当前位置:文档之家› 三角函数应用举例

三角函数应用举例

三角函数应用举例
三角函数应用举例

课题: §1.2.1解三角形应用举例

民和高级中学刘永宏

[教学目标]

知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语

过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正

情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力

[教学重点]

实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解结合实际测量工具,解决生活中的测量高度问题

[教学难点]

根据题意建立数学模型,画出示意图,能观察较复杂的图形,从中找到解决问题的关键条件

Ⅱ.讲授新课

(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,

通过建立数学模型来求解

例1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=?

51,∠ACB=?

75。求A、B 两点的距离(精确到0.1m)

启发提问1:?ABC中,根据已知的边和对应角,运用哪个定理比较适当?

启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。

例2、如图,A、B 两点都在河的对岸(不可到达),设计分析:这是一道关于测量从一个可到达的

点到一个不可到达的点之间的距离的问

题,题目条件告诉了边AB的对角,AC为

已知边,再根据三角形的内角和定理很容

易根据两个已知角算出AC的对角,应用

正弦定理算出AB边。

解:根据正弦定理,得

ACB

AB

sin

=

ABC

AC

sin

AB =

ABC

ACB

AC

sin

sin=

ABC

ACB

sin

sin

55=

)

75

51

180

sin(

75

sin

55

?

-?

-?

?=

?

?

54

sin

75

sin

55≈ 65.7(m)

答:A、B两点间的距离为65.7米

变式练习:两灯塔A、B与海洋观察站C

的距离都等于a km,灯塔A在观察站C的

北偏东30?,灯塔B在观察站C南偏东60?,

则A、B之间的距离为多少?

解略:2a km

解:测量者可以在河岸边选定两点C、D,

测得CD=a,并且在C、D两点分别测得

∠BCA=α,

老师指导学生

画图,建立数学

模型。

学会构建

数学模型,要学

会审题及根据

题意画方位图,

要懂得从所给

的背景资料中

进行加工、抽取

主要因素,进行

适当的简化。

可见,在研究三

角形时,灵活根

据两个定理可

以寻找到多种

解决问题的方

案,但有些过程

较繁复,如何找

到最优的方法,

最主要的还是

分析两个定理

三角函数实际应用

1.如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?(保留根号) 2.如图,甲乙两幢楼之间的距离BD=30m,自甲楼顶端A处测得乙楼顶端C处的仰角为45°,测得乙楼底部D处的俯角为26.6°,求甲、乙楼两幢楼的高度. (参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50) 3.如图,哨兵在灯塔顶部A处测得遇难船只所在地B处的俯角为60°,然后下到灯塔的C 处,测得B处的俯角为30°.已知AC=40米,若救援船只以5m/s 的速度从灯塔底部D处出发,几秒钟后能到达遇难船只的位置?(结果精确到个位). 4.如图,大楼AB的高为16m,远处有一塔CD,小在楼底A处测得塔顶D处的仰角为 60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高.(=1.73,结果保留一位小数.)

5.在一次数学活动课上,老师带领学生去测一条南北流向河流的河宽,如图所示,某学生在河东岸点A处观测河对岸水边点C,测得C在A北偏西30°的方向上,沿河岸向北前行20米到达B处,测得C在B北偏西60°的方向上.请你根据以上数据,帮助该同学计算出这条河的宽度.(精确到0.1,参考数据:). 6.校园中的一棵大树PC在下的影长为AC,在树的影长端点A处测得∠PAC=30°,在B点(点B在直线AC上)测得∠PBC=60°,如果AB=12m,求树高PC和树的影长AC. 7.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,试求CD的长. 8.在一个明媚、清风徐徐的周末,小明和小强一起到郊外放风筝.他们把风筝放飞后,两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高? (2)求风筝A与风筝B的水平距离.(结果精确到0.01m,≈1.414,≈1.732)

