当前位置:文档之家› 雷击浪涌试验细则

雷击浪涌试验细则

雷击浪涌试验细则
雷击浪涌试验细则

浙江中凯科技股份有限公司

雷击浪涌试验细则

1 试验环境布置

考虑试验安全性问题,建议将试验设备LSG506A以及CDN-532A接地。

LSG背面板

接地线

参考接地板

图1 浪涌试验环境布置

1.1 EUT电源端的试验配置

EUT电源端的试验包括AC主回路三相的试验和控制模块供电端子单相的试验。各项试验中包括线-线与线-地两种方式。示意图分别见图2-图5。

第 1 页共12 页

浙江中凯科技股份有限公司

图2 交流线(三相)上电容耦合的试验配置,线-线

图3交流线(三相)上电容耦合的试验配置,线-地

第 2 页共12 页

浙江中凯科技股份有限公司

图 4 交/直流上电容耦合的配置,线-线

图 5 交/直流上电容耦合的配置,线-地

注:图2-图5为干扰叠加在电源线上的原理图,并不是进行试验时我们的接线图。

1.2 EUT非屏蔽互联线的试验配置

第 3 页共12 页

浙江中凯科技股份有限公司

第 4 页 共 12 页

图6 非屏蔽互连线的试验配置,电容耦合方式

注:此方法用于对EUT 的I/O ,控制线端子进行浪涌试验。需使用40欧姆的电阻,以保护EUT 受试设备。

1.3 EUT 屏蔽通信线的试验配置

图7 屏蔽线的试验配置,直接施加

根据GB17626.5中7.6节的要求,非金属外壳产品的屏蔽线试验,可以直接施加在屏蔽线上。如上图所示,以共模的方式将浪涌干扰加到屏蔽线层上。

浙江中凯科技股份有限公司

第 5 页 共 12 页

2 CPS 试验方法

2.1 KB0-T 、KB0-R 、KB0-B 的 AC 主回路电源端口试验

(1)试验判据

标准中无明确要求,参照试验判据表1,给出试验结果。 (2)施加干扰电压水平

主回路电源线的试验水平为线-地4kV ,线-线2kV 。脉冲在正负两个极性进行,相角为0°、90°。在每一极性和相角施加5次脉冲(共20个脉冲),每个脉冲之间的时间间隔为1min 。

(3)受试设备接线方式

KB0-T 、KB0-R 和KB0-B 主回路串联,进行线-线、线-地试验的接线方式分别如图8、9所示。图8中左图所示为标准中规定的受试设备的AC 主回路接线图,即将主回路三相串联,并用升流器分别给受试设备提供0.9倍和2倍的额定电流(0.9倍时,EUT 中的脱扣器应不动作,2倍额定电流时应在规定的时间内动作)。由于使用了升流器给EUT 供电,因此LSG 试验设备中的EUT 电源不接(悬空)。

升流器

L N PE

LSG本机开关

01

背面板

正面板

LSG试验设备

接地

01内置CDN EUT电源

本机电源

EUT

AC 主回路

图8 AC 主回路浪涌试验电路,线-线

浙江中凯科技股份有限公司

第 6 页 共 12 页

升流器

L N PE

LSG本机开关

01

背面板

正面板

LSG试验设备

接地

01内置CDN EUT电源

本机电源

AC 主回路

图9 AC 主回路浪涌试验电路,线-地

2.2KB0-T 、KB0-R 、KB0-B 的 控制回路供电端口试验

(1)试验判据

必须符合表1中判据A 。 (2)施加干扰电压水平

对于连接至主回路的辅助电路试验水平为线-地4kV ,线-线2kV 。对于不连接至主回路的辅助电路试验水平为线-地2kV ,线-线1kV 。脉冲在正负两个极性进行,相角为0°、90°。在每一极性和相角施加5次脉冲(共20个脉冲),每个脉冲之间的时间间隔为1min 。

(3)EUT 接线方式

为了测试从控制回路注入的干扰是否会引起脱扣器的误动,EUT 主回路需要按照图 的方式三相串联,并用升流器分别提供其0.9倍和2倍的额定电流。对于控制回路的接线方式。此项试验需要通过LSG 试验设备给EUT 控制回路电源端子供电,为了防止漏电保护装置跳闸,在EUT 供电前端需串入一个单相隔离变压器。控制回路的电源试验也分线-线和线-地两种方式。具体的接线图如下图10所示:

浙江中凯科技股

有限公司

第 7 页 共 12 页

L N PE

LSG本机开关

01

背面板

正面板

LSG试验设备

接地

01内置CDN 本机电源

EUT 控制回路电源端子L

N 升流器

AC 主回路

EUT

EUT电源

N 单相隔变

L L

L

图10 控制回路电源端子浪涌试验电路,L-N ,L-地,N-地

2.3KB0-T 、KB0-R 、KB0-B 的I /O 端子、控制电路端子试验

I /O 端子、控制电路端子试验配置见本文1.2节。

该试验线-线2KV ,线-地1KV ,试验不需要使用保护电路。试验频率为1min 一次,正负极性各施加5次。

此项试验由于缺乏耦合网络,暂不进行。

2.4KB0-T 、KB0-R 、KB0-B 的通信线试验

屏蔽通信线的试验配置见本文1.3节。

试验电压水平为2KV 。试验频率为1min 一次,正负极性各施加5次。

3 双电源控制器试验方法

3.1 双电源控制器电源端子试验方法

(1)试验判据

必须符合表2中判据1。 (2)施加干扰电压水平

浙江中凯科技股份有限公司

第 8 页 共 12 页

试验水平为线-地2kV ,线-线1kV 。脉冲在正负两个极性进行,相角为0°、90°。在每一极性和相角施加5次脉冲,每个脉冲之间的时间间隔为1min 。

(3)EUT 接线方式

此项试验需要通过LSG 试验设备给EUT 控制回路电源端子供电,为了防止漏电保护装置跳闸,在EUT 供电前端需串入单相隔离变压器。控制回路的电源试验也线-线和线-地两种方式。具体的接线图如下图11所示:

L N PE

LSG本机开关

01

背面板

正面板

LSG试验设备

接地01内置CDN EUT电源

本机电源

L N PE

单相

隔变双电源控制器电源端子

A B C N PE A

B

C

N

PE

常电备电

图11 MZ 电源端子浪涌试验电路,L-N ,L-地,N-地

3.1 双电源控制器通信线试验方法

同CPS 通信线试验方法,见本文2.4节。

4 试验操作步骤

4.1 AC 主回路试验步骤

1) 将受试设备、辅助设备以及试验设备按照本文第1部分的要求进行试验

布置(LSG 设备接地),按照第3部分的要求进行接线:首先,将EUT 的AC 主回路串联,将LSG 试验设备中的EUT 供电端子悬空,再将LSG 正面板上的L 、N 线接到EUT 主回路端子上,接线图详见图8,图9。 2) 使用升流器给主回路供0.9倍额定电流,使用普通的单相电网给EUT

浙江中凯科技股份有限公司控制回路供电。

3)按下POWER开关(18),打开仪器电源,见图12.

