y x x x =+>的值域.

函数值域求法十一种(可编辑修改word版)

x x x x 函数值域求法十一种 1.直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 y =1 例1. 求函数x 的值域。 解:∵x ≠ 0 1 ≠ 0 ∴x 显然函数的值域是:(-∞,0) (0,+∞) 例2. 求函数y = 3 -的值域。 解 :∵ ≥ 0 ∴-≤ 0,3 -≤ 3 故函数的值域是:[-∞,3] 2.配方法 配方法是求二次函数值域最基本的方法之一。 例3. 求函数y = x 2- 2x + 5, x ∈[-1,2] 的值域。解:将函数配方得:y = (x - 1) 2+ 4 ∵x ∈[-1,2] 由二次函数的性质可知:当x=1 时,y min = 4 ,当x =-1时,y max = 8故函数的值域是:[4,8] 3.判别式法例 4. 求函数y = 1 + x + x2 1 + x2的值域。 解:原函数化为关于x 的一元二次方程(y - 1)x 2+ (y - 1)x = 0 (1)当y ≠ 1时,x ∈R ?= (-1) 2- 4(y - 1)(y - 1) ≥ 0 1 ≤ y ≤ 3 解得:2 2 1∈?1 , 3 ? (2)当y=1 时,x = 0 ,而??2 2 ??

? 1 , 3 ? 故函数的值域为?? 2 2 ? ? 例5. 求函数y = x + 的值域。 解:两边平方整理得:2x 2 - 2(y + 1)x + y 2 = 0 (1) ∵x ∈R ∴? = 4(y + 1) 2 - 8y ≥ 0 解得:1 - ≤ y ≤ 1 + 但此时的函数的定义域由x(2 - x) ≥ 0 ,得0 ≤ x ≤ 2 由? ≥ 0 ,仅保证关于x 的方程:2x 2 - 2(y + 1)x + y 2 = 0 在实数集R 有实根, 而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 ? 1 , 3 ? ? ≥ 0 求出的范围可能比y 的实际范围大,故不能确定此函数的值域为?? 2 2 ? ? 。 可以采取如下方法进一步确定原函数的值域。 ∵0 ≤ x ≤ 2 ∴y = x + ∴y min = 0, y = 1 + x 1 = ≥ 0 代入方程(1) ∈[0,2] 解得: 2 + 即当 x 1 = 2 - 24 2 2 时, 原函数的值域为:[0,1 + 2 ] 注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时, 应综合函数的定义域,将扩大的部分剔除。 4. 反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函 数的值域。 3x + 4 例6. 求函数5x + 6 值域。 x = 4 - 6y 解:由原函数式可得: y = 4 - 6y 5y - 3 x ≠ 3 则其反函数为: 5x - 3 ,其定义域为: 5 x(2 - x) 2 2 x(2 - x) 2 2 + 2 - 24 2 2

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

相关主题
文本预览
相关文档 最新文档