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

中考数学专题复习——锐角三角函数的实际应用

课题:锐角三角函数的实际应用 【基础知识回顾】 知识点1:锐角三角函数的概念(正弦、余弦、正切、余切) 技巧点拨: ①弦——分母都是斜边 ②正弦——分子是正对的边(谐音“正邪”) ③切——垂直的意思,只与直角边有关 ④正切——分子是正对的边 ⑤余——剩余的意思 余弦——分子是剩下的直角边(即邻边) 余切——分子是剩下的直角边(即邻边) 简记为:正弦——对比斜(或正比斜) 正切——对比邻 余弦——邻比斜 知识点2:常见的锐角三角函数值 三角函数 30° 45° 60° 技巧点拨 sin α 21 22 23 分母都是2,分子分别是 √13 cos α 2 3 22 21 分母都是2,分子分别是 3√1 tan α 33 1 3 分母都是3,分子分别是 3、1、3 【新课知识讲解】 知识点3:解直角三角形 1、解直角三角形的概念

在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直 角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。 2、解直角三角形的理论依据 在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:222c b a =+(勾股定理) (2)锐角之间的关系:∠A+∠B=90°(三角形角和) (3)边角之间的关系:(锐角三角函数) b a B a b B c a B c b B a b A b a A c b A c a A ========cot ,tan ,cos ,sin ;cot ,tan ,cos ,sin 知识点4:直击中考——解直角三角形的实际应用:测距、测高、测长 等 例1、如图,直升飞机在跨河大桥AB 的上方点P 处,此时飞机离地面的高度PO =450 m ,且A ,B ,O 三点在一条直线上,测得∠α=30°,∠β=45°,求大桥 AB 的长(结果保留根号). 【分析】 第一步:确定相关直角三角形 本题中∠α、∠β分别在Rt ΔAOP 、Rt ΔBOP 中(由平行线错角相等转化已知角) 第二步:分别在直角三角形中列出已知角的锐角三角函数值 第三步:代入已知条件求值,并简答 【答案】 由题意得,ΔAOP 、ΔBOP 均为直角三角形, ∠PAO=∠α=30°,∠PBO=∠β=45°,PO=450m

高中数学必修4三角函数常考题型三角函数线及其应用(供参考)

三角函数线及其应用 【知识梳理】 1.有向线段 带有方向的线段叫做有向线段. 2.三角函数线 图示 正弦线 α的终边与单位圆交于P ,过P 作PM 垂直于x 轴,有向线段MP 即为正弦线 余弦线 有向线段OM 即为余弦线 正切线 过A (1,0)作x 轴的垂线,交α的终边或其终边的反向延长线于T ,有向线段AT 即 为正切线 题型一、三角函数线的作法 【例1】 作出3π4 的正弦线、余弦线和正切线. [解] 角3π4 的终边(如图)与单位圆的交点为P . 作PM 垂直于x 轴,垂足为M ,过A (1,0)作单位圆的切线AT , 与3π4的终边的反向延长线交于点T ,则3π4 的正弦线为MP ,余弦线为OM ,正切线为AT . 【类题通法】 三角函数线的画法 (1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x 轴的垂线,得到垂足,从而得正弦线和余弦线. (2)作正切线时,应从A (1,0)点引单位圆的切线,交角的终边或终边的反向延长线于一点T ,即可得到正切线AT . 【对点训练】 作出-9π4 的正弦线、余弦线和正切线.

解:如图所示, -9π4的正弦线为MP ,余弦线为OM ,正切线为AT . 题型二、利用三角函数线比较大小 【例2】 分别比较sin 2π3与sin 4π5;cos 2π3与cos 4π5;tan 2π3与tan 4π5 的大小. [解] 在直角坐标系中作单位圆如图所示.以x 轴非负半轴为始边 作2π3 的终边与单位圆交于P 点,作PM ⊥Ox ,垂足为M .由单位圆与Ox 正方向的交点A 作Ox 的垂线与OP 的反向延长线交于T 点,则sin 2π3=MP ,cos 2π3=OM ,tan 2π3 =AT . 同理,可作出4π5的正弦线、余弦线和正切线,sin 4π5=M ′P ′,cos 4π5=OM ′,tan 4π5 =AT ′.由图形可知,MP >M ′P ′,符号相同,则sin 2π3>sin 4π5;OM >OM ′,符号相同,则cos 2π3>cos 4π5 ;AT MP >OM ; 当π2<α<3π4 时,角α的正弦线为M ′P ′,余弦线为OM ′,正切