4)如果需要典型同步注入方式,可按下PH.ALT(9)键,当PH.ALT指示

灯亮起时,表示该功能启动,仪器将在当前极性状态下自动进行相位的

切换,具体方式如下:如果当前仪器的极性是正极性,则仪器将根据用

户设定的浪涌次数以及间隔时间在0度相位上连续输出浪涌,当到达用

户设定的浪涌次数后,仪器不会自动停机。而是切换到90度相位上再次

输出相同次数的浪涌后停机。如果当前仪器的极性是负极性,则仪器将

根据用户设定的浪涌次数以及间隔时间在0度相位上连续输出浪涌,当

到达用户设定的浪涌次数后,仪器不会自动停机。而是切换到270度相

位上再次输出相同次数的浪涌后停机。当ALT功能(自动极性切换功能)

也启动的情况下,仪器将根据用户设定的浪涌次数以及间隔时间在0度、

90度(正极性状态下)和0度、270度(负极性状态下)连续输出4个循

环组合的浪涌。

5)通过对(15)、(16)、(17)、(18)等按键功能的组合操作,选择适当

的试验方式(共模/差模),启动耦合去耦网络EUT电源(14),使EUT处于正常工作状态。

6)按下H.V. ON(10)键,启动高压电源。调节电压调节旋钮使电压达到

试验所需电压。

7)按下START/PAUSE(12)键,START指示灯亮起,仪器即根据预先设

定好的参数工作。若试验过程中需要暂停浪涌输出时,再按

START/PAUSE(12)键,START指示灯熄灭,PAUSE灯亮起,则仪器

进入暂停状态,浪涌输出停止,但仪器内部仍然存在高压!需要继续试

验时,再按START/PAUSE(12)键,仪器将继续工作。

8)试验完毕关机步骤:

9)待仪器运行完所设定内容自行结束,或按STOP(13)键停止浪涌输出。

10)逆时针把电压调节旋钮旋到底

11)按H.V. OFF(11)键关闭仪器高压电源。

12)关闭被试仪器,关闭耦合去耦网络EUT电源,关闭耦合去耦网络电源。

13)取下SURGE OUT端子上的的输出线。

14)关闭仪器工作电源。

第9 页共12 页

浙江中凯科技股份有限公司

图12 LSG-506A前面板示意图

4.2 控制回路电源端子试验步骤

1)将受试设备、辅助设备以及试验设备按照本文第1部分的要求进行试验

布置(LSG设备接地),按照第3部分的要求进行接线:串接隔变,采

用LSG设备中的EUT回路供电,将LSG设备前面板上的L线与N线

分别连接到EUT的控制端子上,如图10所示方式接线。

2)使用升流器给主回路供0.9倍额定电流。

3)接下的操作同4.2.

4.3 屏蔽通信线试验步骤

1)按照1.3节进行试验布置。

2)将LSG设备的EUT电源悬空。

3)设置试验参数。

4)用LSG设备前面板上的“L”引出线接触通信线的屏蔽层。

5)接下的操作同4.1

第10 页共12 页

浙江中凯科技股份有限公司注:为保证仪器的安全,本仪器在控制上采取以下保护措施:

1、当关闭高压电源时(即在HV ON状态下按HV OFF键)设备内部有2秒固定放

电时间,在该时间内,设备将不响应面板上任何按键操作。

2、本设备允许在高压状态下切换极性。在HV ON状态下按SET键切换极性,设备内部也需要2秒固定放电时间,同样在该时间内,设备将不响应面板上任何按

键操作。

5 试验判据

5.1 CPS的试验判据

CPS应满足GB14048.11中的可接受判据A。如表1所示。然而,试验过程中监测功能的暂时变化(例如不期望的LED发光)是可以接受的,这种情况应在试验后验证监测功能的正确性。

表1 CPS电磁兼容试验可接受判据

第11 页共12 页

浙江中凯科技股份有限公司

5.2 双电源控制器的试验判据

双电源应满足GB14048.9中的可接受判据1。如表2所示:

表2 双电源控制器的电磁兼容试验判据

第12 页共12 页

浪涌抗扰度试验

浪涌冲击抗扰度测试及整改参考 浪涌冲击抗扰度测试及整改参考 1. 浪涌冲击形成的机理 电磁兼容领域所指的浪涌冲击一般来源于开关瞬态和雷击瞬态。 系统开关瞬态与以下内容有关: a )主电源系统切换骚扰,例如电容器组的切换; b )配电系统内在仪器附近的轻微开关动作或者负荷变化; c )与开关装置有关的谐振电路,如晶闸管; d )各种系统故障,例对设备组接地系统的短路和电弧故障。 雷击瞬态 雷电产生浪涌(冲击)电压的主要原理如下: a)直接雷击于外部电路(户外),注入的大电流流过接地电阻或外部电路阻抗而产生电压; b)在建筑物内、外导体上产生感应电压和电流的间接雷击(即云层之间或云层中的雷击或击于附近物体的雷击,这种雷击产生的磁场);c)附近直接对地放电地雷电入地电流耦合到设备组接地系统的公共接地路径。 当保护装置动作时,电压和电流可能发生迅速变化,并可能耦合到内部电路。 2. 试验内容: 对电气和电子设备的供电电源端口、信号和控制端口在受到浪涌(冲击)干扰时的性能进行评定。 3 .试验目的: 评定设备在遭受到来自电力线和互连线上高能量浪涌(冲击)骚扰时产品的性能。 4.试验发生器(雷击浪涌发生器) a)信号发生器特性应尽可能地模拟开关瞬态和雷击瞬态现象; b)如果干扰源与受试设备的端口在同一线路中,例如在电源网络中(直接耦合),那么信号发生器在受试设备的端口能够模拟一个低阻抗源; c)如果干扰源与受试设备的端口不在同一线路中(间接耦合),那么信号发生器能够模拟一个高阻抗源。 对于不同场合使用的产品及产品的不同端口,由于相应的浪涌(冲击)瞬态波形各不相同,因此对应模拟信号发生器的参数也不相同。 5.试验实施 电源、信号和其他功能电量应在其额定的范围内使用,并处于正常的工作状态。 根据要进行试验的EUT的端口类型选择相应的试验试验波形发生器和耦合单元及相应的信号源内阻。 使受试设备处于典型工作条件下,根据受试设备端口及其组合,依次对各端口施加冲击电压,。 每种组合应针对不同脉冲极性进行测试,两次脉冲间隔时间不少于1min。 对电源端子进行浪涌测试时,应在交流电压波形的正、负峰值和过零点分别施加试验电压。 对电源线和信号线应分别在不同组合的共模和差模状态下施加脉冲冲击。 每种组合状态至少进行5次脉冲冲击。 若需满足较高等级的测试要求,也应同时进行较低等级的测试。 只有两者同时满足,我们才认为测试通过。 6.试验结果 若电快速速变脉冲群测试通不过,可能产生如下后果: (1 )引起接口电路器件的击穿损坏。 (2 )造成设备的误动作。 7.导致浪涌冲击抗扰度试验失败的原因 浪涌脉冲的上升时间较长,脉宽较宽,不含有较高的频率成分,因此对电路的干扰以传导为主。主要体现在过高的差模电压幅度导致输入器件击穿损坏,或者过高的共模电压导致线路与地之间的绝缘层击穿。由于器件击穿后阻抗很低,浪涌发生器产生的很大的电流随之使器件过热发生损坏。对于有较大平滑电容的整流电路,过电流使器件损坏也可能是首先发生的。

开关电源适配器浪涌抗扰实验分析

开关电源适配器浪涌抗扰实验分析 自从开关电源适配器开始实行标准以来,我国在1999年和2008年推出了两个有关雷击浪涌抵抗的相关标准。这两个标准分别对应国际上的两种现行标准。虽然与雷击浪涌有关的GB/T17626.5规定在我国已经有两个版本,但因为大多数国内产品迟迟未根据新标准进行修订,所以造成了 GB/T17626.5-1999和GB/T17626.5-2008两个标准并存的局面。本文将为大家介绍开关电源适配器雷击浪涌抗扰度实验方法,以及实验等级。 ?标准主要模拟间接雷击(开关电源通常都无法经受直接雷击),如雷电击中户外电网线路,有大量电流流入外部线路或接地电阻,因而产生了干扰电压;间接雷击(如云层间或云层内的雷击)在外部线路上感应出的脉冲电压和电流;雷电击中线路邻近物体,在其周围建立强大电磁场,在外部线路上感应出电压;雷电击中附近地面,地电流通过公共接地系统时所引进的干扰。 ?电源适配器在浪涌抗扰试验标准处模拟自然界的雷击外,还提到了变电所等场合,因为开关动作而引进的干扰,如主电源系统切换时的干扰;同一电网,在靠近开关电源适配器附近的一些小开关跳动时形成的干扰;切换伴有谐振线路的晶闸管设备;各种系统性的故障,如设备接地网络或者接地系统间的短路和飞弧故障。 ?雷击浪涌抗扰度试验方法 ?1、根据试验品的实际使用和安装条件进行布局和配置,包括有些标准会改变体现波形发生器信号内阻的附加电阻。 ?2、根据产品要求来定试验电压的等级及试验部位。 ?3、在每个选定的试验部位上,正、负极性的干扰至少要各加5次,每次浪涌的最大重复率为1次/min。因为大多数系统用的保护装置在两次浪涌之间

雷击浪涌试验详细介绍

,. 雷击浪涌试验细则 1 试验环境布置 考虑试验安全性问题,建议将试验设备LSG506A以及CDN-532A接地。 LSG背面板 接地线 参考接地板 图1 浪涌试验环境布置 1.1 EUT电源端的试验配置 EUT电源端的试验包括AC主回路三相的试验和控制模块供电端子单相的试验。各项试验中包括线-线与线-地两种方式。示意图分别见图2-图5。

,. 图2 交流线(三相)上电容耦合的试验配置,线-线 图3交流线(三相)上电容耦合的试验配置,线-地 耦合网络

,. 图4 交/直流上电容耦合的配置,线-线 图5 交/直流上电容耦合的配置,线-地 注:图2-图5为干扰叠加在电源线上的原理图,并不是进行试验时我们的接线图。 1.2 EUT非屏蔽互联线的试验配置

,. 图6 非屏蔽互连线的试验配置,电容耦合方式 注:此方法用于对EUT 的I/O ,控制线端子进行浪涌试验。需使用40欧姆的电阻,以保护EUT 受试设备。 1.3 EUT 屏蔽通信线的试验配置 图7 屏蔽线的试验配置,直接施加 根据GB17626.5中7.6节的要求,非金属外壳产品的屏蔽线试验,可以直

,. 接施加在屏蔽线上。如上图所示,以共模的方式将浪涌干扰加到屏蔽线层上。 2 CPS 试验方法 2.1 KB0-T 、KB0-R 、KB0-B 的 AC 主回路电源端口试验 (1)试验判据 标准中无明确要求,参照试验判据表1,给出试验结果。 (2)施加干扰电压水平 主回路电源线的试验水平为线-地4kV ,线-线2kV 。脉冲在正负两个极性进行,相角为0°、90°。在每一极性和相角施加5次脉冲(共20个脉冲),每个脉冲之间的时间间隔为1min 。 (3)受试设备接线方式 KB0-T 、KB0-R 和KB0-B 主回路串联,进行线-线、线-地试验的接线方式分别如图8、9所示。图8中左图所示为标准中规定的受试设备的AC 主回路接线图,即将主回路三相串联,并用升流器分别给受试设备提供0.9倍和2倍的额定电流(0.9倍时,EUT 中的脱扣器应不动作,2倍额定电流时应在规定的时间内动作)。由于使用了升流器给EUT 供电,因此LSG 试验设备中的EUT 电源不接(悬空)。 升流器 L N PE LSG本机开关 01 背面板 正面板 LSG试验设备 接地 01内置CDN EUT电源 本机电源 EUT AC 主回路 开 开

雷击浪涌发生器操作规程

雷击浪涌发生器操作规程 为正确、安全、规范的使用雷击浪涌发生器,以评定样机在经受来自电力线上高能量骚扰时的性能,特制定本操作规程。 一、【注意事项】 1.试验人员必须经培训合格后才能进行设备操作; 2.当手潮湿或相对湿度超过75%时,不要使用本设备; 3.因为有高压脉冲加到输出接线端子(如,2Ω,500Ω,L1,L2,L3等端口), 如果改换接线,务必要在确认高压电源处于断开状态才能进行; 4.仪器的F.G.端子要良好接地; 5.本设备是利用高压水银开关来产生高压脉冲,严禁在设备倾斜状态下,进 行试验; 6.内带高压,请勿随意拆卸或敞开机壳工作; 7.当发生紧急情况时按EMERGENCY键仪器将迅速停止浪涌输出,关闭内部高压, 快速切断电源; 8.为保证试验的可比性和可重复性,试验配置必须规范; 9.非有关人员严禁操作本仪器。 二、【测试条件】 1.环境温度: 15℃~35℃; 2.相对湿度: 25%~75%。 三、【操作程序】 1.检查实验室雷击浪涌发生器的配置,需要按照相关标准和产品说明书进行配置, 特别注意的是仪器接地端子必须接入大地系统; 2.根据实验内容和仪器使用说明书的要求,完成相关接线,特别注意对需要接地的 设备必须接地,确认无误时再接入电网; 3.按雷击浪涌发生器使用说明书的要求,接好仪器电源和EUT电源输入端,打开前 面板上的POWER开关,并将仪器前面板的LINE ON空气开关向上合上,处于通路 状态; 4.设置参数:分别通过5个功能键选中需要设置对应的参数,再通过“△“增加健 和“▽“减小健设置。LEVEL为试验等级,试验按国标第4等级设置;VOLTAGE

雷击浪涌试验细则

. . . . 雷击浪涌试验细则 1 试验环境布置 考虑试验安全性问题,建议将试验设备LSG506A以及CDN-532A接地。 LSG背面板 接地线 参考接地板 图1 浪涌试验环境布置 1.1 EUT电源端的试验配置 EUT电源端的试验包括AC主回路三相的试验和控制模块供电端子单相的试验。各项试验中包括线-线与线-地两种方式。示意图分别见图2-图5。 . 资 料. .. .