三角函数在实际生活中的应用

三角函数在实际生活中的应用 目录 摘要:1 关键词:3 1引言3 1.1三角函数起源3 2三角函数的基础知识4 2.1下列是关于三角函数的诱导公式5 2.2两角和、差的正弦、余弦、正切公式7 2.3二倍角的正弦、余弦、正切公式7 3.三角函数与生活7 3.1火箭飞升问题7 3.2电缆铺设问题8 3.3救生员营救问题9 3.4足球射门问题10 3.5食品包装问题10 3.6营救区域规划问题11 3.7住宅问题12 3.8最值问题13 4 总结14 Abstract

Trigonometric function in the course of historical development of continuous improvement, has formula, rich thoughts, flexible, permeability is strong and so on。The characteristic is not only an important part of scientific research, or in mathematics learning to key and difficult. In a word it in teaching and other fields has important role. In this paper, we will make a brief discussion about the application of trigonometric functions in solving practical problems. Keywords:mathematics trigonometric function Application of trigonometric function 摘要: 三角函数在历史的发展过程中不断完善,具有公式多、思想丰富、变化灵活、渗透性强等特点,不仅是科学研究的重要组成部分,还是数学学习中得重点难点,

三角函数公式知识点及应用

三角函数公式 ? 三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。 三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 基本信息 ?中文名称 三角函数 ?外文名称

相关概念

余切:cotangent(简写cot)['k?u't?nd??nt] 正割:secant(简写sec)['si:k?nt] 余割:cosecant(简写csc)['kau'si:k?nt] 正矢:versine(简写versin)['v?:sain] 余矢:versed cosine(简写vercos)['v?:s?:d][k?usain] 直角三角函数 直角三角函数(∠α是锐角) 三角关系 倒数关系:cotα*tanα=1 商的关系:sinα/cosα=tanα 平方关系:sin2α+cos2α=1 三角规律 三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 三角函数本质: 根据三角函数定义推导公式根据下图,有sinθ=y/ r;cosθ=x/r; tanθ=y/x; cotθ=x/y 深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来, 比如以推导 sin(A+B) = sinAcosB+cosAsinB 为例: 推导: 首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。

锐角三角函数的实际应用问题

锐角三角函数的实际应用问题 一、《数学新课程标准》课标要求 《数学新课程标准》中要求:运用三角函数解决与直角三角形有关的简单实际问题,考纲中的能级要求为C(掌握)。 数学离不开生活,生活也离不开数学。在实际生活中,有不少问题的解决都涉及到数学中直角三角形的边、角关系。而锐角三角函数的实际应用注重联系学生的生活实际,侧重于解决与学生生活比较接近的实际问题,突出了学数学、用数学的意识与过程。 二、考向分析 结合近五年中考试题分析,锐角三角函数的内容考查主要有以下特点: 1.命题方式为运用锐角三角函数解决与直角三角形有关的实际问题. 题型解答题,以中档题出现.分值都是9分; 2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题; 三、锐角三角函数的实际应用这道题的价值 1.它是代表初中几何图形的计算中的一个最高水平; 2.此题蕴含的数学思想比较多,如化归思想、方程思想等; 3.能加入实际生活的背景,增强学生的数学应用意识; 4.能把学生的基本思想、基本方法、基本能力呈现出来。 四、近五年锐角三角函数的实际应用中考试题变与不变 1.价值不变

2.基本模型不变; 3. 2012.201 4.201 5.2016四年都是考察解直角三角形的应用-仰角俯 角问题.2013年考察解直角三角形的应用-坡度坡角问题. 4. 2012. 2013. 2016年的都能在图中找到与已知和未知相关联的直 角三角形,2014.2015年要通过作高或垂线构造直角三角形,把实际 问题划归为直角三角形中边角关系问题加以解决. 5.外形变化,实际背景变化,一些条件和结论的变化。 五、近五年锐角三角函数的实际应用中考试题回顾 1.(河南省2012)(9分)某宾馆为庆祝开业,在楼前悬挂了许 多宣传条幅。如图所示,一条幅从楼顶A 处放下,在楼前点C 处拉直 固定。小明为了测量此条幅的长度,他先测得楼顶A 点的仰角为45°,已知点C 到大厦的距离BC =7米,∠ABD =90°.请根据以上数据求条幅 的长度(结果保留整数。参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86). 考点: 解直角三角形的应用- 【解析】设AB x =米, ∴45,90.AEB ABE BE AB x ??∠=∠=∴== 在Rt ABD 中,tan ,AB D BD ∠= 即tan 31.16x x ?=+ ∴16tan 31160.624.1tan 3110.6 x ???=≈=-- 第20题