. . . . . 资料. .. . 图2 交流线(三相)上电容耦合的试验配置,线-线 图3交流线(三相)上电容耦合的试验配置,线-地 耦合网络

. . . . . 资料. .. . 图 4 交/直流上电容耦合的配置,线-线 图 5 交/直流上电容耦合的配置,线-地 注:图2-图5为干扰叠加在电源线上的原理图,并不是进行试验时我们的接线图。 1.2 EUT 非屏蔽互联线的试验配置

. . . . . 资料. .. . 图6 非屏蔽互连线的试验配置,电容耦合方式 注:此方法用于对EUT 的I/O ,控制线端子进行浪涌试验。需使用40欧姆的电阻,以保护EUT 受试设备。 1.3 EUT 屏蔽通信线的试验配置 图7 屏蔽线的试验配置,直接施加 根据GB17626.5中7.6节的要求,非金属外壳产品的屏蔽线试验,可以直接施加在屏蔽线上。如上图所示,以共模的方式将浪涌干扰加到屏蔽线层上。

. . . . . 资料. .. . 2 CPS 试验方法 2.1 KB0-T 、KB0-R 、KB0-B 的 AC 主回路电源端口试验 (1)试验判据 标准中无明确要求,参照试验判据表1,给出试验结果。 (2)施加干扰电压水平 主回路电源线的试验水平为线-地4kV ,线-线2kV 。脉冲在正负两个极性进行,相角为0°、90°。在每一极性和相角施加5次脉冲(共20个脉冲),每个脉冲之间的时间间隔为1min 。 (3)受试设备接线方式 KB0-T 、KB0-R 和KB0-B 主回路串联,进行线-线、线-地试验的接线方式分别如图8、9所示。图8中左图所示为标准中规定的受试设备的AC 主回路接线图,即将主回路三相串联,并用升流器分别给受试设备提供0.9倍和2倍的额定电流(0.9倍时,EUT 中的脱扣器应不动作,2倍额定电流时应在规定的时间内动作)。由于使用了升流器给EUT 供电,因此LSG 试验设备中的EUT 电源不接(悬空)。 升流器 L N PE LSG本机开关 01 背面板 正面板 LSG试验设备 接地 01内置CDN EUT电源 本机电源 EUT AC 主回路 开 开 图8 AC 主回路浪涌试验电路,线-线

雷击浪涌发生器-雷击浪涌抗扰度试验首选3ctest

8 ● 超大L C D 显示,计算机控制,一次设定,自动完成测试项目; ● 试验时智能采集试品击穿电流 电压值,直接L C D 显示; ● 内置电流传感器、电压衰减器,B N C 连接示波器观测波形(高配); ● 进口电子式主开关,波形稳定,可比性强,寿命长; ● 正负自动切换,正负极性可以交替切换; ● 程控高压电源,电压稳定精度高; ● 浪涌注入相位角度0~359°自由设定; ● 内置I E C 61000-4-5标准试验等级; ● E M C K 3000测量软件保存波形和试验记录(选配); ● R S -232通讯接口,可实施远程控制。 全自动雷击浪涌模拟器 S G -5006G (台式)用于评估设备电源线和内部连接线在经受来自开关切换及自然界雷击所引起高能量瞬变干扰时的性能提供一个共同依据。 性能完全满足最新的IEC61000-4-5 和GB/T17626.5 GB/T16927.1要求。 根据客户要求可以满足A N S I C 62.41/45、U L 1449要求。 技术特点 S G -5006G 主要技术参数 0.1~3kA 2Ω±10% 1.2μs±30%50μs ±20% 自由设定0~359°IEC 四种标准试验等级10V/10kV 或6kV ,10V/5kA 或3kA 阻容耦合,其中差模时18μF 、共模时9μF /10Ω8μs ±30% 20μs±20% 正或负 正负交替输出电压波 输出阻抗浪涌注入相位内置标准等级浪涌耦合方式输出波形BNC 端口电压极性 输出电流波输出短路电流触发方式智能耦合/去耦网络(选配)工作电源电压范围 项 目 SG-5006G 0.2~6kV 同步/异步自由设置SGN-20G (三相五线,20A )SGN-5010G (单相三线,20A )单相AC220V ±10% 、50/60Hz 环境温度内包装尺寸(长×宽×高)重 量770×680×485mm 10°C ~ 40°C 约30kg

以太网在雷击浪涌测试中的应用

以太网在雷击浪涌测试中的应用 中心议题: ?以太网雷击保护的必要 ?RClamp2504N/3304N在电脑上的保护应用 解决方案: ?对以太网物理层进行保护 ?提供线对线的保护 1.以太网雷击保护 以太网是广泛用于访问和城域网络基础设施。这些接口通常必须符合GR1089雷击浪涌测试。为了防止雷电浪涌,低钳位电压是必须的. 新一代的物理层更敏感雷击。为了防止雷电浪涌,(如GR1089,IEC61000-4-5,K.20/21)和ESD事件,低钳位电压的设备是必要的。 新一代的物理层更敏感雷击。给千兆以太网保护我们开发的解决保护方案是给最敏感的PHY。 Semtech公司的RClamp3304N/2504N采用Semtech的专有的保护技术EPD。 EPD提供大量减少漏电流和电容对硅雪崩低对峙电压二极管工艺。 它们还配有一个2.5伏特和3.3伏特的真正卓越的保护工作电压。 这两个产品已被应用到桌面(个RJ45)成功。 2.RClamp2504N/3304N在电脑上的保护应用 I.IEC61000-4-5雷击规格:

Note:1)开路电压波形是10*700us 2)短路电流波形是5*310us II.解决方案: 为了选择一个强大的千兆以太网应用防雷解决方案,这个方案将用于千兆以太网的RJ-45连接器里,因此,只有保护元件的数量限制,因此,Semtech公司已提供下列解决方案: 两个RClamp2504N/3304Ns放置在物理层芯片这边,下列是原理图:

Semtech公司RClamp2504N/3304N被作为推荐的保护配置,是因为它提供了TVS的最低工作电压为2.5V或3.3V。低工作电压可以快速的瞬态响应时间,使低钳位保护电压敏感的物理层芯片。 此外,该解决方案只提供线对线的保护。线对地的保护需要特殊的RJ45连接器和好的PCB设计. III.测试结果总结 ?线对线测试结果 测试数据:

雷击浪涌试验细则

浙江中凯科技股份有限公司 雷击浪涌试验细则 1 试验环境布置 考虑试验安全性问题,建议将试验设备LSG506A以及CDN-532A接地。 LSG背面板 接地线 参考接地板 图1 浪涌试验环境布置 1.1 EUT电源端的试验配置 EUT电源端的试验包括AC主回路三相的试验和控制模块供电端子单相的试验。各项试验中包括线-线与线-地两种方式。示意图分别见图2-图5。 第 1 页共12 页

浙江中凯科技股份有限公司 耦 合 网 络 图2 交流线(三相)上电容耦合的试验配置,线-线 图3交流线(三相)上电容耦合的试验配置,线-地 第 2 页共12 页

浙江中凯科技股份有限公司 图 4 交/直流上电容耦合的配置,线-线 图 5 交/直流上电容耦合的配置,线-地 注:图2-图5为干扰叠加在电源线上的原理图,并不是进行试验时我们的接线图。 1.2 EUT非屏蔽互联线的试验配置 第 3 页共12 页

浙江中凯科技股份有限公司 第 4 页 共 12 页 图6 非屏蔽互连线的试验配置,电容耦合方式 注:此方法用于对EUT 的I/O ,控制线端子进行浪涌试验。需使用40欧姆的电阻,以保护EUT 受试设备。 1.3 EUT 屏蔽通信线的试验配置 图7 屏蔽线的试验配置,直接施加 根据GB17626.5中7.6节的要求,非金属外壳产品的屏蔽线试验,可以直接施加在屏蔽线上。如上图所示,以共模的方式将浪涌干扰加到屏蔽线层上。