三角函数公式应用及原理解说

三角函数是数学中常见的一类关于 角度的函数。三角函数将 直角三角形 的内角和它的两个边 的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三 角形和圆等几何形状的性质时有重要作用,也是研究 周期性现象的基础数学工具 ⑴。在数学 分析中,三角函数也被定义为 无穷级数 或特定微分方程的解,允许它们的取值扩展到任意实 数值,甚至是复数值。 常见的三角函数包括正弦函数(sin )、余弦函数(cos )和正切函数(tan 或者tg )。在航 海学、测绘学、工程学等其他学科中,还会用到如 余切函数、正割函数、余割函数、正矢 函数、半正矢函数 等其他的三角函数。 不同的三角函数之间的关系可以通过几何直观或者计 算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方 面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数, 叫做双曲函数[2] 。 常见的双曲函数也被称为双曲 正弦函数、双曲余弦函数等等。 直角三角形中的定义 右直供二闻张中仅苕期 伙水左画90至力间的录)二角藝的宦义[叩?络匡F 锐甬机可 以滋出一牛直集二角形,庚再其申的一个内芻是和设連个三甬殛孔9旳对匹需也和得世长度 g afliSE 是更迎弓痔辺的毗面冋百?: &抽余弦是澤边与斜辺的乂道;| ft H 制正切灵对迥与糾盅柏"■宜 伽 e ¥ b &的余切是嘟边2舛边的比■包co tfi = - q &闌正甥足斜辺弓押辺的比朗 ; &的余割是斜边与对边的比值!宀诃二2 a 标系中的奩义【姗< iftH 吟F 】是平面直角H 标菇咕的一牛知声是欖轴正向程时计疑術I 励 方向驱aeiJS, F = C +扌A 礎序 順点涮柜离?刚砒林三 JB 曲隸定 义 为【口 12#可?帅7血划腹圧駆定三三角血也雪主意知:也LL 却宦汩頤左定>朮 自盍買的时僕成立-比如逋当■ = &的时僂.世和二自漲由盍乩 遞说朗对丹幢 正花;B 口 0—1.正切; -■耀h

三角函数线的解题功能(教师版)

三角函数线的解题功能 一.求三角函数的定义域 例1.求下列函数的定义域: 分析: 首先作出单位圆,然后根据各问题的约束条件利用三角函数线画出角x 满足条件的终边范围. 解: (1)如图1, (2)如图2, 点评: 三角函数线的主要作用是解三角不等式,比较大小及求函数定义域. 二.解三角不等式 例2.已知|cos θ|≤|sin θ|,求θ的取值范围. 分析: 我们可以在单位圆中作出正弦线和余弦线绝对值相等的角,再找出满足|cos θ|≤|sin θ|的θ角范围. 解:如图3所示,根据|cos θ|=|sin θ|,即θ角正弦线的绝对值和θ角余弦线的绝对值相等,则θ角的终边落在y=x 和y=-x 上,满足|cos θ|≤|sin θ|的θ角的终边落在阴影部分, 点评:本题主要考查根据正弦线和余弦线作出角θ的范围,再写出角θ的集合. 三. 比较大小 例3.比较下列各组数的大小: 分析:我们可以考虑利用三角函数线,根据正弦线、余弦线、正切线来比较它们的大小. 解:(1)如下图所示,在单位圆中作出的余弦线OM 2和OM 1, ∵OM 1