浙江中凯科技股份有限公司 第 5 页 共 12 页 2 CPS 试验方法 2.1 KB0-T 、KB0-R 、KB0-B 的 AC 主回路电源端口试验 (1)试验判据 标准中无明确要求,参照试验判据表1,给出试验结果。 (2)施加干扰电压水平 主回路电源线的试验水平为线-地4kV ,线-线2kV 。脉冲在正负两个极性进行,相角为0°、90°。在每一极性和相角施加5次脉冲(共20个脉冲),每个脉冲之间的时间间隔为1min 。 (3)受试设备接线方式 KB0-T 、KB0-R 和KB0-B 主回路串联,进行线-线、线-地试验的接线方式分别如图8、9所示。图8中左图所示为标准中规定的受试设备的AC 主回路接线图,即将主回路三相串联,并用升流器分别给受试设备提供0.9倍和2倍的额定电流(0.9倍时,EUT 中的脱扣器应不动作,2倍额定电流时应在规定的时间内动作)。由于使用了升流器给EUT 供电,因此LSG 试验设备中的EUT 电源不接(悬空)。 升流器 L N PE LSG本机开关 01 背面板 正面板 LSG试验设备 接地 01内置CDN EUT电源 本机电源 EUT AC 主回路 开 开 图8 AC 主回路浪涌试验电路,线-线

雷击浪涌试验方法手册(IEC-61000-4-5)

雷击浪涌试验方法手册 2009年度版 基于 GB-T17626.5/IEC 61000-4-5 Ed2.0: 2005 https://www.doczj.com/doc/6a5543486.html,

1.1IEC 61000-4-5的定位和意义 (4) 1.2操作手册的阅读方法及注意点 (5) 1.3各篇的内容和流程图 (5) 1.3.1关于各篇的内容 (5) 1.3.2操作手册的阅读流程 (6) 2.1试验室准备篇的流程图 (8) 2.2试验室的准备 (9) 2.2.1试验室的必要条件 (9) 2.2.2气象条件等环境 (10) (1)温度的调节 (10) (2)湿度的调节 (10) (3)气压的调节 (10) 2.3试验前的准备 (11) 2.3.1试验前准备之物 (11) (1)雷击浪涌抗扰度试验器 (11) (2)耦合/去耦电路(CDN) (13) (3)绝缘变压器 (13) (4)基准接地面 (13) (5)绝缘支持台、或非金属台 (14) 2.3.2试验设备的安装和配线 (16) (1)接地电缆的连接 (16) (2)关于商用电源的连接方法 (16) (3)试验器的安装 (16) 3.1试验方法篇的流程图 (18) 3.2共同准备事项(安装及配线等) (19) 3.2.1供试装置的安装和配线 (19) (1)对电源进行试验时 (19) (2)对非屏蔽不平衡相互连接线进行试验时 (21) (3)对非屏蔽平衡相互连接线进行试验时 (23) (4)对带屏蔽相互连接线(两端接地)进行试验时 (24) (5)对带屏蔽相互连接线(单侧接地)进行试验时 (25) (6)对带多个屏蔽的相互连接线进行试验时 (26) 3.2.2供试装置的状态 (27) 3.3试验方法 (28) 3.3.1对电源进行试验时 (28) 3.3.2对相互连接线进行试验时 (29) (1)对非屏蔽连接线进行试验时 (29)

雷击浪涌测试的要求和方法

雷击浪涌测试的要求和方法 1 信号(通信)接口浪涌测试 1.1 测试目的和指标要求测试目的 考察设备在实际使用过程中用户线接口受到浪涌电压冲击后,被测接口的损坏和设备性能下降的程度。指标要求:对电话端口的浪涌测试分为类型A,和类型B两种测试。 (1) 类型A(Class A) a) 波形。差模干扰:电压波:10/560,电流波:10/560。 共模干扰:电压波:10/160,电流波:10/160。 b) 测试等级:差模:电压最小800V,电流最小100A。 共模:电压最小1500V,电流最小200A c) 测试端口:差模:tip——ring ; tip‐1 ——ring‐1;对于单项通信的4线制电缆,tip ——ring‐1,ring——tip‐1。共模:tip‐ring和tip‐1——ring‐1对地,或者对其他连接到未经认证的设备的线缆(拧到一起)。 d) 测试状态:设备的所有可能影响本标准要求的状态都要测试。如果设备状态不能通过正常上电获得,需要通过人工干预获得;没有施加浪涌的端口(包括电话端口,辅助端口以及和未认证设备连接的端口),要用适当的方式端接并处于正常使用状态;如果设备的一次电源允许插拔,则设备带有电源线和断开电源线两种状态都要测试。 e)判据允许起安全作用的电路出现开路,或者到地的短路,但在这种失效模式下,保证让用户不能使用设备,或设备具有明显失效指示(如告警),需要立即从网络上断开或需要维修。对安全电路进行修复后,设备性能和功能恢复正常。 (2) 类型B (class B) a) 波形。差模:电压波:9/720,电流波:5/320。 共模:电压波:9/720,电流波:5/320。 b) 测试等级:差模:电压最小1000V,电流最小25A。 共模:电压最小1500V,电流最小37.5A c) 测试端口:差模:tip——ring ; tip‐1 ——ring‐1;对于单项通信的4线制电缆,tip ——ring‐1,ring——tip‐1。共模:tip‐ring和tip‐1——ring‐1对地,或者对其他连接到未经认证的设备的线缆(拧到一起)。 d)测试状态:设备的所有可能影响本标准要求的状态都要测试。如果设备状态不能通过正常上电获得,需要通过人工干预获得;没有施加浪涌的端口(包括电话端口,辅助端口以及和未认证设备连接的端口),要用适当的方式端接并处于正常使用状态;如果设备的一次电源允许插拔,则设备带有电源线和断开电源线两种状态都要测试。 e) 判据设备要能够承受类型B的浪涌能量,不能造成接口电路永久性开路或者短路,不能引起影响到标准要求的设备损坏。类型A:允许起安全作用的电路出现开路,或者到地的短路,但在这种失效模式下,保证让用户不能使用设备,或设备具有明显失效指示(如告警),在这种情况下,用户需要立即从网络上断开设备进行维修。对防护电路进行修复后,设备性能和功能恢复正常。类型B:认证的终端设备和保护电路要能够承受类型B的浪涌能量,不能造成接口电路永久性开路或者短路,不能引起影响到本标准要求的设备损坏。 1.2 测试步骤

浪涌测试方法

浪涌测试方法 1、目的:为使雷击突波干扰耐受性测试时,能有统一之规范及流程可供依循,特订定本程序书,本试验的目的是仿真雷击突波对电子产品所造成的干扰,并判别其耐受性。 2、适用范围:执行雷击突波干扰耐受性测试时,适用之。此测试是为保证产品符合EMC / 89 / 336要求的EMC指标。 3、测试仪器 浪涌发生器- Haefely P Surge 6.1 耦合 / 去耦合网络 混合网络 1.2 / 50μS. U网络10 / 560μS - 10 / 160μS. U网络10 / 700μS. 4、测试装置 将浪涌发生器和网络放置在一个地参考水平面上,将电源耦合过滤器16.1放在浪涌发生器上部。去耦合机DECIA和数据线耦合网络IP 6.2堆放在参考面上,靠近浪涌发生器。

电源 + 浪涌输出 图1 : 火牛浪涌测试 绝缘体电源线 图2:电话线浪涌测试

5浪涌测试火牛,仪器断开电源,将PHV30.2卡(1.2 / 50 μS)安装于浪涌发生器中。 高压探头与耦合过滤器连接(如图1)。 6 测试电话线,仪器断开电源,应将PHV29卡(10 / 560μS)安装于浪涌发生器中, 按照图2连接高压探头与耦合网络。 7 在测试过程中,辅助仪器(电源和电馈桥)必须始终通过去耦合网络与EUT 连接。 8测试程序 8.1 EUT必须在指定的操作和气温条件下进行测试。 8.2测试前必须正确安装测试仪器,挑选正确的时间卡。 8.3开启浪涌发生器和有关的耦合网络。浪涌发生器自动显示预编程序菜单。 8.4 从菜单中选择程序6和程序7测试火牛。程序6应用于1KV水平测试,程 序7存有0.5KV垂直测试的所有重要数据。 8.5按下浪涌发生器上的启动键开始测试。每10秒钟EUT电源产生脉冲信号。 8.6 从菜单中选程序4和程序5测试电话线。程序4是有关800V金属性测试, 程序5是有关1.5KV纵向测试。按下开始键,EUT将在40秒内自动产生4个脉冲。 8.7 EUT应以任何可能的方式进行测试。 8.8 在产生信号过程中不可以触碰EUT。如在测试过程中发生任何意外,可使用 浪涌发生器附近的紧急按钮。 8.9 测试前后应作EUT功能测试。因为在测试中如果未使用复位而重新获得丢失的功能,此测试规则B允许有功能失调。 8.10 如果EUT仍保持对浪涌信号的免疫力,测试结果是确定的。同样,测试后必须符合产品技术指标中的所有功能要求。

雷击浪涌设备操作规程

一、用途 模拟雷电环境下电子电器设备雷击浪涌抗扰度是否符合设计要求。 二、外形简介 2.1雷击浪涌发生器 雷击浪涌发生器,用于产生浪涌信号,并可以直接耦合给单相待测设备,型号为EMC61000-5A 显示屏:显示参数 电源键:雷击浪涌发生器供电开关 复位键:切断浪涌信号输出 启动键:打开浪涌信号输出 设置键:通过上下左右四个键和中间确定键对参数进行设置 耦合端口:接三相耦合网络 EUT供电输出端口:给待测设备供电端口 EUT电源键:给待测设备供电开关

电源线:接普通民用电,给设备供电 接地线:接大地 变压器:将普通民用电转变为标准220V 电 变压器供电端口:电压输入端口 EUT 电源输入端口:接变压器输出端口,给待测设备供电 2.2耦合去耦网络 SGN-2A EUT 供电端口 接地线 电源线 EUT 电源输入端口 变压器 变压器供电端口

电源键:耦合去耦网络供电开关 EUT电源键:待测设备供电开关 耦合信号输入端口:接收雷击浪涌发生器输入信号 EUT供电接口:为三相待测设备供电 电源线 接地线 EUT电源 输入端口 变压器供 电端口 电源线:接普通民用电,给设备供电 接地线:接大地 变压器:将普通工业电转变为标准380V电 变压器供电端口:电压输入端口,接380V强电 EUT电源输入端口:接变压器输出端口,给待测设备供电 三、连线方式 以集中器连线图为例

3.1 单向供电连接 3.2 三相供电连接

四、参数设置 脉冲群发生器所有参数可直接通过控制面板“设置键”来设置;翻页时只能向下翻页不能向上翻页。 4.1 测试等级设置 图 1 测试等级设置界面 当光标选中测试等级(LEVEL:1P~LEVEL:5A;USER:1~50)选项时,按操作键中间的圆按键进入测试等级编辑界面,此时被编辑选项将会闪烁。按“?或?”键选择编辑选项,当选择“LEVEL或USER”等级模式编辑时,按“▲或▼”键选择“USER或LEVEL”;当选择等级选项编辑时,按“▲、▼、?、?”键选择测试等级选项。按操作键中间的圆按键可保存当前设置,退出编辑状态,按复位按键不保存当前设置,并退出编辑状态。默认使用USER1即可。

雷电浪涌防护一级的测试波形的选择

雷电浪涌防护一级的测试波形的选择 ——8/20 波形和10/350 波形的比较研究 本文以Dion Neri 和Bruce Glushakow 所著的白皮书为基础,该白皮书经IEEE审核后被确定为学术 理论性文件。 开始论述之前,我们先关注一下这样一个事实:多年来,美国的浪涌保护器(又称瞬态电压抑制器TVSS)的测试方案都以ANSI/IEEE C62.41(美国国家标准委员会/电气电子工程师协会C62.41标准)为测试规范。而在实际应用中,按照该标准进行设计、生产、测试的浪涌保护器在全球市场上取得了良好的应用效果。 一、历史回顾:10/350 作为一级测试波形的由来 在1995年以前,包括美国在内的大多数国家都采用8/20 波形测试浪涌保护器,“国际电气规范”(IEC)也采用相同的做法。但此后,在IEC 61643标准文件中,却对安装在建筑物进线处的浪涌保护器引入了新的“配电系统1级防护”测试方案。为了适应IEC 61643对冲击脉冲电流(I imp)的要求,测试机构不得不将测试波形改为10/350。而这一变化的所谓“理论基础”是:10/350的波形更接近于直接雷击的波形参数,因此,在对此类进行浪涌保护器(IEC称SPD)的有效性测试时采用10/350波形比8/20波形更合适。 然而,在经过大量可靠的跟踪调查之后,IEEE认为对测试方案做出类似的改动根本不具备充分的理由,因此仍然坚持采用8/20波形。但在现实中,IEC引入的“配电系统1级防护”测试新方案却在浪涌保护器市场上造成了混乱:在某些欧洲生产商的鼓动下,“配电系统1级浪涌保护器” 在设计、生产上按照10/350测试脉冲为参考,采用真空管作为防护元件,并宣称该种保护器成为所谓“主流”。他们依据很简单:“既然直接雷击的波形只能用10/350波形的脉冲进行模仿,所以,ANSI/IEEE所主张的8/20波形的测试规范就不足以起到防护直接雷击的作用。” 二、IEC选择10/350 的技术依据按照IEC的“新要求”,测试“防护直接雷击的浪涌保护器”时应采用10/350波形冲击脉冲,而测试“防护间接雷击的浪涌保护器”时应采用8/20波形。 从右图可见,100kA的10/350波形脉冲的放电强度是20kA的 8/20 波形脉冲的125倍。 125 × 0.4 = 50 照此类推:我们可以得出以下结论: 如果使用压敏电阻MOV作为浪涌抑制元件,设计一个能防护100kA 的10/350 波形的冲击脉冲的保护器,它所具备的放电能力必须相当于防护2500kA的8/20波形冲击脉冲的能力。 以上结论的计算过程发表在IEC的规范文件中,并以此作为理论依据证明:“按10/350波形测试设计的保护器的防护能力比按8/20波形测试的保护器要高20倍以上。” 三、对10/350波形的采用的争议 我们讨论这样的结论是否正确之前,先看看这样一些事实: 1.按8/20设计的浪涌保护器的实际应用状况