∵MP1,也可以利用三角函数线来证明,此外该结论还可推广,若θ为任意角,则有|sin θ|+| cos θ|≥1. [三角函数线基础练习一] 1、= 2205sin A . 2 1 B .2 1- C . 2 2 D .2 2- 2、角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异.那么α的值为( ) A .π4 B .3π4 C .7π4 D .3π4 或 7π4 3、若0<α<2π,且sin α< 2 3 , cos α> 12 .利用三角函数线,得到α的取值范围是( ) A .(-π3 ,π3 ) B .(0,π3 ) C .(5π3 ,2π) D .(0,π3 )∪(5π 3 ,2π) 4、若π4 <θ < π 2 ,则下列不等式中成立的是 ( ) A .sin θ>cos θ>tan θ B .cos θ>tan θ>sin θ C . tan θ>sin θ>cos θ D .sin θ>tan θ>cos θ 5、函数| tan |tan cos |cos ||sin |sin x x x x x x y ++=的值域是 ( ) A .{1} B .{1,3} C .{-1} D .{-1,3} 6、依据三角函数线,作出如下四个判断: ①sin π6 =sin 7π6 ;②cos (-π4 )=cos π4 ;③tan π8 >tan 3π8 ;④sin 3π5 >sin 4π 5 .其中判断正确的有 ( ) A .1个 B .2个 C .3个 D .4个 7、若-2π3 ≤θ≤π 6 ,利用三角函数线,可得sin θ的取值范围是 . 8、若∣cos α∣<∣sin α∣,则∈α . 9、利用三角函数线,写出满足下列条件的角x 的集合. ⑴ sin x ≥ 2 2 ;⑵ cos x ≤ 12 ;⑶ tan x ≥-1 ;(4)21sin ->x 且21cos >x .

高考冲刺 三角函数公式及应用(提高)

高考冲刺 三角函数公式及应用 编稿:孙永钊 审稿:张林娟 【高考展望】 高考对三角恒等式部分的考查仍会是中低档题,无论是小题还是大题中出现都是较容易的.主要有三种可能: (1)以小题形式直接考查:利用两角和与差以及二倍角公式求值、化简; (2)以小题形式与三角函数、向量、解三角形等知识相综合考查两角和与差以及二倍角等公式; (3)以解答题形式与三角函数、向量、解三角形、函数等知识相综合考查,对三角恒等变换的综合应用也可能与解三角形一起用于分析解决实际问题的应用问题,主要考查综合运用数学知识分析问题和解决问题的能力 复习时,要注重对问题中角、函数名及其整体结构的分析,提高公式选择的恰当性,还要重视相关的思想方法,如数形结合思想、特值法、构造法、等价转换法等的总结和应用,这有利于缩短运算程序,提高解题效率 【知识升华】 1.三角函数的化简与求值、证明的难点在于众多三角公式的灵活运用和解题突破口的合理选择,要认真分析所给式子的整体结构,分析各个三角函数及角的相互关系是灵活选用公式的基础,是恰当寻找解题思维起点的关键所在 (1)化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来; (2)求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围 (3)证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等 2.对于三角变换公式务必要知道其推导思路,从而清晰地“看出”它们之间的联系,它们的变化形式.如 tan()(1tan tan )tan tan αβαβαβ+-=+, 2 21cos 1cos cos ,sin 2 222 α ααα +-= = 等.从而可做到:正用、逆用、变形用自如使用各公式;三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备。 3.三角函数恒等变形的基本策。 ①常值代换:特别是用“1”的代换,如1=cos 2 θ+sin 2 θ=tanx 2cotx=tan45°等。 ②项的分拆与角的配凑。如分拆项:222222sin 2cos (sin cos )cos 1cos x x x x x x +=++=+;

三角函数在实际中的应用

专题3 锐角三角函数在实际中的应用 解题技巧: 1.如果图形不是直角三角形,一定要考虑添加适当的辅助线(作平行线或作垂线),构造直角三角形,然后选择恰当的三角函数(正弦、余弦或正切); 2.在求线段长度的时候,如果不能直接求出长度,可以考虑列方程求值。 一仰角、俯角问题 1.某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上). (1)求小敏到旗杆的距离DF.(结果保留根号) (2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7) 2.如图所示,某古代文物被探明埋于地下的A处,由于点A上方有一些管道,考古人员不能垂直向下挖掘,他们被允许从B处或C处挖掘,从B处挖掘时,最短路线BA与地面所成的锐角是56°,从C处挖掘时,最短路线CA与地面所成的锐角是30°,且BC=20m,若考古人员最终从B处挖掘,求挖掘的最短距离.(参考数据:sin56°=0.83,tan56°≈1.48,≈1.73,结果保留整数)

3.(2014潍坊)如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是45°,然后沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是60°,求两海岛间的距离AB. 4.一电线杆PQ立在山坡上,从地面的点A看,测得杆顶端点A的仰角为45°,向前走6m 到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°, (1)求∠BPQ的度数; (2)求该电线杆PQ的高度.(结果精确到1m) 5.如图,为了开发利用海洋资源,某勘测飞机测量一岛屿两端A、B的距离,飞机以距海平面垂直同一高度飞行,在点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了500米,在点D测得端点B的俯角为45°,已知岛屿两端A、B的距离541.91米,求飞机飞行的高度.(结果精确到1米,参考数据:≈1.73,≈1.41)

中考数学 全面突破:第十二讲 锐角三角函数及其实际应用

第十二讲 锐角三角函数及其实际应用 命题点分类集训 命题点1 特殊角的三角函数值 【命题规律】1.考查内容:主要考查 30°,45°,60°角的正弦,余弦,正切值的识记、正余弦的转换及由三角函数值求出角度. 2.考查形式:①三类特殊角的三角函数值识记;②与非负性结合,通过三角函数值求角度;③正弦余弦、正切余切之间的相互转化,判断关系式是否成立;④在实数运算中涉及三类特殊角的三角函数值运算(具体试题见实数的运算部分). 【命题预测】特殊角的三角函数值作为识记内容在实数运算中考查的可能性比较大,而单独考查也会出现. 1. sin 60°的值等于( ) A . 12 B . 22 C . 3 2 D . 3 1. C 2. 下列式子错误.. 的是( ) A . cos 40°=sin 50° B . tan 15°·tan 75°=1 C . sin 225°+cos 225°=1 D . sin 60°=2sin 30° 2. D 选项 逐项分析 正误 A cos40°=sin(90°-40°)=sin50° √ B tan15°·tan75°=1 tan75° ×tan75°=1 √ C sin 2A +cos 2A =1 √ D ∵sin60°= 32,2sin30°=2×1 2 =1,∴sin60°≠2sin30° × 3. 已知α,β均为锐角,且满足|sin α-12 |+(tan β-1)2 =0,则α+β=________. 3. 75° 【解析】由于绝对值和算术平方根都是非负数,而这两个数的和又为零,于是它们都为零.根据题意,得|sin α-12|=0,(tan β-1)2=0,则sin α =1 2,tan β =1,又因为α、β均为锐角,则α=30°, β=45°,所以α+β=30°+45°=75°. 命题点2 直角三角形的边角关系 【命题规律】1.考查内容:在直角三角形中,三边与两个锐角之间关系的互化.2.考查形式:已知一边 及某锐角的三角函数值,求其他量,或结合直角坐标系求锐角三角函数值. 【命题预测】直角三角形的边角关系是解直角三角形实际应用问题的基础,值得关注. 4. 如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A . 34 B . 43 C . 35 D . 45

《三角函数线的应用》专题

《三角函数线的应用》专题 2014年( )月( )日 班级 姓名 作为一次经历,失败有时比成功更有价值。 作出下列各角的正弦线、余弦线和正切线. (1)-π4; (2)17π6; (3)10π3. 作出下列各象限的正弦线、余弦线和正切线. 关于三角函数线,要注意以下几点: (1)正弦线、余弦线、正切线都是 线段,利用它们的数量来表示 ,是数形结合的典型体现。 2)作三角函数线时,所用字母一般都是固定的,书写顺序也不能颠倒。特别要注意正切线必在过A (1,0)的单位圆的切线上(其中二、三象限角需作终边的反向延长线)。 (3)对于终边在坐标轴上的角,有时三角函数线退化为一个点,有时又为整个半径。当角α的终边在y 轴上时,角α的正切线不存在。 【类型一】求角的取值 求分别符合下列条件的各角的集合: (1)sin α=; (2)cos α=; (3)tan α=

【类型二】求角的范围 例2 在[0,2]π上满足1sin 2 x ≥的x 的取值范围 练习:在[0,2]π上满足1cos 2 x ≤-的x 的取值范围 【类型三】比较大小 例3 比较sin1155°与sin(-1654°)的大小。 练习1:下列不等式成立的是 A 、00sin 70sin170> B 、00sin130sin140< C 、00tan130tan140> D 、00cos130cos140< 练习2:已知,,42ππα??∈ ??? 比较cos tan αααα、 sin 、、 的大小关系 练习3:已知(0,)2π α∈,比较sin α,cos α,tan α。 【类型四】求函数的定义域