雷击浪涌设备台测试规范(校准规范)

1、范围 本规范适用于CJ0101/40型动作负载试验试验系统的精度测试,用于使用中的周期检定和修理后相关项目的检定。 2、引用文献 本规范引用下列文献 JJF 1001-1998 通用计量术语及定义 JJF 1059-1999 测量不确定度评定与表示 JJF 1071-2002 国家计量测试规范编写规则 使用本规范时,应注意使用上述引用文献的现行有效版本。 3、概述 4、计量特性 4.1外现 4.1.1仪器外观应清洁,无机械损伤,操作功能正常;仪器上还应注明制造厂名和商标、出厂编号及出厂年月。 4.2技术要求 4.2.1 冲击台控制各项功能:‘充电启动’、‘充电停止’、‘放电’、‘安全充电’、‘冲击间隔时间’设定、‘自动重复冲击次数’设定、‘充电方式’、‘放电方式’的检查应符合CJ0101/40型动作负载试验系统的技术性能的要求。 4.1校准用标准器和主要器材 1.1以机内磁位计为准计量,需数字存贮示波器适用波形8/20us,精度±1%。 1.2模拟负载,压敏电阻器或SPD。 4.2.2冲击台输出波形:输出冲击电流的波形在2KA~40KA范围内,应能通过改变匹配电阻(电感),使波前时间符合8us±10%,半峰值时间20us±10%,反极性振荡幅值不大于峰值的20%的要求。 4.2.3 冲出电流表的示值精度,在2KA~40KA内应符合±3%的要求。 4.2.4 CJ1701交流试验电源: 定相位放电电脉冲(0°~360°)±5°。

交流电压表量程精度±1%。 电流表精度±2%。 5.测试条件 5.1环境条件 仪器的检定应在室温15~28℃,相对湿度不大于90%,无强电磁于扰,无电流杂波干扰的环境中进行。测试前受检仪器应在该环境中存放2个小时以上。本仪器和标准器的交流供电电源应有良好按地线。在计量检查中,为了避免干扰,不能同时使用使用示波器的两个通道。 5.2标准器及其他设备:数字存储示波器、压敏电阻器或SPD。 5.3测试项目和测试方法 5.3.1外观检查,应符合4.1.1的要求。 5.3.2冲击台各控制各功能按“操作使用说明”的方法检查 注意:在不熟悉本机的情况下,请在设定充电电压不超过8KV的条件下检查各功能。 表6-1 5.3.3检定波形参数,方法如下:用示波器接‘电压波信号’,直接读取波前时间和半峰值时间。 5.3.3.1冲击电流表峰值的示值的精度检查方法: 在3.4冲击台波形参数检定合格的基础上,可检查冲击电流表峰值的示值的精度。 方法:按3.4的检查波形参数的方法,用示波器测量磁位计上的电流幅值,并将电流波的幅值与冲击电流表示值相比对以判定误差。 机内磁位计传输系数为:1.07/KA 机内分压器分压比:200:1 按表6-2的检定点,将冲击电流调整到按近表中检定点的数值勤,将冲击电流表示值及时间参数记录于表6-2中。 8/20电流波要求:

雷击浪涌试验细则

雷击浪涌试验细则 1 试验环境布置 考虑试验安全性问题,建议将试验设备LSG506A以及CDN-532A接地。 接地线 参考接地板 图1 浪涌试验环境布置 EUT电源端的试验配置 EUT电源端的试验包括AC主回路三相的试验和控制模块供电端子单相的试验。各项试验中包括线-线与线-地两种方式。示意图分别见图2-图5。

图2 交流线(三相)上电容耦合的试验配置,线-线 图3交流线(三相)上电容耦合的试验配置,线-地 耦合网

图 4 交/直流上电容耦合的配置,线-线 图 5 交/直流上电容耦合的配置,线-地 注:图2-图5为干扰叠加在电源线上的原理图,并不是进行试验时我们的接线图。 EUT非屏蔽互联线的试验配置

图6 非屏蔽互连线的试验配置,电容耦合方式 注:此方法用于对EUT 的I/O ,控制线端子进行浪涌试验。需使用40欧姆的电阻,以保护EUT 受试设备。 EUT 屏蔽通信线的试验配置 图7 屏蔽线的试验配置,直接施加 根据中节的要求,非金属外壳产品的屏蔽线试验,可以直接施加在屏蔽线

上。如上图所示,以共模的方式将浪涌干扰加到屏蔽线层上。 2 CPS试验方法 KB0-T、KB0-R、KB0-B的 AC主回路电源端口试验 (1)试验判据 标准中无明确要求,参照试验判据表1,给出试验结果。 (2)施加干扰电压水平 主回路电源线的试验水平为线-地4kV,线-线2kV。脉冲在正负两个极性进行,相角为0°、90°。在每一极性和相角施加5次脉冲(共20个脉冲),每个脉冲之间的时间间隔为1min。 (3)受试设备接线方式 KB0-T、KB0-R和KB0-B主回路串联,进行线-线、线-地试验的接线方式分别如图8、9所示。图8中左图所示为标准中规定的受试设备的AC主回路接线图,即将主回路三相串联,并用升流器分别给受试设备提供倍和2倍的额定电流(倍时,EUT中的脱扣器应不动作,2倍额定电流时应在规定的时间内动作)。由于使用了升流器给EUT供电,因此LSG试验设备中的EUT电源不接(悬空)。

开关电源的雷击浪涌测试

机械伤害: 1. 接通电源前必须认真检查所使用工具的开关应处在关闭位置后才能接通电源。 2.使用前必须检查机械传动部分各部螺母紧固牢靠,合格后才能使用。 3. 进行垂直向上工作时必须两人以上握住工具,第三人进行操作。 4. 工作时必须2人以上,专人进行不间断监护。 5.开机前必须确定旋转方向,确定无异常后再进行工作,工作时用力应均匀,禁止用力过猛。 6.工作时必须2人以上,专人对操作箱进行操作,控制电动扳手的工作与停止。 7.使用时应扶正扳手,要避免碰掉扳头,严防电缆带电脱落。 8.工作时身体必须保持适当的正确姿势,必须站稳,使工具轴线与螺纹轴线对正、握稳。 9. 使用前必须确认该扳手为合格扳手,贴有标签或有合格证。 10.所使用工具在关闭开关后必须待机器完全停止后才能将其放在安全可靠的位置上,然后拔下插头。 11.在更换扳头时必须将电源插头拔开后才能进行更换。 12. 使用时必须将扳手可靠的固定住,双手必须把牢(特殊情况下可把扳手吊起固定好,防止工具擅动脱手发生危险。 2.雷击浪涌抗扰度试验等级: 试验的严酷度等级分为1、2、3、4级。电源线差模试验的1级参数未给,其余各级分别为0.5kV、1kV、2kV及待定。电源线共模试验的各级参数为0.5kV、1kV、2kV、4kV及待定。 试验的严酷度等级取决于环境(遭受浪涌可能性的环境及安装条件,大体分类如下。 1级:普通的电磁骚扰环境,对设备未规定特殊安装要求,如普通安装的电缆网络,工业性的工作场所和变电所。 2级:有一定保护的环境,如无强干扰的工厂。 3级:较好保护的环境,如工厂或电站的控制室。 4级:受严重骚扰的环境,如民用架空线,未加保护的高压变电所。 开关电源适配器EMC测试时,雷击浪涌试验等级为:线-线之间是2级,线-地之间是3级。 来源于—东莞市石龙富华电子有限公司