专题一 三角函数的实际应用

专题一三角函数的实际应用 1.(2005?深圳)大楼AD的高为10米,不远处有一塔BC,某人在楼底A处测得塔顶B处的仰角为60°,爬到楼顶D点测得塔顶B点的仰角为30°,求塔BC的高度. 2.(2007?深圳)如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A 处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由. 3.(2008?深圳)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在 地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/ 秒,求这架无人飞机的飞行高度.(结果保留根号)

4.(2010?深圳)科技改变生活,手机导航极大方便了人们的出行,如图35-17,小明一家自驾到古镇C 游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4 km至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离. 5.(2012?深圳)如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5 m,上面五层居住,每层高度相等.测角仪支架离地1.5 m,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶部点E的仰角为30°,AB=14 m.求居民楼高度(精确到0.1 m,参考数据:3≈1.73). 6.(2015?深圳)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6 m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°. (1)求∠BPQ的度数; (2)求该电线杆PQ的高度(结果精确到1 m,备用数据:3≈1.7,2≈1.4).

三角函数公式应用大全

三角函数定义 把角度θ作为自变量,在直角坐标系里画个半径为1的圆(单位圆),然后角的一边与X轴重合,顶点放在圆心,另一边作为一个射线,肯定与单位圆相交于一点。这点的坐标为(x,y)。 sin(θ)=y; cos(θ)=x; tan(θ)=y/x; 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A = 2tanA/(1-tan2 A) Sin2A=2SinA?CosA Cos2A = Cos2 A--Sin2 A=2Cos2A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)3;

cos3A = 4(cosA)3 -3cosA tan3a = tan a ? tan(π/3+a)? tan(π/3-a) 半角公式 sin(A/2) = √{(1--cosA)/2} cos(A/2) = √{(1+cosA)/2} tan(A/2) = √{(1--cosA)/(1+cosA)} cot(A/2) = √{(1+cosA)/(1-cosA)} ? tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA) 和差化积 sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB 积化和差 sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sin(a) cos(-a) = cos(a) sin(π/2-a) = cos(a) cos(π/2-a) = sin(a) sin(π/2+a) = cos(a) cos(π/2+a) = -sin(a) sin(π-a) = sin(a) cos(π-a) = -cos(a) sin(π+a) = -sin(a) cos(π+a) = -cos(a) tgA=tanA = sinA/cosA

三角函数的二倍角公式及应用

三角函数的二倍角公式及应用 一. 考点要求 1、 熟记二倍角的正弦、余弦、正切公式,并能灵活应用; 2、 领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美 3、 公式应用的方法与技巧。 二、公式再现; 1、二倍角公式; sin2a= 2sinacosa 。 cos2a =22cos sin αα- = 2 2cos 1 α-= 21sin α- tan2a= 2 2tan 1tan αα - 2、降幂公式; 2 2cos 1sin , 22cos 1cos 2 2 α αα α-= += 三;闯关训练 A 、类型一 公式逆用 逆用公式,换个角度豁然开朗,逆过来看茅塞顿开,这种在原有基础上的变通是创新意识的体现; 1、求下列各式的值 ();??cos15sin15 1 ()8 s i n 8 c o s 22 2 π π - () ? -?5.22tan 15.22tan 32 ; ()15.22cos 242 -? B 、、类型二----公式正用 从题设条件出发,顺着问题的线索,正用三角公式,通过对信息的感

知、加工、转换,运用已知条件和推算手段逐步达到目的。 2、已知(),5 3sin - =-απ求α 2cos 的值。 3、已知? ? ? ??∈-=ππααα,2,sin 2sin ,求αtan 的值。 C 、、类型三----化简 ()()()2 4 4 41sin cos ;2cos sin a a θθ +-、 四.能力提升; 1, 已知,128,5 48cos παπα <<- =求4 tan ,4 cos ,4 sin α α α 的值 2、已知,2 4,1352sin π απα<<= 求ααα4tan ,4cos ,4sin 的值。 3、化简 ()() 111sin cos cos 2;2; 1tan 1tan x x x θ θ - -+ 4. x x - 5. 求值:(1)0000sin13cos17cos13sin 17+ (2) 00 1tan 751tan 75 +- (3)2 2 cos sin 8 8 π π - 6.已知a ,β都是锐角,cosa=17 ,cos ()αβ+=1114 -,求cos β的值。 7、 已知tan()3,tan()5αβαβ+=-=求tan2a 及tan 2β的值。 8、求值000 tan 70tan 1070tan 10 -- 9、.已知函数2cos cos x x x +,求函数f(x)的最小正周期及单调 递增区间。 五;高考链接