浪涌测试的要求与方法

浪涌测试的要求和方法 1 信号(通信)接口浪涌测试 1.1 测试目的和指标要求测试目的考察设备在实际使用过程中用户线接口受到浪涌电压冲击后,被测接口的损坏和设备性能下降的程度。指标要求:对电话端口的浪涌测试分为类型A,和类型B两 1 信号(通信)接口浪涌测试 1.1 测试目的和指标要求测试目的 考察设备在实际使用过程中用户线接口受到浪涌电压冲击后,被测接口的损坏和设备性能下降的程度。指标要求:对电话端口的浪涌测试分为类型A,和类型B两种测试。 (1) 类型A(Class A) a) 波形。差模干扰:电压波:10/560,电流波:10/560。共模干扰:电压波:10/160,电流波:10/160。 b) 测试等级:差模:电压最小800V,电流最小100A。共模:电压最小1500V,电流最小200A c) 测试端口:差模:tip——ring ;tip-1 ——ring-1;对于单项通信的4线制电缆,tip——ring-1, ring——tip-1。共模:tip-ring和tip-1——ring-1对地,或者对其他连接到未经认证的设备的线缆(拧到一起)。 d) 测试状态:设备的所有可能影响本标准要求的状态都要测试。如果设备状态不能通过正常上电获得,需要通过人工干预获得;没有施加浪涌的端口(包括电话端口,辅助端口以及和未认证设备连接的端口),要用适当的方式端接并处于正常使用状态;如果设备的一次电源允许插拔,则设备带有电源线和断开电源线两种状态都要测试。 e) 判据允许起安全作用的电路出现开路,或者到地的短路,但在这种失效模式下,保证让用户

不能使用设备,或设备具有明显失效指示(如告警),需要立即从网络上断开或需要维修。对安全电路进行修复后,设备性能和功能恢复正常。 (2) 类型B (class B) a) 波形。差模:电压波:9/720,电流波:5/320。共模:电压波:9/720,电流波:5/320。 b) 测试等级:差模:电压最小1000V,电流最小25A。共模:电压最小1500V,电流最小37.5A c) 测试端口:差模:tip——ring ;tip-1 ——ring-1;对于单项通信的4线制电缆,tip——ring-1, ring——tip-1。共模:tip-ring和tip-1——ring-1对地,或者对其他连接到未经认证的设备的线缆(拧到一起)。 d) 测试状态:设备的所有可能影响本标准要求的状态都要测试。如果设备状态不能通过正常上电获得,需要通过人工干预获得;没有施加浪涌的端口(包括电话端口,辅助端口以及和未认证设备连接的端口),要用适当的方式端接并处于正常使用状态;如果设备的一次电源允许插拔,则设备带有电源线和断开电源线两种状态都要测试。 e) 判据设备要能够承受类型B的浪涌能量,不能造成接口电路永久性开路或者短路,不能引起影响到标准要求的设备损坏。类型A:允许起安全作用的电路出现开路,或者到地的短路,但在这种失效模式下,保证让用户不能使用设备,或设备具有明显失效指示(如告警),在这种情况下,用户需要立即从网络上断开设备进行维修。对防护电路进行修复后,设备性能和功能恢复正常。类型B:认证的终端设备和保护电路要能够承受类型B的浪涌能量,不能造成接口电路永久性开路或者短路,不能引起影响到本标准要求的设备损坏。 1.2 测试步骤 (1)在下面三种状态下分别实施2-7步测试。 A、对被测试设备上电,使模拟端口处于接口挂机状态,其余端口处于正常使用状态。

浪涌抗扰度试验

浪涌抗扰度试验Newly compiled on November 23, 2020

浪涌冲击抗扰度测试及整改参考 浪涌冲击抗扰度测试及整改参考 1.浪涌冲击形成的机理 电磁兼容领域所指的浪涌冲击一般来源于开关瞬态和雷击瞬态。 系统开关瞬态与以下内容有关: a )主电源系统切换骚扰,例如电容器组的切换; b )配电系统内在仪器附近的轻微开关动作或者负荷变化; c )与开关装置有关的谐振电路,如晶闸管; d )各种系统故障,例对设备组接地系统的短路和电弧故障。 雷击瞬态 雷电产生浪涌(冲击)电压的主要原理如下: a)直接雷击于外部电路(户外),注入的大电流流过接地电阻或外部电路阻抗而产生电压; b)在建筑物内、外导体上产生感应电压和电流的间接雷击(即云层之间或云层中的雷击或击于附近物体的雷击,这种雷击产生的磁场); c)附近直接对地放电地雷电入地电流耦合到设备组接地系统的公共接地路径。 当保护装置动作时,电压和电流可能发生迅速变化,并可能耦合到内部电路。 2.试验内容: 对电气和电子设备的供电电源端口、信号和控制端口在受到浪涌(冲击)干扰时的性能进行评定。 3 .试验目的: 评定设备在遭受到来自电力线和互连线上高能量浪涌(冲击)骚扰时产品的性能。 4.试验发生器() a)信号发生器特性应尽可能地模拟开关瞬态和雷击瞬态现象; b)如果干扰源与受试设备的端口在同一线路中,例如在电源网络中(直接耦合),那么信号发生器在受试设备的端口能够模拟一个低阻抗源; c)如果干扰源与受试设备的端口不在同一线路中(间接耦合),那么信号发生器能够模拟一个高阻抗源。 对于不同场合使用的产品及产品的不同端口,由于相应的浪涌(冲击)瞬态波形各不相同,因此对应模拟信号发生器的参数也不相同。 5.试验实施 电源、信号和其他功能电量应在其额定的范围内使用,并处于正常的工作状态。 根据要进行试验的EUT的端口类型选择相应的试验试验波形发生器和耦合单元及相应的信号源内阻。 使受试设备处于典型工作条件下,根据受试设备端口及其组合,依次对各端口施加冲击电压,。 每种组合应针对不同脉冲极性进行测试,两次脉冲间隔时间不少于1min。 对电源端子进行浪涌测试时,应在交流电压波形的正、负峰值和过零点分别施加试验电压。 对电源线和信号线应分别在不同组合的共模和差模状态下施加脉冲冲击。 每种组合状态至少进行5次脉冲冲击。 若需满足较高等级的测试要求,也应同时进行较低等级的测试。 只有两者同时满足,我们才认为测试通过。 6.试验结果 若电快速速变脉冲群测试通不过,可能产生如下后果: (1 )引起接口电路器件的击穿损坏。 (2 )造成设备的误动作。 7.导致浪涌冲击抗扰度试验失败的原因 浪涌脉冲的上升时间较长,脉宽较宽,不含有较高的频率成分,因此对电路的干扰以传导为主。主要体现在过高的差模电压幅度导致输入器件击穿损坏,或者过高的共模电压导致线路与地之间的绝缘层击穿。由于器件击穿后阻抗很低,浪涌发生器产生的很大的电流随之使器件过热发生损坏。对于有较大平滑电容的整流电路,过电流使器件损坏也可能是首先发生的。

相关主题
文本预览
相关文档 最新文档