三角函数解题技巧和公式(已整理)

浅论关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于α αααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道 )cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3cos sin -=-求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33(cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 43133]313)33[(332=?=?+= 2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用: 由于tg θ+ctg θ=θ θθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2=12+n C .n m 22= D .22m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 121)cos (sin 22-=-+m θθ

三角函数线的作用

新课程中“单位圆与三角函数线”的教学作用 高一数学组 刘华泉 在三角函数的教学中,三角函数线(正弦线、余弦线、正切线)一直是与三角函数图像并驾齐驱的两大解题法宝,是数形结合思想的完美体现。但学生往往重后者而疏前者,因此老师们在“三角函数线的解题功能”方面有较多的探讨。如今,随着新课程改革三角函数定义的单位圆化,给了三角函数线更宽的舞台,在三角函数这一章节知识的展开中,三角函数线起到了前所未有的作用。本文旨在挖掘“单位圆——三角函数线”在教学中的功能。 教学作用一.三角函数“单位圆定义法”与原教材“终边定义法”之比较: “终边定义法(r y = αsin 等)”源于锐角三角函数,“终边定义法”需要经过“取点──求距离──求比值”等步骤,对应关系不够简洁;“比值”作为三角函数值,其意义(几何含义)不够清晰; “从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系不一致,而且“比值”需要通过运算才能得到,任意一个角所对应的比值的唯一性(即与点的选取无关)也需要证明;“比值”的周期性变化规律也需要经过推理才能得到.以往的教学实践表明,许多学生在结束了三角函数的学习后还对三角函数的对应关系不甚了了,与“终边定义法”的这些问题不无关系.用单位圆上点的坐标定义任意角的三角函数有许多优点. (1)简单、清楚,突出三角函数最重要的性质──周期性.采用“单位圆定义法”,对于任意角 ,它的终边与单位圆交点P(x ,y)唯一确定,这样,正弦、余弦函数中自变量 与函数值之间的对应关系,即 角(弧度)对应于点P 的纵坐标y ──正弦, 角 (弧度)对应于点P 的横坐标x ──余弦, 可以得到非常清楚、明确的表示,而且这种表示也是简单的.另外,“x= cos ,y= sin 是单位圆的自然的动态(解析)描述,其中,单位圆上点的坐标随着角 每隔2π(圆周长) 而重复出现(点绕圆周一圈而回到原来的位置),非常直观地显示了这两个函数的周期性.所以作为任意角三角函数的定义,当然是选择能够表现周期性的单位圆更为恰当。 另外,该定义可以在学诱导公式前求特殊角的三角函数值,也可以判断三角函数在各象限内的符号。 教学作用二.单位圆中理解弧度制: 学生在学习弧度制时,对于引进弧度制的必要性较难理解.“单位圆定义法”可以启发学生反思:采用弧度制度量角,就是用圆的半径来度量角,当此圆为单位 圆时,由扇形弧长公式r l ?=α知,α=l 。所以,在单位圆中,角度α就 是弧长l 。这时角度和半径长度的单位一致,这样,三角函数就是以实数 (弧度数)为自变量,以单位圆上点的坐标(也是实数)为函数值的函数,这就与函数的一般定义一致了我们还可以这样来理解三角函数中自变量与 函数值之间的对应关系:把实数轴想象为一条柔软的细线,原点固定在单位点A (1,0 ) ,数轴的正半轴逆时针缠绕在单位圆上,负半轴顺时针缠绕在单位圆上,那么数轴上的任意一个实数(点)被缠绕到单位圆上的点P(cos ,sin ). O x P Q 图1 α

相关主题
文本预览
相关文档 最新文档